/* $NetBSD: refclock_arbiter.c,v 1.4 1998/08/12 14:11:54 christos Exp $ */ /* * refclock_arbiter - clock driver for Arbiter 1088A/B Satellite * Controlled Clock */ #ifdef HAVE_CONFIG_H #include #endif #if defined(REFCLOCK) && defined(ARBITER) #include #include #include #include "ntpd.h" #include "ntp_io.h" #include "ntp_refclock.h" #include "ntp_stdlib.h" /* * This driver supports the Arbiter 1088A/B Satellite Controlled Clock. * The claimed accuracy of this clock is 100 ns relative to the PPS * output when receiving four or more satellites. * * The receiver should be configured before starting the NTP daemon, in * order to establish reliable position and operating conditions. It * does not initiate surveying or hold mode. For use with NTP, the * daylight savings time feature should be disables (D0 command) and the * broadcast mode set to operate in UTC (BU command). * * The timecode format supported by this driver is selected by the poll * sequence "B5", which initiates a line in the following format to be * repeated once per second until turned off by the "B0" poll sequence. * * Format B5 (24 ASCII printing characters): * * i yy ddd hh:mm:ss.000bbb * * on-time = * i = synchronization flag (' ' = locked, '?' = unlocked) * yy = year of century * ddd = day of year * hh:mm:ss = hours, minutes, seconds * .000 = fraction of second (not used) * bbb = tailing spaces for fill * * The alarm condition is indicated by a '?' at i, which indicates the * receiver is not synchronized. In normal operation, a line consisting * of the timecode followed by the time quality character (TQ) followed * by the receiver status string (SR) is written to the clockstats file. * The time quality character is encoded in IEEE P1344 standard: * * Format TQ (IEEE P1344 estimated worst-case time quality) * * 0 clock locked, maximum accuracy * F clock failure, time not reliable * 4 clock unlocked, accuracy < 1 us * 5 clock unlocked, accuracy < 10 us * 6 clock unlocked, accuracy < 100 us * 7 clock unlocked, accuracy < 1 ms * 8 clock unlocked, accuracy < 10 ms * 9 clock unlocked, accuracy < 100 ms * A clock unlocked, accuracy < 1 s * B clock unlocked, accuracy < 10 s * * The status string is encoded as follows: * * Format SR (25 ASCII printing characters) * * V=vv S=ss T=t P=pdop E=ee * * vv = satellites visible * ss = relative signal strength * t = satellites tracked * pdop = position dilution of precision (meters) * ee = hardware errors * * If flag4 is set, an additional line consisting of the receiver * latitude (LA), longitude (LO) and elevation (LH) (meters) is written * to this file. If channel B is enabled for deviation mode and connected * to a 1-PPS signal, the last two numbers on the line are the deviation * and standard deviation averaged over the last 15 seconds. */ /* * Interface definitions */ #define DEVICE "/dev/gps%d" /* device name and unit */ #define SPEED232 B9600 /* uart speed (9600 baud) */ #define PRECISION (-10) /* precision assumed (about 1 ms) */ #define REFID "GPS " /* reference ID */ #define DESCRIPTION "Arbiter 1088A/B GPS Receiver" /* WRU */ #define NSAMPLES 3 /* stages of median filter */ #define LENARB 24 /* format B5 timecode length */ #define MAXSTA 30 /* max length of status string */ #define MAXPOS 70 /* max length of position string */ /* * Imported from ntp_timer module */ extern u_long current_time; /* current time (s) */ /* * Imported from ntpd module */ extern int debug; /* global debug flag */ /* * ARB unit control structure */ struct arbunit { int pollcnt; /* poll message counter */ l_fp laststamp; /* last receive timestamp */ u_char tcswitch; /* timecode enable switch */ char qualchar; /* IEEE P1344 quality (TQ command) */ char status[MAXSTA]; /* receiver status (SR command) */ char latlon[MAXPOS]; /* receiver position (lat/lon/alt) */ }; /* * Function prototypes */ static int arb_start P((int, struct peer *)); static void arb_shutdown P((int, struct peer *)); static void arb_receive P((struct recvbuf *)); static void arb_poll P((int, struct peer *)); /* * Transfer vector */ struct refclock refclock_arbiter = { arb_start, /* start up driver */ arb_shutdown, /* shut down driver */ arb_poll, /* transmit poll message */ noentry, /* not used (old arb_control) */ noentry, /* initialize driver (not used) */ noentry, /* not used (old arb_buginfo) */ NOFLAGS /* not used */ }; /* * arb_start - open the devices and initialize data for processing */ static int arb_start(unit, peer) int unit; struct peer *peer; { register struct arbunit *up; struct refclockproc *pp; int fd; char device[20]; /* * Open serial port. Use CLK line discipline, if available. */ (void)sprintf(device, DEVICE, unit); #ifdef TTYCLK if (!(fd = refclock_open(device, SPEED232, LDISC_CLK))) #else if (!(fd = refclock_open(device, SPEED232, 0))) #endif /* TTYCLK */ return (0); /* * Allocate and initialize unit structure */ if (!(up = (struct arbunit *) emalloc(sizeof(struct arbunit)))) { (void) close(fd); return (0); } memset((char *)up, 0, sizeof(struct arbunit)); pp = peer->procptr; pp->io.clock_recv = arb_receive; pp->io.srcclock = (caddr_t)peer; pp->io.datalen = 0; pp->io.fd = fd; if (!io_addclock(&pp->io)) { (void) close(fd); free(up); return (0); } pp->unitptr = (caddr_t)up; /* * Initialize miscellaneous variables */ peer->precision = PRECISION; pp->clockdesc = DESCRIPTION; memcpy((char *)&pp->refid, REFID, 4); up->pollcnt = 2; return (1); } /* * arb_shutdown - shut down the clock */ static void arb_shutdown(unit, peer) int unit; struct peer *peer; { register struct arbunit *up; struct refclockproc *pp; pp = peer->procptr; up = (struct arbunit *)pp->unitptr; io_closeclock(&pp->io); free(up); } /* * arb_receive - receive data from the serial interface */ static void arb_receive(rbufp) struct recvbuf *rbufp; { register struct arbunit *up; struct refclockproc *pp; struct peer *peer; l_fp trtmp; u_long ltemp; int temp; u_char syncchar; /* synchronization indicator */ u_char leapchar; /* leap indicator */ /* * Initialize pointers and read the timecode and timestamp */ peer = (struct peer *)rbufp->recv_srcclock; pp = peer->procptr; up = (struct arbunit *)pp->unitptr; temp = refclock_gtlin(rbufp, pp->a_lastcode, BMAX, &trtmp); if (up->tcswitch) return; /* * Note we get a buffer and timestamp for both a and , * but only the timestamp is retained. The program first * sends a TQ and expects the echo followed by the time quality * character. It then sends a B5 starting the timecode broadcast * and expects the echo followed some time later by the on-time * character and then the beginning the timecode * itself. Finally, at the beginning the next timecode at * the next second, the program sends a B0 shutting down the the * timecode broadcast. * * If flag4 is set, the program snatches the latitude, longitude * and elevation and writes it to the clockstats file. */ if (temp == 0) return; pp->lastrec = up->laststamp; up->laststamp = trtmp; if (temp < 3) return; if (!strncmp(pp->a_lastcode, "TQ", 2)) { up->qualchar = pp->a_lastcode[2]; write(pp->io.fd, "SR", 2); return; } else if (!strncmp(pp->a_lastcode, "SR", 2)) { strcpy(up->status, pp->a_lastcode + 2); if (pp->sloppyclockflag & CLK_FLAG4) write(pp->io.fd, "LA", 2); else write(pp->io.fd, "B5", 2); return; } else if (!strncmp(pp->a_lastcode, "LA", 2)) { strcpy(up->latlon, pp->a_lastcode + 2); write(pp->io.fd, "LO", 2); return; } else if (!strncmp(pp->a_lastcode, "LO", 2)) { strcat(up->latlon, " "); strcat(up->latlon, pp->a_lastcode + 2); write(pp->io.fd, "LH", 2); return; } else if (!strncmp(pp->a_lastcode, "LH", 2)) { strcat(up->latlon, " "); strcat(up->latlon, pp->a_lastcode + 2); write(pp->io.fd, "DB", 2); return; } else if (!strncmp(pp->a_lastcode, "DB", 2)) { strcat(up->latlon, " "); strcat(up->latlon, pp->a_lastcode + 2); record_clock_stats(&peer->srcadr, up->latlon); write(pp->io.fd, "B5", 2); return; } write(pp->io.fd, "B0", 2); pp->lencode = temp; up->pollcnt = 2; up->tcswitch++; #ifdef DEBUG if (debug) printf("arbiter: timecode %d %s\n", pp->lencode, pp->a_lastcode); #endif /* * We get down to business, check the timecode format and decode * its contents. If the timecode has valid length, but not in * proper format, we declare bad format and exit. If the * timecode has invalid length, which sometimes occurs when the * B0 amputates the broadcast, we just quietly steal away. Note * that the time quality character and receiver status string is * tacked on the end for clockstats display. */ if (pp->lencode == LENARB) { /* * Timecode format B5: "i yy ddd hh:mm:ss.000 " */ pp->a_lastcode[LENARB - 2] = up->qualchar; strcat(pp->a_lastcode, up->status); record_clock_stats(&peer->srcadr, pp->a_lastcode); syncchar = leapchar = ' '; if (sscanf(pp->a_lastcode, "%c%2d %3d %2d:%2d:%2d", &syncchar, &pp->year, &pp->day, &pp->hour, &pp->minute, &pp->second) != 6) { refclock_report(peer, CEVNT_BADREPLY); return; } } else { return; } /* * We decode the clock dispersion from the time quality * character. This assumes dispersion increases at about 1 ms * per minute, or about 16 ppm, which may even be a reasonable * figure for the radio clock oscillator. If the clock has not * yet tracked any satellites or failed, the leap bits are * marked unsynchronized. */ switch (up->qualchar) { case '0': /* locked, max accuracy */ case '4': /* unlock accuracy < 1 us */ case '5': /* unlock accuracy < 10 us */ ltemp = 0; break; case '6': /* unlock accuracy < 100 us */ ltemp = 6; break; case '7': /* unlock accuracy < 1 ms */ ltemp = 63; break; case '8': /* unlock accuracy < 10 ms */ ltemp = 625; break; case '9': /* unlock accuracy < 100 ms */ ltemp = 6250; break; case 'A': /* unlock accuracy < 1 s */ ltemp = 62500; break; case 'B': /* unlock accuracy < 10 s */ case 'F': /* clock failure */ ltemp = NTP_MAXAGE; pp->leap = LEAP_NOTINSYNC; return; default: ltemp = NTP_MAXAGE; pp->leap = LEAP_NOTINSYNC; refclock_report(peer, CEVNT_BADREPLY); return; } pp->leap = 0; pp->lasttime = current_time - ltemp; /* * Process the new sample in the median filter and determine the * reference clock offset and dispersion. We use lastrec as both * the reference time and receive time in order to avoid being * cute, like setting the reference time later than the receive * time, which may cause a paranoid protocol module to chuck out * the data. */ if (!refclock_process(pp, NSAMPLES, NSAMPLES)) { refclock_report(peer, CEVNT_BADTIME); return; } trtmp = pp->lastrec; trtmp.l_ui -= ltemp; refclock_receive(peer, &pp->offset, 0, pp->dispersion, &trtmp, &pp->lastrec, pp->leap); } /* * arb_poll - called by the transmit procedure */ static void arb_poll(unit, peer) int unit; struct peer *peer; { register struct arbunit *up; struct refclockproc *pp; /* * Time to poll the clock. The Arbiter clock responds to a "B5" * by returning a timecode in the format specified above. * Transmission occurs once per second, unless turned off by a * "B0". Note there is no checking on state, since this may not * be the only customer reading the clock. Only one customer * need poll the clock; all others just listen in. If nothing is * heard from the clock for two polls, declare a timeout and * keep going. */ pp = peer->procptr; up = (struct arbunit *)pp->unitptr; if (up->pollcnt == 0) refclock_report(peer, CEVNT_TIMEOUT); else up->pollcnt--; if (write(pp->io.fd, "TQ", 2) != 2) { refclock_report(peer, CEVNT_FAULT); } else pp->polls++; up->tcswitch = 0; } #else /* not (REFCLOCK && ARBITER) */ int refclock_arbiter_bs; #endif /* not (REFCLOCK && ARBITER) */