/* $NetBSD: if_vr.c,v 1.10 1999/02/05 01:17:24 thorpej Exp $ */ /* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $ */ /* * VIA Rhine fast ethernet PCI NIC driver * * Supports various network adapters based on the VIA Rhine * and Rhine II PCI controllers, including the D-Link DFE530TX. * Datasheets are available at http://www.via.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The VIA Rhine controllers are similar in some respects to the * the DEC tulip chips, except less complicated. The controller * uses an MII bus and an external physical layer interface. The * receiver has a one entry perfect filter and a 64-bit hash table * multicast filter. Transmit and receive descriptors are similar * to the tulip. * * The Rhine has a serious flaw in its transmit DMA mechanism: * transmit buffers must be longword aligned. Unfortunately, * FreeBSD doesn't guarantee that mbufs will be filled in starting * at longword boundaries, so we have to do a buffer copy before * transmission. */ #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) #include #include #endif #include "bpfilter.h" #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include #include #include #include #include #include #include #if defined(__NetBSD__) && defined(__alpha__) /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vaddr_t)(va)) #endif #define VR_USEIOSPACE /* #define VR_BACKGROUND_AUTONEG */ #define ETHER_CRC_LEN 4 /* XXX Should be in a common header. */ /* * Various supported device vendors/types and their names. */ static struct vr_type { pci_vendor_id_t vr_vid; pci_product_id_t vr_did; const char *vr_name; } vr_devs[] = { { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043, "VIA VT3043 Rhine I 10/100BaseTX" }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A, "VIA VT86C100A Rhine II 10/100BaseTX" }, { 0, 0, NULL } }; /* * Various supported PHY vendors/types and their names. Note that * this driver will work with pretty much any MII-compliant PHY, * so failure to positively identify the chip is not a fatal error. */ static struct vr_type vr_phys[] = { { TI_PHY_VENDORID, TI_PHY_10BT, "" }, { TI_PHY_VENDORID, TI_PHY_100VGPMI, "" }, { NS_PHY_VENDORID, NS_PHY_83840A, ""}, { LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "" }, { INTEL_PHY_VENDORID, INTEL_PHY_82555, "" }, { SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "" }, { 0, 0, "" } }; struct vr_mii_frame { u_int8_t mii_stdelim; u_int8_t mii_opcode; u_int8_t mii_phyaddr; u_int8_t mii_regaddr; u_int8_t mii_turnaround; u_int16_t mii_data; }; #define VR_FLAG_FORCEDELAY 1 #define VR_FLAG_SCHEDDELAY 2 #define VR_FLAG_DELAYTIMEO 3 struct vr_list_data { struct vr_desc vr_rx_list[VR_RX_LIST_CNT]; struct vr_desc vr_tx_list[VR_TX_LIST_CNT]; }; struct vr_chain { struct vr_desc *vr_ptr; struct mbuf *vr_mbuf; struct vr_chain *vr_nextdesc; }; struct vr_chain_onefrag { struct vr_desc *vr_ptr; struct mbuf *vr_mbuf; struct vr_chain_onefrag *vr_nextdesc; }; struct vr_chain_data { struct vr_chain_onefrag vr_rx_chain[VR_RX_LIST_CNT]; struct vr_chain vr_tx_chain[VR_TX_LIST_CNT]; struct vr_chain_onefrag *vr_rx_head; struct vr_chain *vr_tx_head; struct vr_chain *vr_tx_tail; struct vr_chain *vr_tx_free; }; struct vr_softc { struct device vr_dev; void *vr_ih; void *vr_ats; bus_space_tag_t vr_bustag; bus_space_handle_t vr_bushandle; pci_chipset_tag_t vr_pc; struct ethercom vr_ec; u_int8_t vr_enaddr[ETHER_ADDR_LEN]; struct ifmedia ifmedia; /* media info */ bus_space_handle_t vr_bhandle; /* bus space handle */ bus_space_tag_t vr_btag; /* bus space tag */ struct vr_type *vr_info; /* Rhine adapter info */ struct vr_type *vr_pinfo; /* phy info */ u_int8_t vr_unit; /* interface number */ u_int8_t vr_type; u_int8_t vr_phy_addr; /* PHY address */ u_int8_t vr_tx_pend; /* TX pending */ u_int8_t vr_want_auto; u_int8_t vr_autoneg; caddr_t vr_ldata_ptr; struct vr_list_data *vr_ldata; struct vr_chain_data vr_cdata; }; /* * register space access macros */ #define CSR_WRITE_4(sc, reg, val) \ bus_space_write_4(sc->vr_btag, sc->vr_bhandle, reg, val) #define CSR_WRITE_2(sc, reg, val) \ bus_space_write_2(sc->vr_btag, sc->vr_bhandle, reg, val) #define CSR_WRITE_1(sc, reg, val) \ bus_space_write_1(sc->vr_btag, sc->vr_bhandle, reg, val) #define CSR_READ_4(sc, reg) \ bus_space_read_4(sc->vr_btag, sc->vr_bhandle, reg) #define CSR_READ_2(sc, reg) \ bus_space_read_2(sc->vr_btag, sc->vr_bhandle, reg) #define CSR_READ_1(sc, reg) \ bus_space_read_1(sc->vr_btag, sc->vr_bhandle, reg) #define VR_TIMEOUT 1000 static int vr_newbuf __P((struct vr_softc *, struct vr_chain_onefrag *)); static int vr_encap __P((struct vr_softc *, struct vr_chain *, struct mbuf *)); static void vr_rxeof __P((struct vr_softc *)); static void vr_rxeoc __P((struct vr_softc *)); static void vr_txeof __P((struct vr_softc *)); static void vr_txeoc __P((struct vr_softc *)); static void vr_intr __P((void *)); static void vr_start __P((struct ifnet *)); static int vr_ioctl __P((struct ifnet *, u_long, caddr_t)); static void vr_init __P((void *)); static void vr_stop __P((struct vr_softc *)); static void vr_watchdog __P((struct ifnet *)); static int vr_ifmedia_upd __P((struct ifnet *)); static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static void vr_mii_sync __P((struct vr_softc *)); static void vr_mii_send __P((struct vr_softc *, u_int32_t, int)); static int vr_mii_readreg __P((struct vr_softc *, struct vr_mii_frame *)); static int vr_mii_writereg __P((struct vr_softc *, struct vr_mii_frame *)); static u_int16_t vr_phy_readreg __P((struct vr_softc *, int)); static void vr_phy_writereg __P((struct vr_softc *, u_int16_t, u_int16_t)); static void vr_autoneg_xmit __P((struct vr_softc *)); static void vr_autoneg_mii __P((struct vr_softc *, int, int)); static void vr_setmode_mii __P((struct vr_softc *, int)); static void vr_getmode_mii __P((struct vr_softc *)); static void vr_setcfg __P((struct vr_softc *, u_int16_t)); static u_int8_t vr_calchash __P((u_int8_t *)); static void vr_setmulti __P((struct vr_softc *)); static void vr_reset __P((struct vr_softc *)); static int vr_list_rx_init __P((struct vr_softc *)); static int vr_list_tx_init __P((struct vr_softc *)); #define VR_SETBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) | x) #define VR_CLRBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) & ~x) #define VR_SETBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) | x) #define VR_CLRBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) & ~x) #define VR_SETBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | x) #define VR_CLRBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~x) #define SIO_SET(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) | x) #define SIO_CLR(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) & ~x) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void vr_mii_sync(sc) struct vr_softc *sc; { register int i; SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAOUT); for (i = 0; i < 32; i++) { SIO_SET(VR_MIICMD_CLK); DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ static void vr_mii_send(sc, bits, cnt) struct vr_softc *sc; u_int32_t bits; int cnt; { int i; SIO_CLR(VR_MIICMD_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { SIO_SET(VR_MIICMD_DATAOUT); } else { SIO_CLR(VR_MIICMD_DATAOUT); } DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); } } /* * Read an PHY register through the MII. */ static int vr_mii_readreg(sc, frame) struct vr_softc *sc; struct vr_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = MII_COMMAND_START; frame->mii_opcode = MII_COMMAND_READ; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_1(sc, VR_MIICMD, 0); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); /* * Turn on data xmit. */ SIO_SET(VR_MIICMD_DIR); vr_mii_sync(sc); /* * Send command/address info. */ vr_mii_send(sc, frame->mii_stdelim, 2); vr_mii_send(sc, frame->mii_opcode, 2); vr_mii_send(sc, frame->mii_phyaddr, 5); vr_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAOUT)); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(VR_MIICMD_DIR); /* Check for ack */ SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN; /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for (i = 0; i < 16; i++) { SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(VR_MIICMD_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN) frame->mii_data |= i; DELAY(1); } SIO_SET(VR_MIICMD_CLK); DELAY(1); } fail: SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); splx(s); if (ack) return (1); return (0); } /* * Write to a PHY register through the MII. */ static int vr_mii_writereg(sc, frame) struct vr_softc *sc; struct vr_mii_frame *frame; { int s; s = splimp(); CSR_WRITE_1(sc, VR_MIICMD, 0); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); /* * Set up frame for TX. */ frame->mii_stdelim = MII_COMMAND_START; frame->mii_opcode = MII_COMMAND_WRITE; frame->mii_turnaround = MII_COMMAND_ACK; /* * Turn on data output. */ SIO_SET(VR_MIICMD_DIR); vr_mii_sync(sc); vr_mii_send(sc, frame->mii_stdelim, 2); vr_mii_send(sc, frame->mii_opcode, 2); vr_mii_send(sc, frame->mii_phyaddr, 5); vr_mii_send(sc, frame->mii_regaddr, 5); vr_mii_send(sc, frame->mii_turnaround, 2); vr_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(VR_MIICMD_CLK); DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(VR_MIICMD_DIR); splx(s); return (0); } static u_int16_t vr_phy_readreg(sc, reg) struct vr_softc *sc; int reg; { struct vr_mii_frame frame; bzero((char *)&frame, sizeof (frame)); frame.mii_phyaddr = sc->vr_phy_addr; frame.mii_regaddr = reg; vr_mii_readreg(sc, &frame); return (frame.mii_data); } static void vr_phy_writereg(sc, reg, data) struct vr_softc *sc; u_int16_t reg; u_int16_t data; { struct vr_mii_frame frame; bzero((char *)&frame, sizeof (frame)); frame.mii_phyaddr = sc->vr_phy_addr; frame.mii_regaddr = reg; frame.mii_data = data; vr_mii_writereg(sc, &frame); return; } /* * Calculate CRC of a multicast group address, return the lower 6 bits. */ static u_int8_t vr_calchash(addr) u_int8_t *addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return ((crc >> 26) & 0x0000003F); } /* * Program the 64-bit multicast hash filter. */ static void vr_setmulti(sc) struct vr_softc *sc; { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = { 0, 0 }; struct ether_multistep step; struct ether_multi *enm; int mcnt = 0; u_int8_t rxfilt; ifp = &sc->vr_ec.ec_if; rxfilt = CSR_READ_1(sc, VR_RXCFG); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= VR_RXCFG_RX_MULTI; CSR_WRITE_1(sc, VR_RXCFG, rxfilt); CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, VR_MAR0, 0); CSR_WRITE_4(sc, VR_MAR1, 0); /* now program new ones */ ETHER_FIRST_MULTI(step, &sc->vr_ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) continue; h = vr_calchash(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); mcnt++; } if (mcnt) rxfilt |= VR_RXCFG_RX_MULTI; else rxfilt &= ~VR_RXCFG_RX_MULTI; CSR_WRITE_4(sc, VR_MAR0, hashes[0]); CSR_WRITE_4(sc, VR_MAR1, hashes[1]); CSR_WRITE_1(sc, VR_RXCFG, rxfilt); return; } /* * Initiate an autonegotiation session. */ static void vr_autoneg_xmit(sc) struct vr_softc *sc; { u_int16_t phy_sts; vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); while (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); phy_sts = vr_phy_readreg(sc, PHY_BMCR); phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; vr_phy_writereg(sc, PHY_BMCR, phy_sts); return; } /* * Invoke autonegotiation on a PHY. */ static void vr_autoneg_mii(sc, flag, verbose) struct vr_softc *sc; int flag; int verbose; { u_int16_t phy_sts = 0, media, advert, ability; struct ifnet *ifp; struct ifmedia *ifm; ifm = &sc->ifmedia; ifp = &sc->vr_ec.ec_if; ifm->ifm_media = IFM_ETHER | IFM_AUTO; /* * The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported' * bit cleared in the status register, but has the 'autoneg enabled' * bit set in the control register. This is a contradiction, and * I'm not sure how to handle it. If you want to force an attempt * to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR * and see what happens. */ #ifndef FORCE_AUTONEG_TFOUR /* * First, see if autoneg is supported. If not, there's * no point in continuing. */ phy_sts = vr_phy_readreg(sc, PHY_BMSR); if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { if (verbose) printf("%s: autonegotiation not supported\n", sc->vr_dev.dv_xname); ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; return; } #endif switch (flag) { case VR_FLAG_FORCEDELAY: /* * XXX Never use this option anywhere but in the probe * routine: making the kernel stop dead in its tracks * for three whole seconds after we've gone multi-user * is really bad manners. */ vr_autoneg_xmit(sc); DELAY(5000000); break; case VR_FLAG_SCHEDDELAY: /* * Wait for the transmitter to go idle before starting * an autoneg session, otherwise vr_start() may clobber * our timeout, and we don't want to allow transmission * during an autoneg session since that can screw it up. */ if (sc->vr_cdata.vr_tx_head != NULL) { sc->vr_want_auto = 1; return; } vr_autoneg_xmit(sc); ifp->if_timer = 5; sc->vr_autoneg = 1; sc->vr_want_auto = 0; return; break; case VR_FLAG_DELAYTIMEO: ifp->if_timer = 0; sc->vr_autoneg = 0; break; default: printf("%s: invalid autoneg flag: %d\n", sc->vr_dev.dv_xname, flag); return; } if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) { if (verbose) printf("%s: autoneg complete, ", sc->vr_dev.dv_xname); phy_sts = vr_phy_readreg(sc, PHY_BMSR); } else { if (verbose) printf("%s: autoneg not complete, ", sc->vr_dev.dv_xname); } media = vr_phy_readreg(sc, PHY_BMCR); /* Link is good. Report modes and set duplex mode. */ if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) { if (verbose) printf("link status good "); advert = vr_phy_readreg(sc, PHY_ANAR); ability = vr_phy_readreg(sc, PHY_LPAR); if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifm->ifm_media = IFM_ETHER|IFM_100_T4; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(100baseT4)\n"); } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; media |= PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; media &= ~PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 10Mbps)\n"); } else { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 10Mbps)\n"); } media &= ~PHY_BMCR_AUTONEGENBL; /* Set ASIC's duplex mode to match the PHY. */ vr_setcfg(sc, media); vr_phy_writereg(sc, PHY_BMCR, media); } else { if (verbose) printf("no carrier\n"); } vr_init(sc); if (sc->vr_tx_pend) { sc->vr_autoneg = 0; sc->vr_tx_pend = 0; vr_start(ifp); } return; } static void vr_getmode_mii(sc) struct vr_softc *sc; { u_int16_t bmsr; struct ifnet *ifp; ifp = &sc->vr_ec.ec_if; bmsr = vr_phy_readreg(sc, PHY_BMSR); /* fallback */ sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; if (bmsr & PHY_BMSR_10BTHALF) { ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); } if (bmsr & PHY_BMSR_10BTFULL) { ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; } if (bmsr & PHY_BMSR_100BTXHALF) { ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; } if (bmsr & PHY_BMSR_100BTXFULL) { ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; } /* Some also support 100BaseT4. */ if (bmsr & PHY_BMSR_100BT4) { ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4; #ifdef FORCE_AUTONEG_TFOUR ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL): sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; #endif } if (bmsr & PHY_BMSR_CANAUTONEG) { ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; } return; } /* * Set speed and duplex mode. */ static void vr_setmode_mii(sc, media) struct vr_softc *sc; int media; { u_int16_t bmcr; struct ifnet *ifp; ifp = &sc->vr_ec.ec_if; /* * If an autoneg session is in progress, stop it. */ if (sc->vr_autoneg) { printf("%s: canceling autoneg session\n", sc->vr_dev.dv_xname); ifp->if_timer = sc->vr_autoneg = sc->vr_want_auto = 0; bmcr = vr_phy_readreg(sc, PHY_BMCR); bmcr &= ~PHY_BMCR_AUTONEGENBL; vr_phy_writereg(sc, PHY_BMCR, bmcr); } printf("%s: selecting MII, ", sc->vr_dev.dv_xname); bmcr = vr_phy_readreg(sc, PHY_BMCR); bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL| PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK); if (IFM_SUBTYPE(media) == IFM_100_T4) { printf("100Mbps/T4, half-duplex\n"); bmcr |= PHY_BMCR_SPEEDSEL; bmcr &= ~PHY_BMCR_DUPLEX; } if (IFM_SUBTYPE(media) == IFM_100_TX) { printf("100Mbps, "); bmcr |= PHY_BMCR_SPEEDSEL; } if (IFM_SUBTYPE(media) == IFM_10_T) { printf("10Mbps, "); bmcr &= ~PHY_BMCR_SPEEDSEL; } if ((media & IFM_GMASK) == IFM_FDX) { printf("full duplex\n"); bmcr |= PHY_BMCR_DUPLEX; } else { printf("half duplex\n"); bmcr &= ~PHY_BMCR_DUPLEX; } vr_setcfg(sc, bmcr); vr_phy_writereg(sc, PHY_BMCR, bmcr); return; } /* * In order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ static void vr_setcfg(sc, bmcr) struct vr_softc *sc; u_int16_t bmcr; { int restart = 0; if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) { restart = 1; VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON)); } if (bmcr & PHY_BMCR_DUPLEX) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); else VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); if (restart) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON); return; } static void vr_reset(sc) struct vr_softc *sc; { register int i; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET); for (i = 0; i < VR_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET)) break; } if (i == VR_TIMEOUT) printf("%s: reset never completed!\n", sc->vr_dev.dv_xname); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Initialize the transmit descriptors. */ static int vr_list_tx_init(sc) struct vr_softc *sc; { struct vr_chain_data *cd; struct vr_list_data *ld; int i; cd = &sc->vr_cdata; ld = sc->vr_ldata; for (i = 0; i < VR_TX_LIST_CNT; i++) { cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i]; if (i == (VR_TX_LIST_CNT - 1)) cd->vr_tx_chain[i].vr_nextdesc = &cd->vr_tx_chain[0]; else cd->vr_tx_chain[i].vr_nextdesc = &cd->vr_tx_chain[i + 1]; } cd->vr_tx_free = &cd->vr_tx_chain[0]; cd->vr_tx_tail = cd->vr_tx_head = NULL; return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int vr_list_rx_init(sc) struct vr_softc *sc; { struct vr_chain_data *cd; struct vr_list_data *ld; int i; cd = &sc->vr_cdata; ld = sc->vr_ldata; for (i = 0; i < VR_RX_LIST_CNT; i++) { cd->vr_rx_chain[i].vr_ptr = (struct vr_desc *)&ld->vr_rx_list[i]; if (vr_newbuf(sc, &cd->vr_rx_chain[i]) == ENOBUFS) return (ENOBUFS); if (i == (VR_RX_LIST_CNT - 1)) { cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[0]; ld->vr_rx_list[i].vr_next = vtophys(&ld->vr_rx_list[0]); } else { cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[i + 1]; ld->vr_rx_list[i].vr_next = vtophys(&ld->vr_rx_list[i + 1]); } } cd->vr_rx_head = &cd->vr_rx_chain[0]; return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. * Note: the length fields are only 11 bits wide, which means the * largest size we can specify is 2047. This is important because * MCLBYTES is 2048, so we have to subtract one otherwise we'll * overflow the field and make a mess. */ static int vr_newbuf(sc, c) struct vr_softc *sc; struct vr_chain_onefrag *c; { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for rx list -- packet dropped!\n", sc->vr_dev.dv_xname); return (ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("%s: no memory for rx list -- packet dropped!\n", sc->vr_dev.dv_xname); m_freem(m_new); return (ENOBUFS); } c->vr_mbuf = m_new; c->vr_ptr->vr_status = VR_RXSTAT; c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t)); c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN; return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void vr_rxeof(sc) struct vr_softc *sc; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct vr_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat; ifp = &sc->vr_ec.ec_if; while (!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) & VR_RXSTAT_OWN)) { cur_rx = sc->vr_cdata.vr_rx_head; sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & VR_RXSTAT_RXERR) { ifp->if_ierrors++; printf("%s: rx error: ", sc->vr_dev.dv_xname); switch (rxstat & 0x000000FF) { case VR_RXSTAT_CRCERR: printf("crc error\n"); break; case VR_RXSTAT_FRAMEALIGNERR: printf("frame alignment error\n"); break; case VR_RXSTAT_FIFOOFLOW: printf("FIFO overflow\n"); break; case VR_RXSTAT_GIANT: printf("received giant packet\n"); break; case VR_RXSTAT_RUNT: printf("received runt packet\n"); break; case VR_RXSTAT_BUSERR: printf("system bus error\n"); break; case VR_RXSTAT_BUFFERR: printf("rx buffer error\n"); break; default: printf("unknown rx error\n"); break; } cur_rx->vr_ptr->vr_status = VR_RXSTAT; cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN; continue; } /* No errors; receive the packet. */ m = cur_rx->vr_mbuf; total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status); /* * XXX The VIA Rhine chip includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition and * should leave the buffer in place and continue. This will * result in a lost packet, but there's little else we * can do in this situation. */ if (vr_newbuf(sc, cur_rx) == ENOBUFS) { ifp->if_ierrors++; cur_rx->vr_ptr->vr_status = VR_RXSTAT; cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN; continue; } ifp->if_ipackets++; eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (ifp->if_bpf) { bpf_mtap(ifp->if_bpf, m); if (ifp->if_flags & IFF_PROMISC && (memcmp(eh->ether_dhost, sc->vr_enaddr, ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); continue; } } #endif /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof (struct ether_header)); ether_input(ifp, eh, m); } return; } void vr_rxeoc(sc) struct vr_softc *sc; { vr_rxeof(sc); VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void vr_txeof(sc) struct vr_softc *sc; { struct vr_chain *cur_tx; struct ifnet *ifp; register struct mbuf *n; ifp = &sc->vr_ec.ec_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* Sanity check. */ if (sc->vr_cdata.vr_tx_head == NULL) return; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ while (sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) { u_int32_t txstat; cur_tx = sc->vr_cdata.vr_tx_head; txstat = cur_tx->vr_ptr->vr_status; if (txstat & VR_TXSTAT_OWN) break; if (txstat & VR_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & VR_TXSTAT_DEFER) ifp->if_collisions++; if (txstat & VR_TXSTAT_LATECOLL) ifp->if_collisions++; } ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3; ifp->if_opackets++; MFREE(cur_tx->vr_mbuf, n); cur_tx->vr_mbuf = NULL; if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) { sc->vr_cdata.vr_tx_head = NULL; sc->vr_cdata.vr_tx_tail = NULL; break; } sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc; } return; } /* * TX 'end of channel' interrupt handler. */ static void vr_txeoc(sc) struct vr_softc *sc; { struct ifnet *ifp; ifp = &sc->vr_ec.ec_if; ifp->if_timer = 0; if (sc->vr_cdata.vr_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->vr_cdata.vr_tx_tail = NULL; if (sc->vr_want_auto) vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1); } return; } static void vr_intr(arg) void *arg; { struct vr_softc *sc; struct ifnet *ifp; u_int16_t status; sc = arg; ifp = &sc->vr_ec.ec_if; /* Supress unwanted interrupts. */ if (!(ifp->if_flags & IFF_UP)) { vr_stop(sc); return; } /* Disable interrupts. */ CSR_WRITE_2(sc, VR_IMR, 0x0000); for (;;) { status = CSR_READ_2(sc, VR_ISR); if (status) CSR_WRITE_2(sc, VR_ISR, status); if ((status & VR_INTRS) == 0) break; if (status & VR_ISR_RX_OK) vr_rxeof(sc); if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) || (status & VR_ISR_RX_DROPPED)) { vr_rxeof(sc); vr_rxeoc(sc); } if (status & VR_ISR_TX_OK) { vr_txeof(sc); vr_txeoc(sc); } if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)) { ifp->if_oerrors++; vr_txeof(sc); if (sc->vr_cdata.vr_tx_head != NULL) { VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); } } if (status & VR_ISR_BUSERR) { vr_reset(sc); vr_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_2(sc, VR_IMR, VR_INTRS); if (ifp->if_snd.ifq_head != NULL) { vr_start(ifp); } return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int vr_encap(sc, c, m_head) struct vr_softc *sc; struct vr_chain *c; struct mbuf *m_head; { int frag = 0; struct vr_desc *f = NULL; int total_len; struct mbuf *m; m = m_head; total_len = 0; /* * The VIA Rhine wants packet buffers to be longword * aligned, but very often our mbufs aren't. Rather than * waste time trying to decide when to copy and when not * to copy, just do it all the time. */ if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for tx list", sc->vr_dev.dv_xname); return (1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); printf("%s: no memory for tx list", sc->vr_dev.dv_xname); return (1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; /* * The Rhine chip doesn't auto-pad, so we have to make * sure to pad short frames out to the minimum frame length * ourselves. */ if (m_head->m_len < VR_MIN_FRAMELEN) { m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len; m_new->m_len = m_new->m_pkthdr.len; } f = c->vr_ptr; f->vr_data = vtophys(mtod(m_new, caddr_t)); f->vr_ctl = total_len = m_new->m_len; f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG; f->vr_status = 0; frag = 1; } c->vr_mbuf = m_head; c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT; c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr); return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void vr_start(ifp) struct ifnet *ifp; { struct vr_softc *sc; struct mbuf *m_head = NULL; struct vr_chain *cur_tx = NULL, *start_tx; sc = ifp->if_softc; if (sc->vr_autoneg) { sc->vr_tx_pend = 1; return; } /* * Check for an available queue slot. If there are none, * punt. */ if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) { ifp->if_flags |= IFF_OACTIVE; return; } start_tx = sc->vr_cdata.vr_tx_free; while (sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx = sc->vr_cdata.vr_tx_free; sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc; /* Pack the data into the descriptor. */ vr_encap(sc, cur_tx, m_head); if (cur_tx != start_tx) VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->vr_mbuf); #endif VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO); } /* * If there are no frames queued, bail. */ if (cur_tx == NULL) return; sc->vr_cdata.vr_tx_tail = cur_tx; if (sc->vr_cdata.vr_tx_head == NULL) sc->vr_cdata.vr_tx_head = start_tx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void vr_init(xsc) void *xsc; { struct vr_softc *sc = xsc; struct ifnet *ifp = &sc->vr_ec.ec_if; u_int16_t phy_bmcr = 0; int s; if (sc->vr_autoneg) return; s = splimp(); if (sc->vr_pinfo != NULL) phy_bmcr = vr_phy_readreg(sc, PHY_BMCR); /* * Cancel pending I/O and free all RX/TX buffers. */ vr_stop(sc); vr_reset(sc); VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD); VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD); /* Init circular RX list. */ if (vr_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc->vr_dev.dv_xname); vr_stop(sc); (void)splx(s); return; } /* * Init tx descriptors. */ vr_list_tx_init(sc); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); /* * Program the multicast filter, if necessary. */ vr_setmulti(sc); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START| VR_CMD_TX_ON|VR_CMD_RX_ON| VR_CMD_RX_GO); vr_setcfg(sc, vr_phy_readreg(sc, PHY_BMCR)); CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0])); /* * Enable interrupts. */ CSR_WRITE_2(sc, VR_ISR, 0xFFFF); CSR_WRITE_2(sc, VR_IMR, VR_INTRS); /* Restore state of BMCR */ if (sc->vr_pinfo != NULL) vr_phy_writereg(sc, PHY_BMCR, phy_bmcr); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); return; } /* * Set media options. */ static int vr_ifmedia_upd(ifp) struct ifnet *ifp; { struct vr_softc *sc; struct ifmedia *ifm; sc = ifp->if_softc; ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1); else vr_setmode_mii(sc, ifm->ifm_media); return (0); } /* * Report current media status. */ static void vr_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct vr_softc *sc; u_int16_t advert = 0, ability = 0; sc = ifp->if_softc; ifmr->ifm_active = IFM_ETHER; if (!(vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) { if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL) ifmr->ifm_active = IFM_ETHER|IFM_100_TX; else ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; return; } ability = vr_phy_readreg(sc, PHY_LPAR); advert = vr_phy_readreg(sc, PHY_ANAR); if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifmr->ifm_active = IFM_ETHER|IFM_100_T4; } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX; } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX; } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX; } else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF) { ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX; } return; } static int vr_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct vr_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splimp(); switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: vr_init(sc); arp_ifinit(ifp, ifa); break; #endif /* INET */ default: vr_init(sc); break; } break; case SIOCGIFADDR: bcopy((caddr_t) sc->vr_enaddr, (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data, ETHER_ADDR_LEN); break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { vr_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) vr_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (command == SIOCADDMULTI) error = ether_addmulti(ifr, &sc->vr_ec); else error = ether_delmulti(ifr, &sc->vr_ec); if (error == ENETRESET) { vr_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; default: error = EINVAL; break; } (void)splx(s); return (error); } static void vr_watchdog(ifp) struct ifnet *ifp; { struct vr_softc *sc; sc = ifp->if_softc; if (sc->vr_autoneg) { vr_autoneg_mii(sc, VR_FLAG_DELAYTIMEO, 1); return; } ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->vr_dev.dv_xname); if (!(vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT)) printf("%s: no carrier - transceiver cable problem?\n", sc->vr_dev.dv_xname); vr_stop(sc); vr_reset(sc); vr_init(sc); if (ifp->if_snd.ifq_head != NULL) vr_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void vr_stop(sc) struct vr_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->vr_ec.ec_if; ifp->if_timer = 0; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP); VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON)); CSR_WRITE_2(sc, VR_IMR, 0x0000); CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < VR_RX_LIST_CNT; i++) { if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) { m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf); sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL; } } bzero((char *)&sc->vr_ldata->vr_rx_list, sizeof (sc->vr_ldata->vr_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < VR_TX_LIST_CNT; i++) { if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) { m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf); sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL; } } bzero((char *)&sc->vr_ldata->vr_tx_list, sizeof (sc->vr_ldata->vr_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } static struct vr_type *vr_lookup __P((struct pci_attach_args *)); static int vr_probe __P((struct device *, struct cfdata *, void *)); static void vr_attach __P((struct device *, struct device *, void *)); static void vr_shutdown __P((void *)); struct cfattach vr_ca = { sizeof (struct vr_softc), vr_probe, vr_attach }; static struct vr_type * vr_lookup(pa) struct pci_attach_args *pa; { struct vr_type *vrt; for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) { if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid && PCI_PRODUCT(pa->pa_id) == vrt->vr_did) return (vrt); } return (NULL); } static int vr_probe(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (vr_lookup(pa) != NULL) return (1); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void vr_shutdown(arg) void *arg; { struct vr_softc *sc = (struct vr_softc *)arg; vr_stop(sc); return; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static void vr_attach(parent, self, aux) struct device * const parent; struct device * const self; void * const aux; { #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v)) #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r)) struct vr_softc * const sc = (struct vr_softc *) self; struct pci_attach_args * const pa = (struct pci_attach_args *) aux; struct vr_type *vrt; int i; u_int32_t command; struct ifnet *ifp; int media = IFM_ETHER|IFM_100_TX|IFM_FDX; unsigned int round; caddr_t roundptr; u_char eaddr[ETHER_ADDR_LEN]; struct vr_type *p; u_int16_t phy_vid, phy_did, phy_sts; vrt = vr_lookup(pa); if (vrt == NULL) { printf("\n"); panic("vr_attach: impossible"); } printf(": %s Ethernet\n", vrt->vr_name); /* * Handle power management nonsense. */ command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL); if (command & VR_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = PCI_CONF_READ(VR_PCI_LOIO); membase = PCI_CONF_READ(VR_PCI_LOMEM); irq = PCI_CONF_READ(VR_PCI_INTLINE); /* Reset the power state. */ printf("%s: chip is in D%d power mode " "-- setting to D0\n", sc->vr_dev.dv_xname, command & VR_PSTATE_MASK); command &= 0xFFFFFFFC; PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ PCI_CONF_WRITE(VR_PCI_LOIO, iobase); PCI_CONF_WRITE(VR_PCI_LOMEM, membase); PCI_CONF_WRITE(VR_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG); command |= (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE); PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command); command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG); { bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; int ioh_valid, memh_valid; pci_intr_handle_t intrhandle; const char *intrstr; ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); #if defined(VR_USEIOSPACE) if (ioh_valid) { sc->vr_btag = iot; sc->vr_bhandle = ioh; } else if (memh_valid) { sc->vr_btag = memt; sc->vr_bhandle = memh; } #else if (memh_valid) { sc->vr_btag = memt; sc->vr_bhandle = memh; } else if (ioh_valid) { sc->vr_btag = iot; sc->vr_bhandle = ioh; } #endif else { printf(": unable to map device registers\n"); return; } /* Allocate interrupt */ if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &intrhandle)) { printf("%s: couldn't map interrupt\n", sc->vr_dev.dv_xname); goto fail; } intrstr = pci_intr_string(pa->pa_pc, intrhandle); sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET, (void *)vr_intr, sc); if (sc->vr_ih == NULL) { printf("%s: couldn't establish interrupt", sc->vr_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); } printf("%s: interrupting at %s\n", sc->vr_dev.dv_xname, intrstr); } sc->vr_ats = shutdownhook_establish(vr_shutdown, sc); if (sc->vr_ats == NULL) printf("%s: warning: couldn't establish shutdown hook\n", sc->vr_dev.dv_xname); /* Reset the adapter. */ vr_reset(sc); /* * Get station address. The way the Rhine chips work, * you're not allowed to directly access the EEPROM once * they've been programmed a special way. Consequently, * we need to read the node address from the PAR0 and PAR1 * registers. */ VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); DELAY(200); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); /* * A Rhine chip was detected. Inform the world. */ printf("%s: Ethernet address: %s\n", sc->vr_dev.dv_xname, ether_sprintf(eaddr)); bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN); sc->vr_ldata_ptr = malloc(sizeof (struct vr_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->vr_ldata_ptr == NULL) { free(sc, M_DEVBUF); printf("%s: no memory for list buffers!\n", sc->vr_dev.dv_xname); return; } sc->vr_ldata = (struct vr_list_data *)sc->vr_ldata_ptr; round = (unsigned long)sc->vr_ldata_ptr & 0xF; roundptr = sc->vr_ldata_ptr; for (i = 0; i < 8; i++) { if (round % 8) { round++; roundptr++; } else break; } sc->vr_ldata = (struct vr_list_data *)roundptr; bzero(sc->vr_ldata, sizeof (struct vr_list_data)); ifp = &sc->vr_ec.ec_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vr_ioctl; ifp->if_output = ether_output; ifp->if_start = vr_start; ifp->if_watchdog = vr_watchdog; ifp->if_baudrate = 10000000; bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ); for (i = VR_PHYADDR_MIN; i < VR_PHYADDR_MAX + 1; i++) { sc->vr_phy_addr = i; vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); while (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); if ((phy_sts = vr_phy_readreg(sc, PHY_BMSR))) break; } if (phy_sts) { phy_vid = vr_phy_readreg(sc, PHY_VENID); phy_did = vr_phy_readreg(sc, PHY_DEVID); p = vr_phys; while (p->vr_vid) { if (phy_vid == p->vr_vid && (phy_did | 0x000F) == p->vr_did) { sc->vr_pinfo = p; break; } p++; } if (sc->vr_pinfo == NULL) sc->vr_pinfo = &vr_phys[PHY_UNKNOWN]; } else { printf("%s: MII without any phy!\n", sc->vr_dev.dv_xname); goto fail; } /* * Do ifmedia setup. */ ifmedia_init(&sc->ifmedia, 0, vr_ifmedia_upd, vr_ifmedia_sts); vr_getmode_mii(sc); vr_autoneg_mii(sc, VR_FLAG_FORCEDELAY, 1); media = sc->ifmedia.ifm_media; vr_stop(sc); ifmedia_set(&sc->ifmedia, media); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp, sc->vr_enaddr); #if NBPFILTER > 0 bpfattach(&sc->vr_ec.ec_if.if_bpf, ifp, DLT_EN10MB, sizeof (struct ether_header)); #endif sc->vr_ats = shutdownhook_establish(vr_shutdown, sc); if (sc->vr_ats == NULL) printf("%s: warning: couldn't establish shutdown hook\n", sc->vr_dev.dv_xname); fail: return; }