/* $NetBSD: eso.c,v 1.27 2002/10/02 16:51:14 thorpej Exp $ */ /* * Copyright (c) 1999, 2000 Klaus J. Klein * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. */ #include __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.27 2002/10/02 16:51:14 thorpej Exp $"); #include "mpu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(AUDIO_DEBUG) || defined(DEBUG) #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif struct eso_dma { bus_dma_tag_t ed_dmat; bus_dmamap_t ed_map; caddr_t ed_addr; bus_dma_segment_t ed_segs[1]; int ed_nsegs; size_t ed_size; struct eso_dma * ed_next; }; #define KVADDR(dma) ((void *)(dma)->ed_addr) #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) /* Autoconfiguration interface */ static int eso_match __P((struct device *, struct cfdata *, void *)); static void eso_attach __P((struct device *, struct device *, void *)); static void eso_defer __P((struct device *)); static int eso_print __P((void *, const char *)); CFATTACH_DECL(eso, sizeof (struct eso_softc), eso_match, eso_attach, NULL, NULL); /* PCI interface */ static int eso_intr __P((void *)); /* MI audio layer interface */ static int eso_open __P((void *, int)); static void eso_close __P((void *)); static int eso_query_encoding __P((void *, struct audio_encoding *)); static int eso_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); static int eso_round_blocksize __P((void *, int)); static int eso_halt_output __P((void *)); static int eso_halt_input __P((void *)); static int eso_getdev __P((void *, struct audio_device *)); static int eso_set_port __P((void *, mixer_ctrl_t *)); static int eso_get_port __P((void *, mixer_ctrl_t *)); static int eso_query_devinfo __P((void *, mixer_devinfo_t *)); static void * eso_allocm __P((void *, int, size_t, int, int)); static void eso_freem __P((void *, void *, int)); static size_t eso_round_buffersize __P((void *, int, size_t)); static paddr_t eso_mappage __P((void *, void *, off_t, int)); static int eso_get_props __P((void *)); static int eso_trigger_output __P((void *, void *, void *, int, void (*)(void *), void *, struct audio_params *)); static int eso_trigger_input __P((void *, void *, void *, int, void (*)(void *), void *, struct audio_params *)); static struct audio_hw_if eso_hw_if = { eso_open, eso_close, NULL, /* drain */ eso_query_encoding, eso_set_params, eso_round_blocksize, NULL, /* commit_settings */ NULL, /* init_output */ NULL, /* init_input */ NULL, /* start_output */ NULL, /* start_input */ eso_halt_output, eso_halt_input, NULL, /* speaker_ctl */ eso_getdev, NULL, /* setfd */ eso_set_port, eso_get_port, eso_query_devinfo, eso_allocm, eso_freem, eso_round_buffersize, eso_mappage, eso_get_props, eso_trigger_output, eso_trigger_input, NULL, /* dev_ioctl */ }; static const char * const eso_rev2model[] = { "ES1938", "ES1946", "ES1946 Revision E" }; /* * Utility routines */ /* Register access etc. */ static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t)); static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t)); static uint8_t eso_read_rdr __P((struct eso_softc *)); static void eso_reload_master_vol __P((struct eso_softc *)); static int eso_reset __P((struct eso_softc *)); static void eso_set_gain __P((struct eso_softc *, unsigned int)); static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int)); static int eso_set_recsrc __P((struct eso_softc *, unsigned int)); static void eso_write_cmd __P((struct eso_softc *, uint8_t)); static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t)); static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t)); /* DMA memory allocation */ static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t, int, int, struct eso_dma *)); static void eso_freemem __P((struct eso_dma *)); static int eso_match(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) return (1); return (0); } static void eso_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct eso_softc *sc = (struct eso_softc *)self; struct pci_attach_args *pa = aux; struct audio_attach_args aa; pci_intr_handle_t ih; bus_addr_t vcbase; const char *intrstring; int idx; uint8_t a2mode, mvctl; sc->sc_revision = PCI_REVISION(pa->pa_class); printf(": ESS Solo-1 PCI AudioDrive "); if (sc->sc_revision < sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) printf("%s\n", eso_rev2model[sc->sc_revision]); else printf("(unknown rev. 0x%02x)\n", sc->sc_revision); /* Map I/O registers. */ if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname); return; } if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname); return; } if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname); /* Don't bail out yet: we can map it later, see below. */ vcbase = 0; sc->sc_vcsize = 0x10; /* From the data sheet. */ } if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname); return; } if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname); return; } sc->sc_dmat = pa->pa_dmat; sc->sc_dmas = NULL; sc->sc_dmac_configured = 0; /* Enable bus mastering. */ pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); /* Reset the device; bail out upon failure. */ if (eso_reset(sc) != 0) { printf("%s: can't reset\n", sc->sc_dev.dv_xname); return; } /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); /* Enable the relevant (DMA) interrupts. */ bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ); /* Set up A1's sample rate generator for new-style parameters. */ a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); /* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */ mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; mvctl |= ESO_MIXREG_MVCTL_HVIRQM; eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); /* Set mixer regs to something reasonable, needs work. */ sc->sc_recsrc = ESO_MIXREG_ERS_LINE; sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE; sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; for (idx = 0; idx < ESO_NGAINDEVS; idx++) { int v; switch (idx) { case ESO_MIC_PLAY_VOL: case ESO_LINE_PLAY_VOL: case ESO_CD_PLAY_VOL: case ESO_MONO_PLAY_VOL: case ESO_AUXB_PLAY_VOL: case ESO_DAC_REC_VOL: case ESO_LINE_REC_VOL: case ESO_SYNTH_REC_VOL: case ESO_CD_REC_VOL: case ESO_MONO_REC_VOL: case ESO_AUXB_REC_VOL: case ESO_SPATIALIZER: v = 0; break; case ESO_MASTER_VOL: v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); break; default: v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); break; } sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; eso_set_gain(sc, idx); } eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); return; } intrstring = pci_intr_string(pa->pa_pc, ih); sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); if (sc->sc_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstring != NULL) printf(" at %s", intrstring); printf("\n"); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring); /* * Set up the DDMA Control register; a suitable I/O region has been * supposedly mapped in the VC base address register. * * The Solo-1 has an ... interesting silicon bug that causes it to * not respond to I/O space accesses to the Audio 1 DMA controller * if the latter's mapping base address is aligned on a 1K boundary. * As a consequence, it is quite possible for the mapping provided * in the VC BAR to be useless. To work around this, we defer this * part until all autoconfiguration on our parent bus is completed * and then try to map it ourselves in fulfillment of the constraint. * * According to the register map we may write to the low 16 bits * only, but experimenting has shown we're safe. * -kjk */ if (ESO_VALID_DDMAC_BASE(vcbase)) { pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, vcbase | ESO_PCI_DDMAC_DE); sc->sc_dmac_configured = 1; printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n", sc->sc_dev.dv_xname, (unsigned long)vcbase); } else { DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n", sc->sc_dev.dv_xname, (unsigned long)vcbase)); sc->sc_pa = *pa; config_defer(self, eso_defer); } audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev); aa.type = AUDIODEV_TYPE_OPL; aa.hwif = NULL; aa.hdl = NULL; (void)config_found(&sc->sc_dev, &aa, audioprint); aa.type = AUDIODEV_TYPE_MPU; aa.hwif = NULL; aa.hdl = NULL; sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); if (sc->sc_mpudev != NULL) { /* Unmask the MPU irq. */ mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); } aa.type = AUDIODEV_TYPE_AUX; aa.hwif = NULL; aa.hdl = NULL; (void)config_found(&sc->sc_dev, &aa, eso_print); } static void eso_defer(self) struct device *self; { struct eso_softc *sc = (struct eso_softc *)self; struct pci_attach_args *pa = &sc->sc_pa; bus_addr_t addr, start; printf("%s: ", sc->sc_dev.dv_xname); /* * This is outright ugly, but since we must not make assumptions * on the underlying allocator's behaviour it's the most straight- * forward way to implement it. Note that we skip over the first * 1K region, which is typically occupied by an attached ISA bus. */ for (start = 0x0400; start < 0xffff; start += 0x0400) { if (bus_space_alloc(sc->sc_iot, start + sc->sc_vcsize, start + 0x0400 - 1, sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, &sc->sc_dmac_ioh) != 0) continue; pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, addr | ESO_PCI_DDMAC_DE); sc->sc_dmac_iot = sc->sc_iot; sc->sc_dmac_configured = 1; printf("mapping Audio 1 DMA using I/O space at 0x%lx\n", (unsigned long)addr); return; } printf("can't map Audio 1 DMA into I/O space\n"); } /* ARGSUSED */ static int eso_print(aux, pnp) void *aux; const char *pnp; { /* Only joys can attach via this; easy. */ if (pnp) printf("joy at %s:", pnp); return (UNCONF); } static void eso_write_cmd(sc, cmd) struct eso_softc *sc; uint8_t cmd; { int i; /* Poll for busy indicator to become clear. */ for (i = 0; i < ESO_WDR_TIMEOUT; i++) { if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) & ESO_SB_RSR_BUSY) == 0) { bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_WDR, cmd); return; } else { delay(10); } } printf("%s: WDR timeout\n", sc->sc_dev.dv_xname); return; } /* Write to a controller register */ static void eso_write_ctlreg(sc, reg, val) struct eso_softc *sc; uint8_t reg, val; { /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ eso_write_cmd(sc, reg); eso_write_cmd(sc, val); } /* Read out the Read Data Register */ static uint8_t eso_read_rdr(sc) struct eso_softc *sc; { int i; for (i = 0; i < ESO_RDR_TIMEOUT; i++) { if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { return (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RDR)); } else { delay(10); } } printf("%s: RDR timeout\n", sc->sc_dev.dv_xname); return (-1); } static uint8_t eso_read_ctlreg(sc, reg) struct eso_softc *sc; uint8_t reg; { eso_write_cmd(sc, ESO_CMD_RCR); eso_write_cmd(sc, reg); return (eso_read_rdr(sc)); } static void eso_write_mixreg(sc, reg, val) struct eso_softc *sc; uint8_t reg, val; { int s; /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ s = splaudio(); bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); splx(s); } static uint8_t eso_read_mixreg(sc, reg) struct eso_softc *sc; uint8_t reg; { int s; uint8_t val; s = splaudio(); bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); splx(s); return (val); } static int eso_intr(hdl) void *hdl; { struct eso_softc *sc = hdl; uint8_t irqctl; irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); /* If it wasn't ours, that's all she wrote. */ if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) return (0); if (irqctl & ESO_IO_IRQCTL_A1IRQ) { /* Clear interrupt. */ (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RBSR); if (sc->sc_rintr) sc->sc_rintr(sc->sc_rarg); else wakeup(&sc->sc_rintr); } if (irqctl & ESO_IO_IRQCTL_A2IRQ) { /* * Clear the A2 IRQ latch: the cached value reflects the * current DAC settings with the IRQ latch bit not set. */ eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); if (sc->sc_pintr) sc->sc_pintr(sc->sc_parg); else wakeup(&sc->sc_pintr); } if (irqctl & ESO_IO_IRQCTL_HVIRQ) { /* Clear interrupt. */ eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); /* * Raise a flag to cause a lazy update of the in-softc gain * values the next time the software mixer is read to keep * interrupt service cost low. ~0 cannot occur otherwise * as the master volume has a precision of 6 bits only. */ sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; } #if NMPU > 0 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL) mpu_intr(sc->sc_mpudev); #endif return (1); } /* Perform a software reset, including DMA FIFOs. */ static int eso_reset(sc) struct eso_softc *sc; { int i; bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); /* `Delay' suggested in the data sheet. */ (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); /* Wait for reset to take effect. */ for (i = 0; i < ESO_RESET_TIMEOUT; i++) { /* Poll for data to become available. */ if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { /* Activate Solo-1 extension commands. */ eso_write_cmd(sc, ESO_CMD_EXTENB); /* Reset mixer registers. */ eso_write_mixreg(sc, ESO_MIXREG_RESET, ESO_MIXREG_RESET_RESET); return (0); } else { delay(1000); } } printf("%s: reset timeout\n", sc->sc_dev.dv_xname); return (-1); } /* ARGSUSED */ static int eso_open(hdl, flags) void *hdl; int flags; { struct eso_softc *sc = hdl; DPRINTF(("%s: open\n", sc->sc_dev.dv_xname)); sc->sc_pintr = NULL; sc->sc_rintr = NULL; return (0); } static void eso_close(hdl) void *hdl; { DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname)); } static int eso_query_encoding(hdl, fp) void *hdl; struct audio_encoding *fp; { switch (fp->index) { case 0: strcpy(fp->name, AudioEulinear); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; break; case 1: strcpy(fp->name, AudioEmulaw); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 2: strcpy(fp->name, AudioEalaw); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 3: strcpy(fp->name, AudioEslinear); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = 0; break; case 4: strcpy(fp->name, AudioEslinear_le); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 5: strcpy(fp->name, AudioEulinear_le); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 6: strcpy(fp->name, AudioEslinear_be); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 7: strcpy(fp->name, AudioEulinear_be); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; default: return (EINVAL); } return (0); } static int eso_set_params(hdl, setmode, usemode, play, rec) void *hdl; int setmode, usemode; struct audio_params *play, *rec; { struct eso_softc *sc = hdl; struct audio_params *p; int mode, r[2], rd[2], clk; unsigned int srg, fltdiv; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = (mode == AUMODE_PLAY) ? play : rec; if (p->sample_rate < ESO_MINRATE || p->sample_rate > ESO_MAXRATE || (p->precision != 8 && p->precision != 16) || (p->channels != 1 && p->channels != 2)) return (EINVAL); p->factor = 1; p->sw_code = NULL; switch (p->encoding) { case AUDIO_ENCODING_SLINEAR_BE: case AUDIO_ENCODING_ULINEAR_BE: if (mode == AUMODE_PLAY && p->precision == 16) p->sw_code = swap_bytes; break; case AUDIO_ENCODING_SLINEAR_LE: case AUDIO_ENCODING_ULINEAR_LE: if (mode == AUMODE_RECORD && p->precision == 16) p->sw_code = swap_bytes; break; case AUDIO_ENCODING_ULAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->sw_code = mulaw_to_ulinear16_le; } else { p->sw_code = ulinear8_to_mulaw; } break; case AUDIO_ENCODING_ALAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->sw_code = alaw_to_ulinear16_le; } else { p->sw_code = ulinear8_to_alaw; } break; default: return (EINVAL); } /* * We'll compute both possible sample rate dividers and pick * the one with the least error. */ #define ABS(x) ((x) < 0 ? -(x) : (x)) r[0] = ESO_CLK0 / (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); r[1] = ESO_CLK1 / (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]); srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); /* Roll-off frequency of 87%, as in the ES1888 driver. */ fltdiv = 256 - 200279L / r[clk]; /* Update to reflect the possibly inexact rate. */ p->sample_rate = r[clk]; if (mode == AUMODE_RECORD) { /* Audio 1 */ DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); } else { /* Audio 2 */ DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); } #undef ABS } return (0); } static int eso_round_blocksize(hdl, blk) void *hdl; int blk; { return (blk & -32); /* keep good alignment; at least 16 req'd */ } static int eso_halt_output(hdl) void *hdl; { struct eso_softc *sc = hdl; int error, s; DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname)); /* * Disable auto-initialize DMA, allowing the FIFO to drain and then * stop. The interrupt callback pointer is cleared at this * point so that an outstanding FIFO interrupt for the remaining data * will be acknowledged without further processing. * * This does not immediately `abort' an operation in progress (c.f. * audio(9)) but is the method to leave the FIFO behind in a clean * state with the least hair. (Besides, that item needs to be * rephrased for trigger_*()-based DMA environments.) */ s = splaudio(); eso_write_mixreg(sc, ESO_MIXREG_A2C1, ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, ESO_IO_A2DMAM_DMAENB); sc->sc_pintr = NULL; error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain); splx(s); /* Shut down DMA completely. */ eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); return (error == EWOULDBLOCK ? 0 : error); } static int eso_halt_input(hdl) void *hdl; { struct eso_softc *sc = hdl; int error, s; DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname)); /* Just like eso_halt_output(), but for Audio 1. */ s = splaudio(); eso_write_ctlreg(sc, ESO_CTLREG_A1C2, ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | ESO_CTLREG_A1C2_DMAENB); bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, DMA37MD_WRITE | DMA37MD_DEMAND); sc->sc_rintr = NULL; error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain); splx(s); /* Shut down DMA completely. */ eso_write_ctlreg(sc, ESO_CTLREG_A1C2, ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, ESO_DMAC_MASK_MASK); return (error == EWOULDBLOCK ? 0 : error); } static int eso_getdev(hdl, retp) void *hdl; struct audio_device *retp; { struct eso_softc *sc = hdl; strncpy(retp->name, "ESS Solo-1", sizeof (retp->name)); snprintf(retp->version, sizeof (retp->version), "0x%02x", sc->sc_revision); if (sc->sc_revision < sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) strncpy(retp->config, eso_rev2model[sc->sc_revision], sizeof (retp->config)); else strncpy(retp->config, "unknown", sizeof (retp->config)); return (0); } static int eso_set_port(hdl, cp) void *hdl; mixer_ctrl_t *cp; { struct eso_softc *sc = hdl; unsigned int lgain, rgain; uint8_t tmp; switch (cp->dev) { case ESO_DAC_PLAY_VOL: case ESO_MIC_PLAY_VOL: case ESO_LINE_PLAY_VOL: case ESO_SYNTH_PLAY_VOL: case ESO_CD_PLAY_VOL: case ESO_AUXB_PLAY_VOL: case ESO_RECORD_VOL: case ESO_DAC_REC_VOL: case ESO_MIC_REC_VOL: case ESO_LINE_REC_VOL: case ESO_SYNTH_REC_VOL: case ESO_CD_REC_VOL: case ESO_AUXB_REC_VOL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); /* * Stereo-capable mixer ports: if we get a single-channel * gain value passed in, then we duplicate it to both left * and right channels. */ switch (cp->un.value.num_channels) { case 1: lgain = rgain = ESO_GAIN_TO_4BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); break; case 2: lgain = ESO_GAIN_TO_4BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); rgain = ESO_GAIN_TO_4BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); break; default: return (EINVAL); } sc->sc_gain[cp->dev][ESO_LEFT] = lgain; sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; eso_set_gain(sc, cp->dev); break; case ESO_MASTER_VOL: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); /* Like above, but a precision of 6 bits. */ switch (cp->un.value.num_channels) { case 1: lgain = rgain = ESO_GAIN_TO_6BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); break; case 2: lgain = ESO_GAIN_TO_6BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); rgain = ESO_GAIN_TO_6BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); break; default: return (EINVAL); } sc->sc_gain[cp->dev][ESO_LEFT] = lgain; sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; eso_set_gain(sc, cp->dev); break; case ESO_SPATIALIZER: if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1) return (EINVAL); sc->sc_gain[cp->dev][ESO_LEFT] = sc->sc_gain[cp->dev][ESO_RIGHT] = ESO_GAIN_TO_6BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); eso_set_gain(sc, cp->dev); break; case ESO_MONO_PLAY_VOL: case ESO_MONO_REC_VOL: if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1) return (EINVAL); sc->sc_gain[cp->dev][ESO_LEFT] = sc->sc_gain[cp->dev][ESO_RIGHT] = ESO_GAIN_TO_4BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); eso_set_gain(sc, cp->dev); break; case ESO_PCSPEAKER_VOL: if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1) return (EINVAL); sc->sc_gain[cp->dev][ESO_LEFT] = sc->sc_gain[cp->dev][ESO_RIGHT] = ESO_GAIN_TO_3BIT( cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); eso_set_gain(sc, cp->dev); break; case ESO_SPATIALIZER_ENABLE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); sc->sc_spatializer = (cp->un.ord != 0); tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); if (sc->sc_spatializer) tmp |= ESO_MIXREG_SPAT_ENB; else tmp &= ~ESO_MIXREG_SPAT_ENB; eso_write_mixreg(sc, ESO_MIXREG_SPAT, tmp | ESO_MIXREG_SPAT_RSTREL); break; case ESO_MASTER_MUTE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); sc->sc_mvmute = (cp->un.ord != 0); if (sc->sc_mvmute) { eso_write_mixreg(sc, ESO_MIXREG_LMVM, eso_read_mixreg(sc, ESO_MIXREG_LMVM) | ESO_MIXREG_LMVM_MUTE); eso_write_mixreg(sc, ESO_MIXREG_RMVM, eso_read_mixreg(sc, ESO_MIXREG_RMVM) | ESO_MIXREG_RMVM_MUTE); } else { eso_write_mixreg(sc, ESO_MIXREG_LMVM, eso_read_mixreg(sc, ESO_MIXREG_LMVM) & ~ESO_MIXREG_LMVM_MUTE); eso_write_mixreg(sc, ESO_MIXREG_RMVM, eso_read_mixreg(sc, ESO_MIXREG_RMVM) & ~ESO_MIXREG_RMVM_MUTE); } break; case ESO_MONOOUT_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); return (eso_set_monooutsrc(sc, cp->un.ord)); case ESO_RECORD_MONITOR: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); sc->sc_recmon = (cp->un.ord != 0); tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); if (sc->sc_recmon) tmp |= ESO_CTLREG_ACTL_RECMON; else tmp &= ~ESO_CTLREG_ACTL_RECMON; eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); break; case ESO_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); return (eso_set_recsrc(sc, cp->un.ord)); case ESO_MIC_PREAMP: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); sc->sc_preamp = (cp->un.ord != 0); tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM); tmp &= ~ESO_MIXREG_MPM_RESV0; if (sc->sc_preamp) tmp |= ESO_MIXREG_MPM_PREAMP; else tmp &= ~ESO_MIXREG_MPM_PREAMP; eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp); break; default: return (EINVAL); } return (0); } static int eso_get_port(hdl, cp) void *hdl; mixer_ctrl_t *cp; { struct eso_softc *sc = hdl; switch (cp->dev) { case ESO_MASTER_VOL: /* Reload from mixer after hardware volume control use. */ if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) eso_reload_master_vol(sc); /* FALLTHROUGH */ case ESO_DAC_PLAY_VOL: case ESO_MIC_PLAY_VOL: case ESO_LINE_PLAY_VOL: case ESO_SYNTH_PLAY_VOL: case ESO_CD_PLAY_VOL: case ESO_AUXB_PLAY_VOL: case ESO_RECORD_VOL: case ESO_DAC_REC_VOL: case ESO_MIC_REC_VOL: case ESO_LINE_REC_VOL: case ESO_SYNTH_REC_VOL: case ESO_CD_REC_VOL: case ESO_AUXB_REC_VOL: /* * Stereo-capable ports: if a single-channel query is made, * just return the left channel's value (since single-channel * settings themselves are applied to both channels). */ switch (cp->un.value.num_channels) { case 1: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_gain[cp->dev][ESO_LEFT]; break; case 2: cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_gain[cp->dev][ESO_LEFT]; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_gain[cp->dev][ESO_RIGHT]; break; default: return (EINVAL); } break; case ESO_MONO_PLAY_VOL: case ESO_PCSPEAKER_VOL: case ESO_MONO_REC_VOL: case ESO_SPATIALIZER: if (cp->un.value.num_channels != 1) return (EINVAL); cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_gain[cp->dev][ESO_LEFT]; break; case ESO_RECORD_MONITOR: cp->un.ord = sc->sc_recmon; break; case ESO_RECORD_SOURCE: cp->un.ord = sc->sc_recsrc; break; case ESO_MONOOUT_SOURCE: cp->un.ord = sc->sc_monooutsrc; break; case ESO_SPATIALIZER_ENABLE: cp->un.ord = sc->sc_spatializer; break; case ESO_MIC_PREAMP: cp->un.ord = sc->sc_preamp; break; case ESO_MASTER_MUTE: /* Reload from mixer after hardware volume control use. */ if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) eso_reload_master_vol(sc); cp->un.ord = sc->sc_mvmute; break; default: return (EINVAL); } return (0); } static int eso_query_devinfo(hdl, dip) void *hdl; mixer_devinfo_t *dip; { switch (dip->index) { case ESO_DAC_PLAY_VOL: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNdac); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_MIC_PLAY_VOL: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNmicrophone); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_LINE_PLAY_VOL: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNline); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_SYNTH_PLAY_VOL: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNfmsynth); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_MONO_PLAY_VOL: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, "mono_in"); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 1; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_CD_PLAY_VOL: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNcd); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_AUXB_PLAY_VOL: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, "auxb"); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_MIC_PREAMP: dip->mixer_class = ESO_MICROPHONE_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNpreamp); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strcpy(dip->un.e.member[0].label.name, AudioNoff); dip->un.e.member[0].ord = 0; strcpy(dip->un.e.member[1].label.name, AudioNon); dip->un.e.member[1].ord = 1; break; case ESO_MICROPHONE_CLASS: dip->mixer_class = ESO_MICROPHONE_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNmicrophone); dip->type = AUDIO_MIXER_CLASS; break; case ESO_INPUT_CLASS: dip->mixer_class = ESO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCinputs); dip->type = AUDIO_MIXER_CLASS; break; case ESO_MASTER_VOL: dip->mixer_class = ESO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = ESO_MASTER_MUTE; strcpy(dip->label.name, AudioNmaster); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_MASTER_MUTE: dip->mixer_class = ESO_OUTPUT_CLASS; dip->prev = ESO_MASTER_VOL; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNmute); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strcpy(dip->un.e.member[0].label.name, AudioNoff); dip->un.e.member[0].ord = 0; strcpy(dip->un.e.member[1].label.name, AudioNon); dip->un.e.member[1].ord = 1; break; case ESO_PCSPEAKER_VOL: dip->mixer_class = ESO_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, "pc_speaker"); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 1; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_MONOOUT_SOURCE: dip->mixer_class = ESO_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, "mono_out"); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 3; strcpy(dip->un.e.member[0].label.name, AudioNmute); dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; strcpy(dip->un.e.member[1].label.name, AudioNdac); dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; strcpy(dip->un.e.member[2].label.name, AudioNmixerout); dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; break; case ESO_SPATIALIZER: dip->mixer_class = ESO_OUTPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = ESO_SPATIALIZER_ENABLE; strcpy(dip->label.name, AudioNspatial); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 1; strcpy(dip->un.v.units.name, "level"); break; case ESO_SPATIALIZER_ENABLE: dip->mixer_class = ESO_OUTPUT_CLASS; dip->prev = ESO_SPATIALIZER; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, "enable"); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strcpy(dip->un.e.member[0].label.name, AudioNoff); dip->un.e.member[0].ord = 0; strcpy(dip->un.e.member[1].label.name, AudioNon); dip->un.e.member[1].ord = 1; break; case ESO_OUTPUT_CLASS: dip->mixer_class = ESO_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCoutputs); dip->type = AUDIO_MIXER_CLASS; break; case ESO_RECORD_MONITOR: dip->mixer_class = ESO_MONITOR_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNmute); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strcpy(dip->un.e.member[0].label.name, AudioNoff); dip->un.e.member[0].ord = 0; strcpy(dip->un.e.member[1].label.name, AudioNon); dip->un.e.member[1].ord = 1; break; case ESO_MONITOR_CLASS: dip->mixer_class = ESO_MONITOR_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCmonitor); dip->type = AUDIO_MIXER_CLASS; break; case ESO_RECORD_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNrecord); dip->type = AUDIO_MIXER_VALUE; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_RECORD_SOURCE: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNsource); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 4; strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; strcpy(dip->un.e.member[1].label.name, AudioNline); dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; strcpy(dip->un.e.member[2].label.name, AudioNcd); dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; strcpy(dip->un.e.member[3].label.name, AudioNmixerout); dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; break; case ESO_DAC_REC_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNdac); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_MIC_REC_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNmicrophone); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_LINE_REC_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNline); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_SYNTH_REC_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNfmsynth); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_MONO_REC_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, "mono_in"); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 1; /* No lies */ strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_CD_REC_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNcd); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_AUXB_REC_VOL: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, "auxb"); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); break; case ESO_RECORD_CLASS: dip->mixer_class = ESO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCrecord); dip->type = AUDIO_MIXER_CLASS; break; default: return (ENXIO); } return (0); } static int eso_allocmem(sc, size, align, boundary, flags, direction, ed) struct eso_softc *sc; size_t size; size_t align; size_t boundary; int flags; int direction; struct eso_dma *ed; { int error, wait; wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; ed->ed_size = size; error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), &ed->ed_nsegs, wait); if (error) goto out; error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT); if (error) goto free; error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, wait, &ed->ed_map); if (error) goto unmap; error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr, ed->ed_size, NULL, wait | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); if (error) goto destroy; return (0); destroy: bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); unmap: bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); free: bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); out: return (error); } static void eso_freemem(ed) struct eso_dma *ed; { bus_dmamap_unload(ed->ed_dmat, ed->ed_map); bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); } static void * eso_allocm(hdl, direction, size, type, flags) void *hdl; int direction; size_t size; int type, flags; { struct eso_softc *sc = hdl; struct eso_dma *ed; size_t boundary; int error; if ((ed = malloc(size, type, flags)) == NULL) return (NULL); /* * Apparently the Audio 1 DMA controller's current address * register can't roll over a 64K address boundary, so we have to * take care of that ourselves. The second channel DMA controller * doesn't have that restriction, however. */ if (direction == AUMODE_RECORD) boundary = 0x10000; else boundary = 0; #ifdef alpha /* * XXX For Audio 1, which implements the 24 low address bits only, * XXX force allocation through the (ISA) SGMAP. */ if (direction == AUMODE_RECORD) ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); else #endif ed->ed_dmat = sc->sc_dmat; error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed); if (error) { free(ed, type); return (NULL); } ed->ed_next = sc->sc_dmas; sc->sc_dmas = ed; return (KVADDR(ed)); } static void eso_freem(hdl, addr, type) void *hdl; void *addr; int type; { struct eso_softc *sc = hdl; struct eso_dma *p, **pp; for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) { if (KVADDR(p) == addr) { eso_freemem(p); *pp = p->ed_next; free(p, type); return; } } } static size_t eso_round_buffersize(hdl, direction, bufsize) void *hdl; int direction; size_t bufsize; { size_t maxsize; /* * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 * bytes. This is because IO_A2DMAC is a two byte value * indicating the literal byte count, and the 4 least significant * bits are read-only. Zero is not used as a special case for * 0x10000. * * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can * be represented. */ maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; if (bufsize > maxsize) bufsize = maxsize; return (bufsize); } static paddr_t eso_mappage(hdl, addr, offs, prot) void *hdl; void *addr; off_t offs; int prot; { struct eso_softc *sc = hdl; struct eso_dma *ed; if (offs < 0) return (-1); for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr; ed = ed->ed_next) ; if (ed == NULL) return (-1); return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, offs, prot, BUS_DMA_WAITOK)); } /* ARGSUSED */ static int eso_get_props(hdl) void *hdl; { return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); } static int eso_trigger_output(hdl, start, end, blksize, intr, arg, param) void *hdl; void *start, *end; int blksize; void (*intr) __P((void *)); void *arg; struct audio_params *param; { struct eso_softc *sc = hdl; struct eso_dma *ed; uint8_t a2c1; DPRINTF(( "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n", sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", sc->sc_dev.dv_xname, param->sample_rate, param->encoding, param->precision, param->channels, param->sw_code, param->factor)); /* Find DMA buffer. */ for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; ed = ed->ed_next) ; if (ed == NULL) { printf("%s: trigger_output: bad addr %p\n", sc->sc_dev.dv_xname, start); return (EINVAL); } sc->sc_pintr = intr; sc->sc_parg = arg; /* Compute drain timeout. */ sc->sc_pdrain = (blksize * NBBY * hz) / (param->sample_rate * param->channels * param->precision * param->factor) + 2; /* slop */ /* DMA transfer count (in `words'!) reload using 2's complement. */ blksize = -(blksize >> 1); eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); /* Update DAC to reflect DMA count and audio parameters. */ /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ if (param->precision * param->factor == 16) sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; else sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; if (param->channels == 2) sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; else sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || param->encoding == AUDIO_ENCODING_SLINEAR_LE) sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; else sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; /* Unmask IRQ. */ sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); /* Set up DMA controller. */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, DMAADDR(ed)); bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, (uint8_t *)end - (uint8_t *)start); bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); /* Start DMA. */ a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | ESO_MIXREG_A2C1_AUTO; eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); return (0); } static int eso_trigger_input(hdl, start, end, blksize, intr, arg, param) void *hdl; void *start, *end; int blksize; void (*intr) __P((void *)); void *arg; struct audio_params *param; { struct eso_softc *sc = hdl; struct eso_dma *ed; uint8_t actl, a1c1; DPRINTF(( "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n", sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", sc->sc_dev.dv_xname, param->sample_rate, param->encoding, param->precision, param->channels, param->sw_code, param->factor)); /* * If we failed to configure the Audio 1 DMA controller, bail here * while retaining availability of the DAC direction (in Audio 2). */ if (!sc->sc_dmac_configured) return (EIO); /* Find DMA buffer. */ for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; ed = ed->ed_next) ; if (ed == NULL) { printf("%s: trigger_output: bad addr %p\n", sc->sc_dev.dv_xname, start); return (EINVAL); } sc->sc_rintr = intr; sc->sc_rarg = arg; /* Compute drain timeout. */ sc->sc_rdrain = (blksize * NBBY * hz) / (param->sample_rate * param->channels * param->precision * param->factor) + 2; /* slop */ /* Set up ADC DMA converter parameters. */ actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); if (param->channels == 2) { actl &= ~ESO_CTLREG_ACTL_MONO; actl |= ESO_CTLREG_ACTL_STEREO; } else { actl &= ~ESO_CTLREG_ACTL_STEREO; actl |= ESO_CTLREG_ACTL_MONO; } eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); /* Set up Transfer Type: maybe move to attach time? */ eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); /* DMA transfer count reload using 2's complement. */ blksize = -blksize; eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); /* Set up and enable Audio 1 DMA FIFO. */ a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; if (param->precision * param->factor == 16) a1c1 |= ESO_CTLREG_A1C1_16BIT; if (param->channels == 2) a1c1 |= ESO_CTLREG_A1C1_STEREO; else a1c1 |= ESO_CTLREG_A1C1_MONO; if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || param->encoding == AUDIO_ENCODING_SLINEAR_LE) a1c1 |= ESO_CTLREG_A1C1_SIGNED; eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); /* Set up ADC IRQ/DRQ parameters. */ eso_write_ctlreg(sc, ESO_CTLREG_LAIC, ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); /* Set up and enable DMA controller. */ bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, ESO_DMAC_MASK_MASK); bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, DMAADDR(ed)); bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, (uint8_t *)end - (uint8_t *)start - 1); bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); /* Start DMA. */ eso_write_ctlreg(sc, ESO_CTLREG_A1C2, ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); return (0); } static int eso_set_monooutsrc(sc, monooutsrc) struct eso_softc *sc; unsigned int monooutsrc; { mixer_devinfo_t di; int i; uint8_t mpm; di.index = ESO_MONOOUT_SOURCE; if (eso_query_devinfo(sc, &di) != 0) panic("eso_set_monooutsrc: eso_query_devinfo failed"); for (i = 0; i < di.un.e.num_mem; i++) { if (monooutsrc == di.un.e.member[i].ord) { mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); mpm &= ~ESO_MIXREG_MPM_MOMASK; mpm |= monooutsrc; eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); sc->sc_monooutsrc = monooutsrc; return (0); } } return (EINVAL); } static int eso_set_recsrc(sc, recsrc) struct eso_softc *sc; unsigned int recsrc; { mixer_devinfo_t di; int i; di.index = ESO_RECORD_SOURCE; if (eso_query_devinfo(sc, &di) != 0) panic("eso_set_recsrc: eso_query_devinfo failed"); for (i = 0; i < di.un.e.num_mem; i++) { if (recsrc == di.un.e.member[i].ord) { eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); sc->sc_recsrc = recsrc; return (0); } } return (EINVAL); } /* * Reload Master Volume and Mute values in softc from mixer; used when * those have previously been invalidated by use of hardware volume controls. */ static void eso_reload_master_vol(sc) struct eso_softc *sc; { uint8_t mv; mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; /* Currently both channels are muted simultaneously; either is OK. */ sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; } static void eso_set_gain(sc, port) struct eso_softc *sc; unsigned int port; { uint8_t mixreg, tmp; switch (port) { case ESO_DAC_PLAY_VOL: mixreg = ESO_MIXREG_PVR_A2; break; case ESO_MIC_PLAY_VOL: mixreg = ESO_MIXREG_PVR_MIC; break; case ESO_LINE_PLAY_VOL: mixreg = ESO_MIXREG_PVR_LINE; break; case ESO_SYNTH_PLAY_VOL: mixreg = ESO_MIXREG_PVR_SYNTH; break; case ESO_CD_PLAY_VOL: mixreg = ESO_MIXREG_PVR_CD; break; case ESO_AUXB_PLAY_VOL: mixreg = ESO_MIXREG_PVR_AUXB; break; case ESO_DAC_REC_VOL: mixreg = ESO_MIXREG_RVR_A2; break; case ESO_MIC_REC_VOL: mixreg = ESO_MIXREG_RVR_MIC; break; case ESO_LINE_REC_VOL: mixreg = ESO_MIXREG_RVR_LINE; break; case ESO_SYNTH_REC_VOL: mixreg = ESO_MIXREG_RVR_SYNTH; break; case ESO_CD_REC_VOL: mixreg = ESO_MIXREG_RVR_CD; break; case ESO_AUXB_REC_VOL: mixreg = ESO_MIXREG_RVR_AUXB; break; case ESO_MONO_PLAY_VOL: mixreg = ESO_MIXREG_PVR_MONO; break; case ESO_MONO_REC_VOL: mixreg = ESO_MIXREG_RVR_MONO; break; case ESO_PCSPEAKER_VOL: /* Special case - only 3-bit, mono, and reserved bits. */ tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); tmp &= ESO_MIXREG_PCSVR_RESV; /* Map bits 7:5 -> 2:0. */ tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); return; case ESO_MASTER_VOL: /* Special case - separate regs, and 6-bit precision. */ /* Map bits 7:2 -> 5:0, reflect mute settings. */ eso_write_mixreg(sc, ESO_MIXREG_LMVM, (sc->sc_gain[port][ESO_LEFT] >> 2) | (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); eso_write_mixreg(sc, ESO_MIXREG_RMVM, (sc->sc_gain[port][ESO_RIGHT] >> 2) | (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); return; case ESO_SPATIALIZER: /* Special case - only `mono', and higher precision. */ eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, sc->sc_gain[port][ESO_LEFT]); return; case ESO_RECORD_VOL: /* Very Special case, controller register. */ eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); return; default: #ifdef DIAGNOSTIC panic("eso_set_gain: bad port %u", port); /* NOTREACHED */ #else return; #endif } eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); }