/* $NetBSD: amr.c,v 1.12 2003/09/26 16:31:08 matt Exp $ */ /*- * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1999,2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp */ /* * Driver for AMI RAID controllers. */ #include __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.12 2003/09/26 16:31:08 matt Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void amr_attach(struct device *, struct device *, void *); void amr_ccb_dump(struct amr_softc *, struct amr_ccb *); void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *); int amr_init(struct amr_softc *, const char *, struct pci_attach_args *pa); int amr_intr(void *); int amr_match(struct device *, struct cfdata *, void *); int amr_print(void *, const char *); void amr_shutdown(void *); int amr_submatch(struct device *, struct cfdata *, void *); void amr_teardown(struct amr_softc *); void amr_thread(void *); void amr_thread_create(void *); int amr_mbox_wait(struct amr_softc *); int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *); int amr_quartz_submit(struct amr_softc *, struct amr_ccb *); int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *); int amr_std_submit(struct amr_softc *, struct amr_ccb *); static inline u_int8_t amr_inb(struct amr_softc *, int); static inline u_int32_t amr_inl(struct amr_softc *, int); static inline void amr_outb(struct amr_softc *, int, u_int8_t); static inline void amr_outl(struct amr_softc *, int, u_int32_t); CFATTACH_DECL(amr, sizeof(struct amr_softc), amr_match, amr_attach, NULL, NULL); #define AT_QUARTZ 0x01 /* `Quartz' chipset */ #define AT_SIG 0x02 /* Check for signature */ struct amr_pci_type { u_short apt_vendor; u_short apt_product; u_short apt_flags; } const amr_pci_type[] = { { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 }, { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 }, { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }, { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ }, }; struct amr_typestr { const char *at_str; int at_sig; } const amr_typestr[] = { { "Series 431", AMR_SIG_431 }, { "Series 438", AMR_SIG_438 }, { "Series 466", AMR_SIG_466 }, { "Series 467", AMR_SIG_467 }, { "Series 490", AMR_SIG_490 }, { "Series 762", AMR_SIG_762 }, { "HP NetRAID (T5)", AMR_SIG_T5 }, { "HP NetRAID (T7)", AMR_SIG_T7 }, }; struct { const char *ds_descr; int ds_happy; } const amr_dstate[] = { { "offline", 0 }, { "degraded", 1 }, { "optimal", 1 }, { "online", 1 }, { "failed", 0 }, { "rebuilding", 1 }, { "hotspare", 0 }, }; void *amr_sdh; int amr_max_segs; int amr_max_xfer; static inline u_int8_t amr_inb(struct amr_softc *amr, int off) { bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off)); } static inline u_int32_t amr_inl(struct amr_softc *amr, int off) { bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off)); } static inline void amr_outb(struct amr_softc *amr, int off, u_int8_t val) { bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val); bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, BUS_SPACE_BARRIER_WRITE); } static inline void amr_outl(struct amr_softc *amr, int off, u_int32_t val) { bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val); bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, BUS_SPACE_BARRIER_WRITE); } /* * Match a supported device. */ int amr_match(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa; pcireg_t s; int i; pa = (struct pci_attach_args *)aux; /* * Don't match the device if it's operating in I2O mode. In this * case it should be handled by the `iop' driver. */ if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) return (0); for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) break; if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0])) return (0); if ((amr_pci_type[i].apt_flags & AT_SIG) == 0) return (1); s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff; return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1); } /* * Attach a supported device. */ void amr_attach(struct device *parent, struct device *self, void *aux) { bus_space_tag_t memt, iot; bus_space_handle_t memh, ioh; struct pci_attach_args *pa; struct amr_attach_args amra; const struct amr_pci_type *apt; struct amr_softc *amr; pci_chipset_tag_t pc; pci_intr_handle_t ih; const char *intrstr; pcireg_t reg; int rseg, i, j, size, rv, memreg, ioreg; bus_size_t memsize, iosize; struct amr_ccb *ac; aprint_naive(": RAID controller\n"); amr = (struct amr_softc *)self; pa = (struct pci_attach_args *)aux; pc = pa->pa_pc; for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) break; apt = amr_pci_type + i; memreg = ioreg = 0; for (i = 0x10; i <= 0x14; i += 4) { reg = pci_conf_read(pc, pa->pa_tag, i); switch (PCI_MAPREG_TYPE(reg)) { case PCI_MAPREG_TYPE_MEM: if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0) memreg = i; break; case PCI_MAPREG_TYPE_IO: if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0) ioreg = i; break; } } if (memreg != 0) if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0, &memt, &memh, NULL, NULL)) memreg = 0; if (ioreg != 0) if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL)) ioreg = 0; if (memreg) { amr->amr_iot = memt; amr->amr_ioh = memh; amr->amr_ios = memsize; } else if (ioreg) { amr->amr_iot = iot; amr->amr_ioh = ioh; amr->amr_ios = iosize; } else { aprint_error("can't map control registers\n"); amr_teardown(amr); return; } amr->amr_flags |= AMRF_PCI_REGS; amr->amr_dmat = pa->pa_dmat; amr->amr_pc = pa->pa_pc; /* Enable the device. */ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg | PCI_COMMAND_MASTER_ENABLE); /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error("can't map interrupt\n"); amr_teardown(amr); return; } intrstr = pci_intr_string(pc, ih); amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr); if (amr->amr_ih == NULL) { aprint_error("can't establish interrupt"); if (intrstr != NULL) aprint_normal(" at %s", intrstr); aprint_normal("\n"); amr_teardown(amr); return; } amr->amr_flags |= AMRF_PCI_INTR; /* * Allocate space for the mailbox and S/G lists. Some controllers * don't like S/G lists to be located below 0x2000, so we allocate * enough slop to enable us to compensate. * * The standard mailbox structure needs to be aligned on a 16-byte * boundary. The 64-bit mailbox has one extra field, 4 bytes in * size, which preceeds the standard mailbox. */ size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000; amr->amr_dmasize = size; if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL, &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: unable to allocate buffer, rv = %d\n", amr->amr_dv.dv_xname, rv); amr_teardown(amr); return; } amr->amr_flags |= AMRF_DMA_ALLOC; if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size, (caddr_t *)&amr->amr_mbox, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { aprint_error("%s: unable to map buffer, rv = %d\n", amr->amr_dv.dv_xname, rv); amr_teardown(amr); return; } amr->amr_flags |= AMRF_DMA_MAP; if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) { aprint_error("%s: unable to create buffer DMA map, rv = %d\n", amr->amr_dv.dv_xname, rv); amr_teardown(amr); return; } amr->amr_flags |= AMRF_DMA_CREATE; if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap, amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: unable to load buffer DMA map, rv = %d\n", amr->amr_dv.dv_xname, rv); amr_teardown(amr); return; } amr->amr_flags |= AMRF_DMA_LOAD; memset(amr->amr_mbox, 0, size); amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr; amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff; amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox + amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr); /* * Allocate and initalise the command control blocks. */ ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO); amr->amr_ccbs = ac; SLIST_INIT(&amr->amr_ccb_freelist); TAILQ_INIT(&amr->amr_ccb_active); amr->amr_flags |= AMRF_CCBS; if (amr_max_xfer == 0) { amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS); amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE; } for (i = 0; i < AMR_MAX_CMDS; i++, ac++) { rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer, amr_max_segs, amr_max_xfer, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map); if (rv != 0) break; ac->ac_ident = i; amr_ccb_free(amr, ac); } if (i != AMR_MAX_CMDS) { aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname); amr_teardown(amr); return; } /* * Take care of model-specific tasks. */ if ((apt->apt_flags & AT_QUARTZ) != 0) { amr->amr_submit = amr_quartz_submit; amr->amr_get_work = amr_quartz_get_work; } else { amr->amr_submit = amr_std_submit; amr->amr_get_work = amr_std_get_work; /* Notify the controller of the mailbox location. */ amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16); amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR); /* Clear outstanding interrupts and enable interrupts. */ amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); amr_outb(amr, AMR_SREG_TOGL, amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE); } /* * Retrieve parameters, and tell the world about us. */ amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT); amr->amr_flags |= AMRF_ENQBUF; amr->amr_maxqueuecnt = i; aprint_normal(": AMI RAID "); if (amr_init(amr, intrstr, pa) != 0) { amr_teardown(amr); return; } /* * Cap the maximum number of outstanding commands. AMI's Linux * driver doesn't trust the controller's reported value, and lockups * have been seen when we do. */ amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS); if (amr->amr_maxqueuecnt > i) amr->amr_maxqueuecnt = i; /* Set our `shutdownhook' before we start any device activity. */ if (amr_sdh == NULL) amr_sdh = shutdownhook_establish(amr_shutdown, NULL); /* Attach sub-devices. */ for (j = 0; j < amr->amr_numdrives; j++) { if (amr->amr_drive[j].al_size == 0) continue; amra.amra_unit = j; amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra, amr_print, amr_submatch); } SIMPLEQ_INIT(&amr->amr_ccb_queue); kthread_create(amr_thread_create, amr); } /* * Free up resources. */ void amr_teardown(struct amr_softc *amr) { struct amr_ccb *ac; int fl; fl = amr->amr_flags; if ((fl & AMRF_THREAD) != 0) { amr->amr_flags |= AMRF_THREAD_EXIT; wakeup(amr_thread); while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) tsleep(&amr->amr_flags, PWAIT, "amrexit", 0); } if ((fl & AMRF_CCBS) != 0) { SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) { bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map); } free(amr->amr_ccbs, M_DEVBUF); } if ((fl & AMRF_ENQBUF) != 0) free(amr->amr_enqbuf, M_DEVBUF); if ((fl & AMRF_DMA_LOAD) != 0) bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap); if ((fl & AMRF_DMA_MAP) != 0) bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox, amr->amr_dmasize); if ((fl & AMRF_DMA_ALLOC) != 0) bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1); if ((fl & AMRF_DMA_CREATE) != 0) bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap); if ((fl & AMRF_PCI_INTR) != 0) pci_intr_disestablish(amr->amr_pc, amr->amr_ih); if ((fl & AMRF_PCI_REGS) != 0) bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios); } /* * Print autoconfiguration message for a sub-device. */ int amr_print(void *aux, const char *pnp) { struct amr_attach_args *amra; amra = (struct amr_attach_args *)aux; if (pnp != NULL) aprint_normal("block device at %s", pnp); aprint_normal(" unit %d", amra->amra_unit); return (UNCONF); } /* * Match a sub-device. */ int amr_submatch(struct device *parent, struct cfdata *cf, void *aux) { struct amr_attach_args *amra; amra = (struct amr_attach_args *)aux; if (cf->amracf_unit != AMRCF_UNIT_DEFAULT && cf->amracf_unit != amra->amra_unit) return (0); return (config_match(parent, cf, aux)); } /* * Retrieve operational parameters and describe the controller. */ int amr_init(struct amr_softc *amr, const char *intrstr, struct pci_attach_args *pa) { struct amr_adapter_info *aa; struct amr_prodinfo *ap; struct amr_enquiry *ae; struct amr_enquiry3 *aex; const char *prodstr; u_int i, sig, ishp; char buf[64]; /* * Try to get 40LD product info, which tells us what the card is * labelled as. */ ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0, amr->amr_enqbuf); if (ap != NULL) { aprint_normal("<%.80s>\n", ap->ap_product); if (intrstr != NULL) aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname, intrstr); aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n", amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize)); amr->amr_maxqueuecnt = ap->ap_maxio; /* * Fetch and record state of logical drives. */ aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3, AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf); if (aex == NULL) { aprint_error("%s ENQUIRY3 failed\n", amr->amr_dv.dv_xname); return (-1); } if (aex->ae_numldrives > AMR_MAX_UNITS) { aprint_error( "%s: adjust AMR_MAX_UNITS to %d (currently %d)" "\n", amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS); amr->amr_numdrives = AMR_MAX_UNITS; } else amr->amr_numdrives = aex->ae_numldrives; for (i = 0; i < amr->amr_numdrives; i++) { amr->amr_drive[i].al_size = le32toh(aex->ae_drivesize[i]); amr->amr_drive[i].al_state = aex->ae_drivestate[i]; amr->amr_drive[i].al_properties = aex->ae_driveprop[i]; } return (0); } /* * Try 8LD extended ENQUIRY to get the controller signature. Once * found, search for a product description. */ ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf); if (ae != NULL) { i = 0; sig = le32toh(ae->ae_signature); while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) { if (amr_typestr[i].at_sig == sig) break; i++; } if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) { sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig); prodstr = buf; } else prodstr = amr_typestr[i].at_str; } else { ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf); if (ae == NULL) { aprint_error("%s: unsupported controller\n", amr->amr_dv.dv_xname); return (-1); } switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_AMI_MEGARAID: prodstr = "Series 428"; break; case PCI_PRODUCT_AMI_MEGARAID2: prodstr = "Series 434"; break; default: sprintf(buf, "unknown PCI dev (0x%04x)", PCI_PRODUCT(pa->pa_id)); prodstr = buf; break; } } /* * HP NetRaid controllers have a special encoding of the firmware * and BIOS versions. The AMI version seems to have it as strings * whereas the HP version does it with a leading uppercase character * and two binary numbers. */ aa = &ae->ae_adapter; if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' && aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' && aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' && aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') { if (le32toh(ae->ae_signature) == AMR_SIG_438) { /* The AMI 438 is a NetRaid 3si in HP-land. */ prodstr = "HP NetRaid 3si"; } ishp = 1; } else ishp = 0; aprint_normal("<%s>\n", prodstr); if (intrstr != NULL) aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname, intrstr); if (ishp) aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>" ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2], aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2], aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize); else aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios, aa->aa_memorysize); amr->amr_maxqueuecnt = aa->aa_maxio; /* * Record state of logical drives. */ if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) { aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n", amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS); amr->amr_numdrives = AMR_MAX_UNITS; } else amr->amr_numdrives = ae->ae_ldrv.al_numdrives; for (i = 0; i < AMR_MAX_UNITS; i++) { amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]); amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i]; amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i]; } return (0); } /* * Flush the internal cache on each configured controller. Called at * shutdown time. */ void amr_shutdown(void *cookie) { extern struct cfdriver amr_cd; struct amr_softc *amr; struct amr_ccb *ac; int i, rv, s; for (i = 0; i < amr_cd.cd_ndevs; i++) { if ((amr = device_lookup(&amr_cd, i)) == NULL) continue; if ((rv = amr_ccb_alloc(amr, &ac)) == 0) { ac->ac_cmd.mb_command = AMR_CMD_FLUSH; s = splbio(); rv = amr_ccb_poll(amr, ac, 30000); splx(s); amr_ccb_free(amr, ac); } if (rv != 0) printf("%s: unable to flush cache (%d)\n", amr->amr_dv.dv_xname, rv); } } /* * Interrupt service routine. */ int amr_intr(void *cookie) { struct amr_softc *amr; struct amr_ccb *ac; struct amr_mailbox_resp mbox; u_int i, forus, idx; amr = cookie; forus = 0; while ((*amr->amr_get_work)(amr, &mbox) == 0) { /* Iterate over completed commands in this result. */ for (i = 0; i < mbox.mb_nstatus; i++) { idx = mbox.mb_completed[i] - 1; ac = amr->amr_ccbs + idx; if (idx >= amr->amr_maxqueuecnt) { printf("%s: bad status (bogus ID: %u=%u)\n", amr->amr_dv.dv_xname, i, idx); continue; } if ((ac->ac_flags & AC_ACTIVE) == 0) { printf("%s: bad status (not active; 0x04%x)\n", amr->amr_dv.dv_xname, ac->ac_flags); continue; } ac->ac_status = mbox.mb_status; ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) | AC_COMPLETE; TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq); if ((ac->ac_flags & AC_MOAN) != 0) printf("%s: ccb %d completed\n", amr->amr_dv.dv_xname, ac->ac_ident); /* Pass notification to upper layers. */ if (ac->ac_handler != NULL) (*ac->ac_handler)(ac); else wakeup(ac); } forus = 1; } if (forus) amr_ccb_enqueue(amr, NULL); return (forus); } /* * Create the watchdog thread. */ void amr_thread_create(void *cookie) { struct amr_softc *amr; int rv; amr = cookie; if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { amr->amr_flags ^= AMRF_THREAD_EXIT; wakeup(&amr->amr_flags); return; } rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s", amr->amr_dv.dv_xname); if (rv != 0) aprint_error("%s: unable to create thread (%d)", amr->amr_dv.dv_xname, rv); else amr->amr_flags |= AMRF_THREAD; } /* * Watchdog thread. */ void amr_thread(void *cookie) { struct amr_softc *amr; struct amr_ccb *ac; struct amr_logdrive *al; struct amr_enquiry *ae; time_t curtime; int rv, i, s; amr = cookie; ae = amr->amr_enqbuf; for (;;) { tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS); if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { amr->amr_flags ^= AMRF_THREAD_EXIT; wakeup(&amr->amr_flags); kthread_exit(0); } s = splbio(); amr_intr(cookie); curtime = (time_t)mono_time.tv_sec; if ((ac = TAILQ_FIRST(&amr->amr_ccb_active)) != NULL) { if (ac->ac_start_time + AMR_TIMEOUT > curtime) break; if ((ac->ac_flags & AC_MOAN) == 0) { printf("%s: ccb %d timed out; mailbox:\n", amr->amr_dv.dv_xname, ac->ac_ident); amr_ccb_dump(amr, ac); ac->ac_flags |= AC_MOAN; } } splx(s); if ((rv = amr_ccb_alloc(amr, &ac)) != 0) { printf("%s: ccb_alloc failed (%d)\n", amr->amr_dv.dv_xname, rv); continue; } ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY; rv = amr_ccb_map(amr, ac, amr->amr_enqbuf, AMR_ENQUIRY_BUFSIZE, 0); if (rv != 0) { printf("%s: ccb_map failed (%d)\n", amr->amr_dv.dv_xname, rv); amr_ccb_free(amr, ac); continue; } rv = amr_ccb_wait(amr, ac); amr_ccb_unmap(amr, ac); if (rv != 0) { printf("%s: enquiry failed (st=%d)\n", amr->amr_dv.dv_xname, ac->ac_status); continue; } amr_ccb_free(amr, ac); al = amr->amr_drive; for (i = 0; i < AMR_MAX_UNITS; i++, al++) { if (al->al_dv == NULL) continue; if (al->al_state == ae->ae_ldrv.al_state[i]) continue; printf("%s: state changed: %s -> %s\n", al->al_dv->dv_xname, amr_drive_state(al->al_state, NULL), amr_drive_state(ae->ae_ldrv.al_state[i], NULL)); al->al_state = ae->ae_ldrv.al_state[i]; } } } /* * Return a text description of a logical drive's current state. */ const char * amr_drive_state(int state, int *happy) { const char *str; state = AMR_DRV_CURSTATE(state); if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) { if (happy) *happy = 1; str = "status unknown"; } else { if (happy) *happy = amr_dstate[state].ds_happy; str = amr_dstate[state].ds_descr; } return (str); } /* * Run a generic enquiry-style command. */ void * amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub, u_int8_t cmdqual, void *buf) { struct amr_ccb *ac; u_int8_t *mb; int rv; if (amr_ccb_alloc(amr, &ac) != 0) return (NULL); /* Build the command proper. */ mb = (u_int8_t *)&ac->ac_cmd; mb[0] = cmd; mb[2] = cmdsub; mb[3] = cmdqual; rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0); if (rv == 0) { rv = amr_ccb_poll(amr, ac, 2000); amr_ccb_unmap(amr, ac); } amr_ccb_free(amr, ac); return (rv ? NULL : buf); } /* * Allocate and initialise a CCB. */ int amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp) { int s; s = splbio(); if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) { splx(s); return (EAGAIN); } SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist); splx(s); return (0); } /* * Free a CCB. */ void amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac) { int s; memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd)); ac->ac_cmd.mb_ident = ac->ac_ident + 1; ac->ac_cmd.mb_busy = 1; ac->ac_handler = NULL; ac->ac_flags = 0; s = splbio(); SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist); splx(s); } /* * If a CCB is specified, enqueue it. Pull CCBs off the software queue in * the order that they were enqueued and try to submit their command blocks * to the controller for execution. */ void amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac) { int s; s = splbio(); if (ac != NULL) SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq); while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) { if ((*amr->amr_submit)(amr, ac) != 0) break; SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq); TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); } splx(s); } /* * Map the specified CCB's data buffer onto the bus, and fill the * scatter-gather list. */ int amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size, int out) { struct amr_sgentry *sge; struct amr_mailbox_cmd *mb; int nsegs, i, rv, sgloff; bus_dmamap_t xfer; xfer = ac->ac_xfer_map; rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL, BUS_DMA_NOWAIT); if (rv != 0) return (rv); mb = &ac->ac_cmd; ac->ac_xfer_size = size; ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN); sgloff = AMR_SGL_SIZE * ac->ac_ident; /* We don't need to use a scatter/gather list for just 1 segment. */ nsegs = xfer->dm_nsegs; if (nsegs == 1) { mb->mb_nsgelem = 0; mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr); ac->ac_flags |= AC_NOSGL; } else { mb->mb_nsgelem = nsegs; mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff); sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff); for (i = 0; i < nsegs; i++, sge++) { sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr); sge->sge_count = htole32(xfer->dm_segs[i].ds_len); } } bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD); if ((ac->ac_flags & AC_NOSGL) == 0) bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff, AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE); return (0); } /* * Unmap the specified CCB's data buffer. */ void amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac) { if ((ac->ac_flags & AC_NOSGL) == 0) bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE, BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size, (ac->ac_flags & AC_XFER_IN) != 0 ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map); } /* * Submit a command to the controller and poll on completion. Return * non-zero on timeout or error. Must be called with interrupts blocked. */ int amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo) { int rv; if ((rv = (*amr->amr_submit)(amr, ac)) != 0) return (rv); TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); for (timo *= 10; timo != 0; timo--) { amr_intr(amr); if ((ac->ac_flags & AC_COMPLETE) != 0) break; DELAY(100); } return (timo == 0 || ac->ac_status != 0 ? EIO : 0); } /* * Submit a command to the controller and sleep on completion. Return * non-zero on error. */ int amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac) { int s; s = splbio(); amr_ccb_enqueue(amr, ac); tsleep(ac, PRIBIO, "amrcmd", 0); splx(s); return (ac->ac_status != 0 ? EIO : 0); } /* * Wait for the mailbox to become available. */ int amr_mbox_wait(struct amr_softc *amr) { int timo; for (timo = 10000; timo != 0; timo--) { bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); if (amr->amr_mbox->mb_cmd.mb_busy == 0) break; DELAY(100); } if (timo == 0) printf("%s: controller wedged\n", amr->amr_dv.dv_xname); return (timo != 0 ? 0 : EAGAIN); } /* * Tell the controller that the mailbox contains a valid command. Must be * called with interrupts blocked. */ int amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac) { u_int32_t v; amr->amr_mbox->mb_poll = 0; amr->amr_mbox->mb_ack = 0; bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); if (amr->amr_mbox->mb_cmd.mb_busy != 0) return (EAGAIN); v = amr_inl(amr, AMR_QREG_IDB); if ((v & (AMR_QIDB_SUBMIT | AMR_QIDB_ACK)) != 0) { amr->amr_mbox->mb_cmd.mb_busy = 0; bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); return (EAGAIN); } amr->amr_mbox->mb_segment = 0; memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); ac->ac_start_time = (time_t)mono_time.tv_sec; ac->ac_flags |= AC_ACTIVE; amr_outl(amr, AMR_QREG_IDB, amr->amr_mbox_paddr | AMR_QIDB_SUBMIT); return (0); } int amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac) { amr->amr_mbox->mb_poll = 0; amr->amr_mbox->mb_ack = 0; bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); if (amr->amr_mbox->mb_cmd.mb_busy != 0) return (EAGAIN); if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) { amr->amr_mbox->mb_cmd.mb_busy = 0; bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); return (EAGAIN); } amr->amr_mbox->mb_segment = 0; memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); ac->ac_start_time = (time_t)mono_time.tv_sec; ac->ac_flags |= AC_ACTIVE; amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST); return (0); } /* * Claim any work that the controller has completed; acknowledge completion, * save details of the completion in (mbsave). Must be called with * interrupts blocked. */ int amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) { /* Work waiting for us? */ if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY) return (-1); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); /* Save the mailbox, which contains a list of completed commands. */ memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); /* Ack the interrupt and mailbox transfer. */ amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY); amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK); /* * This waits for the controller to notice that we've taken the * command from it. It's very inefficient, and we shouldn't do it, * but if we remove this code, we stop completing commands under * load. * * Peter J says we shouldn't do this. The documentation says we * should. Who is right? */ while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0) ; return (0); } int amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) { u_int8_t istat; /* Check for valid interrupt status. */ if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0) return (-1); /* Ack the interrupt. */ amr_outb(amr, AMR_SREG_INTR, istat); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); /* Save mailbox, which contains a list of completed commands. */ memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); /* Ack mailbox transfer. */ amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); return (0); } void amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac) { int i; printf("%s: ", amr->amr_dv.dv_xname); for (i = 0; i < 4; i++) printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]); printf("\n"); }