/* mpfr_const_pi -- compute Pi Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpfr-impl.h" /* Declare the cache */ MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_pi, mpfr_const_pi_internal); /* Set User Interface */ #undef mpfr_const_pi int mpfr_const_pi (mpfr_ptr x, mpfr_rnd_t rnd_mode) { return mpfr_cache (x, __gmpfr_cache_const_pi, rnd_mode); } /* Don't need to save/restore exponent range: the cache does it */ int mpfr_const_pi_internal (mpfr_ptr x, mpfr_rnd_t rnd_mode) { mpfr_t a, A, B, D, S; mpfr_prec_t px, p, cancel, k, kmax; MPFR_ZIV_DECL (loop); int inex; MPFR_LOG_FUNC (("rnd_mode=%d", rnd_mode), ("x[%#R]=%R inex=%d", x, x, inex)); px = MPFR_PREC (x); /* we need 9*2^kmax - 4 >= px+2*kmax+8 */ for (kmax = 2; ((px + 2 * kmax + 12) / 9) >> kmax; kmax ++); p = px + 3 * kmax + 14; /* guarantees no recomputation for px <= 10000 */ mpfr_init2 (a, p); mpfr_init2 (A, p); mpfr_init2 (B, p); mpfr_init2 (D, p); mpfr_init2 (S, p); MPFR_ZIV_INIT (loop, p); for (;;) { mpfr_set_ui (a, 1, MPFR_RNDN); /* a = 1 */ mpfr_set_ui (A, 1, MPFR_RNDN); /* A = a^2 = 1 */ mpfr_set_ui_2exp (B, 1, -1, MPFR_RNDN); /* B = b^2 = 1/2 */ mpfr_set_ui_2exp (D, 1, -2, MPFR_RNDN); /* D = 1/4 */ #define b B #define ap a #define Ap A #define Bp B for (k = 0, cancel = 0; ; k++) { /* invariant: 1/2 <= B <= A <= a < 1 */ mpfr_add (S, A, B, MPFR_RNDN); /* 1 <= S <= 2 */ mpfr_div_2ui (S, S, 2, MPFR_RNDN); /* exact, 1/4 <= S <= 1/2 */ mpfr_sqrt (b, B, MPFR_RNDN); /* 1/2 <= b <= 1 */ mpfr_add (ap, a, b, MPFR_RNDN); /* 1 <= ap <= 2 */ mpfr_div_2ui (ap, ap, 1, MPFR_RNDN); /* exact, 1/2 <= ap <= 1 */ mpfr_mul (Ap, ap, ap, MPFR_RNDN); /* 1/4 <= Ap <= 1 */ mpfr_sub (Bp, Ap, S, MPFR_RNDN); /* -1/4 <= Bp <= 3/4 */ mpfr_mul_2ui (Bp, Bp, 1, MPFR_RNDN); /* -1/2 <= Bp <= 3/2 */ mpfr_sub (S, Ap, Bp, MPFR_RNDN); MPFR_ASSERTN (mpfr_cmp_ui (S, 1) < 0); cancel = mpfr_cmp_ui (S, 0) ? (mpfr_uexp_t) -mpfr_get_exp(S) : p; /* MPFR_ASSERTN (cancel >= px || cancel >= 9 * (1 << k) - 4); */ mpfr_mul_2ui (S, S, k, MPFR_RNDN); mpfr_sub (D, D, S, MPFR_RNDN); /* stop when |A_k - B_k| <= 2^(k-p) i.e. cancel >= p-k */ if (cancel + k >= p) break; } #undef b #undef ap #undef Ap #undef Bp mpfr_div (A, B, D, MPFR_RNDN); /* MPFR_ASSERTN(p >= 2 * k + 8); */ if (MPFR_LIKELY (MPFR_CAN_ROUND (A, p - 2 * k - 8, px, rnd_mode))) break; p += kmax; MPFR_ZIV_NEXT (loop, p); mpfr_set_prec (a, p); mpfr_set_prec (A, p); mpfr_set_prec (B, p); mpfr_set_prec (D, p); mpfr_set_prec (S, p); } MPFR_ZIV_FREE (loop); inex = mpfr_set (x, A, rnd_mode); mpfr_clear (a); mpfr_clear (A); mpfr_clear (B); mpfr_clear (D); mpfr_clear (S); return inex; }