/* $NetBSD: prop_rb.c,v 1.7 2007/08/16 16:28:18 thorpej Exp $ */ /*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include "prop_object_impl.h" #include "prop_rb_impl.h" #undef KASSERT #ifdef RBDEBUG #define KASSERT(x) _PROP_ASSERT(x) #else #define KASSERT(x) /* nothing */ #endif #ifndef __predict_false #define __predict_false(x) (x) #endif static void rb_tree_reparent_nodes(struct rb_tree *, struct rb_node *, unsigned int); static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *); static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *, unsigned int); #ifdef RBDEBUG static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *, const struct rb_node *, unsigned int); static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *, const struct rb_node *, bool); #endif #ifdef RBDEBUG #define RBT_COUNT_INCR(rbt) (rbt)->rbt_count++ #define RBT_COUNT_DECR(rbt) (rbt)->rbt_count-- #else #define RBT_COUNT_INCR(rbt) /* nothing */ #define RBT_COUNT_DECR(rbt) /* nothing */ #endif #define RBUNCONST(a) ((void *)(unsigned long)(const void *)(a)) /* * Rather than testing for the NULL everywhere, all terminal leaves are * pointed to this node (and that includes itself). Note that by setting * it to be const, that on some architectures trying to write to it will * cause a fault. */ static const struct rb_node sentinel_node = { .rb_nodes = { RBUNCONST(&sentinel_node), RBUNCONST(&sentinel_node), NULL }, .rb_u = { .u_s = { .s_sentinel = 1 } }, }; void _prop_rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops) { RB_TAILQ_INIT(&rbt->rbt_nodes); #ifdef RBDEBUG rbt->rbt_count = 0; #endif rbt->rbt_ops = ops; *((const struct rb_node **)&rbt->rbt_root) = &sentinel_node; } /* * Swap the location and colors of 'self' and its child @ which. The child * can not be a sentinel node. */ /*ARGSUSED*/ static void rb_tree_reparent_nodes(struct rb_tree *rbt _PROP_ARG_UNUSED, struct rb_node *old_father, unsigned int which) { const unsigned int other = which ^ RB_NODE_OTHER; struct rb_node * const grandpa = old_father->rb_parent; struct rb_node * const old_child = old_father->rb_nodes[which]; struct rb_node * const new_father = old_child; struct rb_node * const new_child = old_father; unsigned int properties; KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT); KASSERT(!RB_SENTINEL_P(old_child)); KASSERT(old_child->rb_parent == old_father); KASSERT(rb_tree_check_node(rbt, old_father, NULL, false)); KASSERT(rb_tree_check_node(rbt, old_child, NULL, false)); KASSERT(RB_ROOT_P(old_father) || rb_tree_check_node(rbt, grandpa, NULL, false)); /* * Exchange descendant linkages. */ grandpa->rb_nodes[old_father->rb_position] = new_father; new_child->rb_nodes[which] = old_child->rb_nodes[other]; new_father->rb_nodes[other] = new_child; /* * Update ancestor linkages */ new_father->rb_parent = grandpa; new_child->rb_parent = new_father; /* * Exchange properties between new_father and new_child. The only * change is that new_child's position is now on the other side. */ properties = old_child->rb_properties; new_father->rb_properties = old_father->rb_properties; new_child->rb_properties = properties; new_child->rb_position = other; /* * Make sure to reparent the new child to ourself. */ if (!RB_SENTINEL_P(new_child->rb_nodes[which])) { new_child->rb_nodes[which]->rb_parent = new_child; new_child->rb_nodes[which]->rb_position = which; } KASSERT(rb_tree_check_node(rbt, new_father, NULL, false)); KASSERT(rb_tree_check_node(rbt, new_child, NULL, false)); KASSERT(RB_ROOT_P(new_father) || rb_tree_check_node(rbt, grandpa, NULL, false)); } void _prop_rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self) { struct rb_node *parent, *tmp; rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes; unsigned int position; self->rb_properties = 0; tmp = rbt->rbt_root; /* * This is a hack. Because rbt->rbt_root is just a struct rb_node *, * just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to * avoid a lot of tests for root and know that even at root, * updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will * rbt->rbt_root. */ /* LINTED: see above */ parent = (struct rb_node *)&rbt->rbt_root; position = RB_NODE_LEFT; /* * Find out where to place this new leaf. */ while (!RB_SENTINEL_P(tmp)) { const int diff = (*compare_nodes)(tmp, self); parent = tmp; KASSERT(diff != 0); if (diff < 0) { position = RB_NODE_LEFT; } else { position = RB_NODE_RIGHT; } tmp = parent->rb_nodes[position]; } #ifdef RBDEBUG { struct rb_node *prev = NULL, *next = NULL; if (position == RB_NODE_RIGHT) prev = parent; else if (tmp != rbt->rbt_root) next = parent; /* * Verify our sequential position */ KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); KASSERT(next == NULL || !RB_SENTINEL_P(next)); if (prev != NULL && next == NULL) next = TAILQ_NEXT(prev, rb_link); if (prev == NULL && next != NULL) prev = TAILQ_PREV(next, rb_node_qh, rb_link); KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); KASSERT(next == NULL || !RB_SENTINEL_P(next)); KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0); KASSERT(next == NULL || (*compare_nodes)(self, next) > 0); } #endif /* * Initialize the node and insert as a leaf into the tree. */ self->rb_parent = parent; self->rb_position = position; /* LINTED: rbt_root hack */ if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) { RB_MARK_ROOT(self); } else { KASSERT(position == RB_NODE_LEFT || position == RB_NODE_RIGHT); KASSERT(!RB_ROOT_P(self)); /* Already done */ } KASSERT(RB_SENTINEL_P(parent->rb_nodes[position])); self->rb_left = parent->rb_nodes[position]; self->rb_right = parent->rb_nodes[position]; parent->rb_nodes[position] = self; KASSERT(self->rb_left == &sentinel_node && self->rb_right == &sentinel_node); /* * Insert the new node into a sorted list for easy sequential access */ RBT_COUNT_INCR(rbt); #ifdef RBDEBUG if (RB_ROOT_P(self)) { RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link); } else if (position == RB_NODE_LEFT) { KASSERT((*compare_nodes)(self, self->rb_parent) > 0); RB_TAILQ_INSERT_BEFORE(self->rb_parent, self, rb_link); } else { KASSERT((*compare_nodes)(self->rb_parent, self) > 0); RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, self->rb_parent, self, rb_link); } #endif #if 0 /* * Validate the tree before we rebalance */ _prop_rb_tree_check(rbt, false); #endif /* * Rebalance tree after insertion */ rb_tree_insert_rebalance(rbt, self); #if 0 /* * Validate the tree after we rebalanced */ _prop_rb_tree_check(rbt, true); #endif } static void rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self) { RB_MARK_RED(self); while (!RB_ROOT_P(self) && RB_RED_P(self->rb_parent)) { const unsigned int which = (self->rb_parent == self->rb_parent->rb_parent->rb_left ? RB_NODE_LEFT : RB_NODE_RIGHT); const unsigned int other = which ^ RB_NODE_OTHER; struct rb_node * father = self->rb_parent; struct rb_node * grandpa = father->rb_parent; struct rb_node * const uncle = grandpa->rb_nodes[other]; KASSERT(!RB_SENTINEL_P(self)); /* * We are red and our parent is red, therefore we must have a * grandfather and he must be black. */ KASSERT(RB_RED_P(self) && RB_RED_P(father) && RB_BLACK_P(grandpa)); if (RB_RED_P(uncle)) { /* * Case 1: our uncle is red * Simply invert the colors of our parent and * uncle and make our grandparent red. And * then solve the problem up at his level. */ RB_MARK_BLACK(uncle); RB_MARK_BLACK(father); RB_MARK_RED(grandpa); self = grandpa; continue; } /* * Case 2&3: our uncle is black. */ if (self == father->rb_nodes[other]) { /* * Case 2: we are on the same side as our uncle * Swap ourselves with our parent so this case * becomes case 3. Basically our parent becomes our * child. */ rb_tree_reparent_nodes(rbt, father, other); KASSERT(father->rb_parent == self); KASSERT(self->rb_nodes[which] == father); KASSERT(self->rb_parent == grandpa); self = father; father = self->rb_parent; } KASSERT(RB_RED_P(self) && RB_RED_P(father)); KASSERT(grandpa->rb_nodes[which] == father); /* * Case 3: we are opposite a child of a black uncle. * Swap our parent and grandparent. Since our grandfather * is black, our father will become black and our new sibling * (former grandparent) will become red. */ rb_tree_reparent_nodes(rbt, grandpa, which); KASSERT(self->rb_parent == father); KASSERT(self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER] == grandpa); KASSERT(RB_RED_P(self)); KASSERT(RB_BLACK_P(father)); KASSERT(RB_RED_P(grandpa)); break; } /* * Final step: Set the root to black. */ RB_MARK_BLACK(rbt->rbt_root); } struct rb_node * _prop_rb_tree_find(struct rb_tree *rbt, const void *key) { struct rb_node *parent = rbt->rbt_root; rb_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key; while (!RB_SENTINEL_P(parent)) { const int diff = (*compare_key)(parent, key); if (diff == 0) return parent; parent = parent->rb_nodes[diff > 0]; } return NULL; } static void rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, int rebalance) { const unsigned int which = self->rb_position; struct rb_node *father = self->rb_parent; KASSERT(rebalance || (RB_ROOT_P(self) || RB_RED_P(self))); KASSERT(!rebalance || RB_BLACK_P(self)); KASSERT(RB_CHILDLESS_P(self)); KASSERT(rb_tree_check_node(rbt, self, NULL, false)); father->rb_nodes[which] = self->rb_left; /* * Remove ourselves from the node list and decrement the count. */ RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); RBT_COUNT_DECR(rbt); if (rebalance) rb_tree_removal_rebalance(rbt, father, which); KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, father, NULL, true)); } static void rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self, struct rb_node *standin) { unsigned int standin_which = standin->rb_position; unsigned int standin_other = standin_which ^ RB_NODE_OTHER; struct rb_node *standin_child; struct rb_node *standin_father; bool rebalance = RB_BLACK_P(standin); if (standin->rb_parent == self) { /* * As a child of self, any childen would be opposite of * our parent (self). */ KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); standin_child = standin->rb_nodes[standin_which]; } else { /* * Since we aren't a child of self, any childen would be * on the same side as our parent (self). */ KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which])); standin_child = standin->rb_nodes[standin_other]; } /* * the node we are removing must have two children. */ KASSERT(RB_TWOCHILDREN_P(self)); /* * If standin has a child, it must be red. */ KASSERT(RB_SENTINEL_P(standin_child) || RB_RED_P(standin_child)); /* * Verify things are sane. */ KASSERT(rb_tree_check_node(rbt, self, NULL, false)); KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); if (!RB_SENTINEL_P(standin_child)) { /* * We know we have a red child so if we swap them we can * void flipping standin's child to black afterwards. */ KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true)); rb_tree_reparent_nodes(rbt, standin, standin_child->rb_position); KASSERT(rb_tree_check_node(rbt, standin, NULL, true)); KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true)); /* * Since we are removing a red leaf, no need to rebalance. */ rebalance = false; /* * We know that standin can not be a child of self, so * update before of that. */ KASSERT(standin->rb_parent != self); standin_which = standin->rb_position; standin_other = standin_which ^ RB_NODE_OTHER; } KASSERT(RB_CHILDLESS_P(standin)); /* * If we are about to delete the standin's father, then when we call * rebalance, we need to use ourselves as our father. Otherwise * remember our original father. Also, if we are our standin's father * we only need to reparent the standin's brother. */ if (standin->rb_parent == self) { /* * | R --> S | * | Q S --> Q * | * | --> | */ standin_father = standin; KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other])); KASSERT(self->rb_nodes[standin_which] == standin); /* * Make our brother our son. */ standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; standin->rb_nodes[standin_other]->rb_parent = standin; KASSERT(standin->rb_nodes[standin_other]->rb_position == standin_other); } else { /* * | P --> P | * | S --> Q | * | Q --> | */ standin_father = standin->rb_parent; standin_father->rb_nodes[standin_which] = standin->rb_nodes[standin_which]; standin->rb_left = self->rb_left; standin->rb_right = self->rb_right; standin->rb_left->rb_parent = standin; standin->rb_right->rb_parent = standin; } /* * Now copy the result of self to standin and then replace * self with standin in the tree. */ standin->rb_parent = self->rb_parent; standin->rb_properties = self->rb_properties; standin->rb_parent->rb_nodes[standin->rb_position] = standin; /* * Remove ourselves from the node list and decrement the count. */ RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); RBT_COUNT_DECR(rbt); KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); KASSERT(rb_tree_check_node(rbt, standin_father, NULL, false)); if (!rebalance) return; rb_tree_removal_rebalance(rbt, standin_father, standin_which); KASSERT(rb_tree_check_node(rbt, standin, NULL, true)); } /* * We could do this by doing * rb_tree_node_swap(rbt, self, which); * rb_tree_prune_node(rbt, self, false); * * But it's more efficient to just evalate and recolor the child. */ /*ARGSUSED*/ static void rb_tree_prune_blackred_branch(struct rb_tree *rbt _PROP_ARG_UNUSED, struct rb_node *self, unsigned int which) { struct rb_node *parent = self->rb_parent; struct rb_node *child = self->rb_nodes[which]; KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT); KASSERT(RB_BLACK_P(self) && RB_RED_P(child)); KASSERT(!RB_TWOCHILDREN_P(child)); KASSERT(RB_CHILDLESS_P(child)); KASSERT(rb_tree_check_node(rbt, self, NULL, false)); KASSERT(rb_tree_check_node(rbt, child, NULL, false)); /* * Remove ourselves from the tree and give our former child our * properties (position, color, root). */ parent->rb_nodes[self->rb_position] = child; child->rb_parent = parent; child->rb_properties = self->rb_properties; /* * Remove ourselves from the node list and decrement the count. */ RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); RBT_COUNT_DECR(rbt); KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, parent, NULL, true)); KASSERT(rb_tree_check_node(rbt, child, NULL, true)); } /* * */ void _prop_rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self) { struct rb_node *standin; unsigned int which; /* * In the following diagrams, we (the node to be removed) are S. Red * nodes are lowercase. T could be either red or black. * * Remember the major axiom of the red-black tree: the number of * black nodes from the root to each leaf is constant across all * leaves, only the number of red nodes varies. * * Thus removing a red leaf doesn't require any other changes to a * red-black tree. So if we must remove a node, attempt to rearrange * the tree so we can remove a red node. * * The simpliest case is a childless red node or a childless root node: * * | T --> T | or | R --> * | * | s --> * | */ if (RB_CHILDLESS_P(self)) { if (RB_RED_P(self) || RB_ROOT_P(self)) { rb_tree_prune_node(rbt, self, false); return; } rb_tree_prune_node(rbt, self, true); return; } KASSERT(!RB_CHILDLESS_P(self)); if (!RB_TWOCHILDREN_P(self)) { /* * The next simpliest case is the node we are deleting is * black and has one red child. * * | T --> T --> T | * | S --> R --> R | * | r --> s --> * | */ which = RB_LEFT_SENTINEL_P(self) ? RB_NODE_RIGHT : RB_NODE_LEFT; KASSERT(RB_BLACK_P(self)); KASSERT(RB_RED_P(self->rb_nodes[which])); KASSERT(RB_CHILDLESS_P(self->rb_nodes[which])); rb_tree_prune_blackred_branch(rbt, self, which); return; } KASSERT(RB_TWOCHILDREN_P(self)); /* * We invert these because we prefer to remove from the inside of * the tree. */ which = self->rb_position ^ RB_NODE_OTHER; /* * Let's find the node closes to us opposite of our parent * Now swap it with ourself, "prune" it, and rebalance, if needed. */ standin = _prop_rb_tree_iterate(rbt, self, which); rb_tree_swap_prune_and_rebalance(rbt, self, standin); } static void rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent, unsigned int which) { KASSERT(!RB_SENTINEL_P(parent)); KASSERT(RB_SENTINEL_P(parent->rb_nodes[which])); KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT); while (RB_BLACK_P(parent->rb_nodes[which])) { unsigned int other = which ^ RB_NODE_OTHER; struct rb_node *brother = parent->rb_nodes[other]; KASSERT(!RB_SENTINEL_P(brother)); /* * For cases 1, 2a, and 2b, our brother's children must * be black and our father must be black */ if (RB_BLACK_P(parent) && RB_BLACK_P(brother->rb_left) && RB_BLACK_P(brother->rb_right)) { /* * Case 1: Our brother is red, swap its position * (and colors) with our parent. This is now case 2b. * * B -> D * x d -> b E * C E -> x C */ if (RB_RED_P(brother)) { KASSERT(RB_BLACK_P(parent)); rb_tree_reparent_nodes(rbt, parent, other); brother = parent->rb_nodes[other]; KASSERT(!RB_SENTINEL_P(brother)); KASSERT(RB_BLACK_P(brother)); KASSERT(RB_RED_P(parent)); KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); } else { /* * Both our parent and brother are black. * Change our brother to red, advance up rank * and go through the loop again. * * B -> B * A D -> A d * C E -> C E */ RB_MARK_RED(brother); KASSERT(RB_BLACK_P(brother->rb_left)); KASSERT(RB_BLACK_P(brother->rb_right)); if (RB_ROOT_P(parent)) return; KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); which = parent->rb_position; parent = parent->rb_parent; } } else if (RB_RED_P(parent) && RB_BLACK_P(brother) && RB_BLACK_P(brother->rb_left) && RB_BLACK_P(brother->rb_right)) { KASSERT(RB_BLACK_P(brother)); KASSERT(RB_BLACK_P(brother->rb_left)); KASSERT(RB_BLACK_P(brother->rb_right)); RB_MARK_BLACK(parent); RB_MARK_RED(brother); KASSERT(rb_tree_check_node(rbt, brother, NULL, true)); break; /* We're done! */ } else { KASSERT(RB_BLACK_P(brother)); KASSERT(!RB_CHILDLESS_P(brother)); /* * Case 3: our brother is black, our left nephew is * red, and our right nephew is black. Swap our * brother with our left nephew. This result in a * tree that matches case 4. * * B -> D * A D -> B E * c e -> A C */ if (RB_BLACK_P(brother->rb_nodes[other])) { KASSERT(RB_RED_P(brother->rb_nodes[which])); rb_tree_reparent_nodes(rbt, brother, which); KASSERT(brother->rb_parent == parent->rb_nodes[other]); brother = parent->rb_nodes[other]; KASSERT(RB_RED_P(brother->rb_nodes[other])); } /* * Case 4: our brother is black and our right nephew * is red. Swap our parent and brother locations and * change our right nephew to black. (these can be * done in either order so we change the color first). * The result is a valid red-black tree and is a * terminal case. * * B -> D * A D -> B E * c e -> A C */ RB_MARK_BLACK(brother->rb_nodes[other]); rb_tree_reparent_nodes(rbt, parent, other); break; /* We're done! */ } } KASSERT(rb_tree_check_node(rbt, parent, NULL, true)); } struct rb_node * _prop_rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self, unsigned int direction) { const unsigned int other = direction ^ RB_NODE_OTHER; KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT); if (self == NULL) { self = rbt->rbt_root; if (RB_SENTINEL_P(self)) return NULL; while (!RB_SENTINEL_P(self->rb_nodes[other])) self = self->rb_nodes[other]; return self; } KASSERT(!RB_SENTINEL_P(self)); /* * We can't go any further in this direction. We proceed up in the * opposite direction until our parent is in direction we want to go. */ if (RB_SENTINEL_P(self->rb_nodes[direction])) { while (!RB_ROOT_P(self)) { if (other == self->rb_position) return self->rb_parent; self = self->rb_parent; } return NULL; } /* * Advance down one in current direction and go down as far as possible * in the opposite direction. */ self = self->rb_nodes[direction]; KASSERT(!RB_SENTINEL_P(self)); while (!RB_SENTINEL_P(self->rb_nodes[other])) self = self->rb_nodes[other]; return self; } #ifdef RBDEBUG static const struct rb_node * rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self, unsigned int direction) { const unsigned int other = direction ^ RB_NODE_OTHER; KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT); if (self == NULL) { self = rbt->rbt_root; if (RB_SENTINEL_P(self)) return NULL; while (!RB_SENTINEL_P(self->rb_nodes[other])) self = self->rb_nodes[other]; return self; } KASSERT(!RB_SENTINEL_P(self)); /* * We can't go any further in this direction. We proceed up in the * opposite direction until our parent is in direction we want to go. */ if (RB_SENTINEL_P(self->rb_nodes[direction])) { while (!RB_ROOT_P(self)) { if (other == self->rb_position) return self->rb_parent; self = self->rb_parent; } return NULL; } /* * Advance down one in current direction and go down as far as possible * in the opposite direction. */ self = self->rb_nodes[direction]; KASSERT(!RB_SENTINEL_P(self)); while (!RB_SENTINEL_P(self->rb_nodes[other])) self = self->rb_nodes[other]; return self; } static bool rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self, const struct rb_node *prev, bool red_check) { KASSERT(!self->rb_sentinel); KASSERT(self->rb_left); KASSERT(self->rb_right); KASSERT(prev == NULL || (*rbt->rbt_ops->rbto_compare_nodes)(prev, self) > 0); /* * Verify our relationship to our parent. */ if (RB_ROOT_P(self)) { KASSERT(self == rbt->rbt_root); KASSERT(self->rb_position == RB_NODE_LEFT); KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self); KASSERT(self->rb_parent == (const struct rb_node *) &rbt->rbt_root); } else { KASSERT(self != rbt->rbt_root); KASSERT(!RB_PARENT_SENTINEL_P(self)); if (self->rb_position == RB_NODE_LEFT) { KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) > 0); KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self); } else { KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) < 0); KASSERT(self->rb_parent->rb_nodes[RB_NODE_RIGHT] == self); } } /* * Verify our position in the linked list against the tree itself. */ { const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT); const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT); KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link)); if (next0 != TAILQ_NEXT(self, rb_link)) next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT); KASSERT(next0 == TAILQ_NEXT(self, rb_link)); } /* * The root must be black. * There can never be two adjacent red nodes. */ if (red_check) { KASSERT(!RB_ROOT_P(self) || RB_BLACK_P(self)); if (RB_RED_P(self)) { const struct rb_node *brother; KASSERT(!RB_ROOT_P(self)); brother = self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER]; KASSERT(RB_BLACK_P(self->rb_parent)); /* * I'm red and have no children, then I must either * have no brother or my brother also be red and * also have no children. (black count == 0) */ KASSERT(!RB_CHILDLESS_P(self) || RB_SENTINEL_P(brother) || RB_RED_P(brother) || RB_CHILDLESS_P(brother)); /* * If I'm not childless, I must have two children * and they must be both be black. */ KASSERT(RB_CHILDLESS_P(self) || (RB_TWOCHILDREN_P(self) && RB_BLACK_P(self->rb_left) && RB_BLACK_P(self->rb_right))); /* * If I'm not childless, thus I have black children, * then my brother must either be black or have two * black children. */ KASSERT(RB_CHILDLESS_P(self) || RB_BLACK_P(brother) || (RB_TWOCHILDREN_P(brother) && RB_BLACK_P(brother->rb_left) && RB_BLACK_P(brother->rb_right))); } else { /* * If I'm black and have one child, that child must * be red and childless. */ KASSERT(RB_CHILDLESS_P(self) || RB_TWOCHILDREN_P(self) || (!RB_LEFT_SENTINEL_P(self) && RB_RIGHT_SENTINEL_P(self) && RB_RED_P(self->rb_left) && RB_CHILDLESS_P(self->rb_left)) || (!RB_RIGHT_SENTINEL_P(self) && RB_LEFT_SENTINEL_P(self) && RB_RED_P(self->rb_right) && RB_CHILDLESS_P(self->rb_right))); /* * If I'm a childless black node and my parent is * black, my 2nd closet relative away from my parent * is either red or has a red parent or red children. */ if (!RB_ROOT_P(self) && RB_CHILDLESS_P(self) && RB_BLACK_P(self->rb_parent)) { const unsigned int which = self->rb_position; const unsigned int other = which ^ RB_NODE_OTHER; const struct rb_node *relative0, *relative; relative0 = rb_tree_iterate_const(rbt, self, other); KASSERT(relative0 != NULL); relative = rb_tree_iterate_const(rbt, relative0, other); KASSERT(relative != NULL); KASSERT(RB_SENTINEL_P(relative->rb_nodes[which])); #if 0 KASSERT(RB_RED_P(relative) || RB_RED_P(relative->rb_left) || RB_RED_P(relative->rb_right) || RB_RED_P(relative->rb_parent)); #endif } } /* * A grandparent's children must be real nodes and not * sentinels. First check out grandparent. */ KASSERT(RB_ROOT_P(self) || RB_ROOT_P(self->rb_parent) || RB_TWOCHILDREN_P(self->rb_parent->rb_parent)); /* * If we are have grandchildren on our left, then * we must have a child on our right. */ KASSERT(RB_LEFT_SENTINEL_P(self) || RB_CHILDLESS_P(self->rb_left) || !RB_RIGHT_SENTINEL_P(self)); /* * If we are have grandchildren on our right, then * we must have a child on our left. */ KASSERT(RB_RIGHT_SENTINEL_P(self) || RB_CHILDLESS_P(self->rb_right) || !RB_LEFT_SENTINEL_P(self)); /* * If we have a child on the left and it doesn't have two * children make sure we don't have great-great-grandchildren on * the right. */ KASSERT(RB_TWOCHILDREN_P(self->rb_left) || RB_CHILDLESS_P(self->rb_right) || RB_CHILDLESS_P(self->rb_right->rb_left) || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left) || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right) || RB_CHILDLESS_P(self->rb_right->rb_right) || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left) || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right)); /* * If we have a child on the right and it doesn't have two * children make sure we don't have great-great-grandchildren on * the left. */ KASSERT(RB_TWOCHILDREN_P(self->rb_right) || RB_CHILDLESS_P(self->rb_left) || RB_CHILDLESS_P(self->rb_left->rb_left) || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left) || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right) || RB_CHILDLESS_P(self->rb_left->rb_right) || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left) || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right)); /* * If we are fully interior node, then our predecessors and * successors must have no children in our direction. */ if (RB_TWOCHILDREN_P(self)) { const struct rb_node *prev0; const struct rb_node *next0; prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT); KASSERT(prev0 != NULL); KASSERT(RB_RIGHT_SENTINEL_P(prev0)); next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT); KASSERT(next0 != NULL); KASSERT(RB_LEFT_SENTINEL_P(next0)); } } return true; } static unsigned int rb_tree_count_black(const struct rb_node *self) { unsigned int left, right; if (RB_SENTINEL_P(self)) return 0; left = rb_tree_count_black(self->rb_left); right = rb_tree_count_black(self->rb_right); KASSERT(left == right); return left + RB_BLACK_P(self); } void _prop_rb_tree_check(const struct rb_tree *rbt, bool red_check) { const struct rb_node *self; const struct rb_node *prev; unsigned int count; KASSERT(rbt->rbt_root == NULL || rbt->rbt_root->rb_position == RB_NODE_LEFT); prev = NULL; count = 0; TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { rb_tree_check_node(rbt, self, prev, false); count++; } KASSERT(rbt->rbt_count == count); KASSERT(RB_SENTINEL_P(rbt->rbt_root) || rb_tree_count_black(rbt->rbt_root)); /* * The root must be black. * There can never be two adjacent red nodes. */ if (red_check) { KASSERT(rbt->rbt_root == NULL || RB_BLACK_P(rbt->rbt_root)); TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { rb_tree_check_node(rbt, self, NULL, true); } } } #endif /* RBDEBUG */