/* $NetBSD: if_lii.c,v 1.8 2010/01/19 22:07:01 pooka Exp $ */ /* * Copyright (c) 2008 The NetBSD Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for Attansic/Atheros's L2 Fast Ethernet controller */ #include __KERNEL_RCSID(0, "$NetBSD: if_lii.c,v 1.8 2010/01/19 22:07:01 pooka Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define LII_DEBUG */ #ifdef LII_DEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif struct lii_softc { device_t sc_dev; pci_chipset_tag_t sc_pc; pcitag_t sc_tag; bus_space_tag_t sc_mmiot; bus_space_handle_t sc_mmioh; /* * We allocate a big chunk of DMA-safe memory for all data exchanges. * It is unfortunate that this chip doesn't seem to do scatter-gather. */ bus_dma_tag_t sc_dmat; bus_dmamap_t sc_ringmap; bus_dma_segment_t sc_ringseg; uint8_t *sc_ring; /* the whole area */ size_t sc_ringsize; struct rx_pkt *sc_rxp; /* the part used for RX */ struct tx_pkt_status *sc_txs; /* the parts used for TX */ bus_addr_t sc_txsp; char *sc_txdbase; bus_addr_t sc_txdp; unsigned int sc_rxcur; /* the active area is [ack; cur[ */ int sc_txs_cur; int sc_txs_ack; int sc_txd_cur; int sc_txd_ack; bool sc_free_tx_slots; void *sc_ih; struct ethercom sc_ec; struct mii_data sc_mii; callout_t sc_tick_ch; uint8_t sc_eaddr[ETHER_ADDR_LEN]; int (*sc_memread)(struct lii_softc *, uint32_t, uint32_t *); }; static int lii_match(device_t, cfdata_t, void *); static void lii_attach(device_t, device_t, void *); static int lii_reset(struct lii_softc *); static bool lii_eeprom_present(struct lii_softc *); static int lii_read_macaddr(struct lii_softc *, uint8_t *); static int lii_eeprom_read(struct lii_softc *, uint32_t, uint32_t *); static void lii_spi_configure(struct lii_softc *); static int lii_spi_read(struct lii_softc *, uint32_t, uint32_t *); static void lii_setmulti(struct lii_softc *); static void lii_tick(void *); static int lii_alloc_rings(struct lii_softc *); static int lii_free_tx_space(struct lii_softc *); static int lii_mii_readreg(device_t, int, int); static void lii_mii_writereg(device_t, int, int, int); static void lii_mii_statchg(device_t); static int lii_media_change(struct ifnet *); static void lii_media_status(struct ifnet *, struct ifmediareq *); static int lii_init(struct ifnet *); static void lii_start(struct ifnet *); static void lii_stop(struct ifnet *, int); static void lii_watchdog(struct ifnet *); static int lii_ioctl(struct ifnet *, u_long, void *); static int lii_intr(void *); static void lii_rxintr(struct lii_softc *); static void lii_txintr(struct lii_softc *); CFATTACH_DECL_NEW(lii, sizeof(struct lii_softc), lii_match, lii_attach, NULL, NULL); /* #define LII_DEBUG_REGS */ #ifndef LII_DEBUG_REGS #define AT_READ_4(sc,reg) \ bus_space_read_4((sc)->sc_mmiot, (sc)->sc_mmioh, (reg)) #define AT_READ_2(sc,reg) \ bus_space_read_2((sc)->sc_mmiot, (sc)->sc_mmioh, (reg)) #define AT_READ_1(sc,reg) \ bus_space_read_1((sc)->sc_mmiot, (sc)->sc_mmioh, (reg)) #define AT_WRITE_4(sc,reg,val) \ bus_space_write_4((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val)) #define AT_WRITE_2(sc,reg,val) \ bus_space_write_2((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val)) #define AT_WRITE_1(sc,reg,val) \ bus_space_write_1((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val)) #else static inline uint32_t AT_READ_4(struct lii_softc *sc, bus_size_t reg) { uint32_t r = bus_space_read_4(sc->sc_mmiot, sc->sc_mmioh, reg); printf("AT_READ_4(%x) = %x\n", (unsigned int)reg, r); return r; } static inline uint16_t AT_READ_2(struct lii_softc *sc, bus_size_t reg) { uint16_t r = bus_space_read_2(sc->sc_mmiot, sc->sc_mmioh, reg); printf("AT_READ_2(%x) = %x\n", (unsigned int)reg, r); return r; } static inline uint8_t AT_READ_1(struct lii_softc *sc, bus_size_t reg) { uint8_t r = bus_space_read_1(sc->sc_mmiot, sc->sc_mmioh, reg); printf("AT_READ_1(%x) = %x\n", (unsigned int)reg, r); return r; } static inline void AT_WRITE_4(struct lii_softc *sc, bus_size_t reg, uint32_t val) { printf("AT_WRITE_4(%x, %x)\n", (unsigned int)reg, val); bus_space_write_4(sc->sc_mmiot, sc->sc_mmioh, reg, val); } static inline void AT_WRITE_2(struct lii_softc *sc, bus_size_t reg, uint16_t val) { printf("AT_WRITE_2(%x, %x)\n", (unsigned int)reg, val); bus_space_write_2(sc->sc_mmiot, sc->sc_mmioh, reg, val); } static inline void AT_WRITE_1(struct lii_softc *sc, bus_size_t reg, uint8_t val) { printf("AT_WRITE_1(%x, %x)\n", (unsigned int)reg, val); bus_space_write_1(sc->sc_mmiot, sc->sc_mmioh, reg, val); } #endif /* * Those are the default Linux parameters. */ #define AT_TXD_NUM 64 #define AT_TXD_BUFFER_SIZE 8192 #define AT_RXD_NUM 64 /* * Assuming (you know what that word makes of you) the chunk of memory * bus_dmamem_alloc returns us is 128-byte aligned, we won't use the * first 120 bytes of it, so that the space for the packets, and not the * whole descriptors themselves, are on a 128-byte boundary. */ #define AT_RXD_PADDING 120 static int lii_match(device_t parent, cfdata_t cfmatch, void *aux) { struct pci_attach_args *pa = aux; return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_100); } static void lii_attach(device_t parent, device_t self, void *aux) { struct lii_softc *sc = device_private(self); struct pci_attach_args *pa = aux; uint8_t eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp = &sc->sc_ec.ec_if; pci_intr_handle_t ih; const char *intrstr; pcireg_t cmd; bus_size_t memsize = 0; aprint_naive("\n"); aprint_normal(": Attansic/Atheros L2 Fast Ethernet\n"); sc->sc_dev = self; sc->sc_pc = pa->pa_pc; sc->sc_tag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; cmd = pci_conf_read(sc->sc_pc, sc->sc_tag, PCI_COMMAND_STATUS_REG); cmd |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; cmd &= ~PCI_COMMAND_IO_ENABLE; pci_conf_write(sc->sc_pc, sc->sc_tag, PCI_COMMAND_STATUS_REG, cmd); switch (cmd = pci_mapreg_type(sc->sc_pc, sc->sc_tag, PCI_MAPREG_START)) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: break; default: aprint_error_dev(self, "invalid base address register\n"); break; } if (pci_mapreg_map(pa, PCI_MAPREG_START, cmd, 0, &sc->sc_mmiot, &sc->sc_mmioh, NULL, &memsize) != 0) { aprint_error_dev(self, "failed to map registers\n"); return; } if (lii_reset(sc)) return; lii_spi_configure(sc); if (lii_eeprom_present(sc)) sc->sc_memread = lii_eeprom_read; else sc->sc_memread = lii_spi_read; if (lii_read_macaddr(sc, eaddr)) return; memcpy(sc->sc_eaddr, eaddr, ETHER_ADDR_LEN); aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr)); if (pci_intr_map(pa, &ih) != 0) { aprint_error_dev(self, "failed to map interrupt\n"); goto fail; } intrstr = pci_intr_string(sc->sc_pc, ih); sc->sc_ih = pci_intr_establish(sc->sc_pc, ih, IPL_NET, lii_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "failed to establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); goto fail; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); if (lii_alloc_rings(sc)) goto fail; callout_init(&sc->sc_tick_ch, 0); callout_setfunc(&sc->sc_tick_ch, lii_tick, sc); sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = lii_mii_readreg; sc->sc_mii.mii_writereg = lii_mii_writereg; sc->sc_mii.mii_statchg = lii_mii_statchg; ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, lii_media_change, lii_media_status); mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = lii_ioctl; ifp->if_start = lii_start; ifp->if_watchdog = lii_watchdog; ifp->if_init = lii_init; ifp->if_stop = lii_stop; IFQ_SET_READY(&ifp->if_snd); /* * While the device does support HW VLAN tagging, there is no * real point using that feature. */ sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU; if_attach(ifp); ether_ifattach(ifp, eaddr); if (pmf_device_register(self, NULL, NULL)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); return; fail: if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pc, sc->sc_ih); sc->sc_ih = NULL; } if (memsize) bus_space_unmap(sc->sc_mmiot, sc->sc_mmioh, memsize); } static int lii_reset(struct lii_softc *sc) { int i; DPRINTF(("lii_reset\n")); AT_WRITE_4(sc, ATL2_SMC, SMC_SOFT_RST); DELAY(1000); for (i = 0; i < 10; ++i) { if (AT_READ_4(sc, ATL2_BIS) == 0) break; DELAY(1000); } if (i == 10) { aprint_error_dev(sc->sc_dev, "reset failed\n"); return 1; } AT_WRITE_4(sc, ATL2_PHYC, PHYC_ENABLE); DELAY(10); /* Init PCI-Express module */ /* Magic Numbers Warning */ AT_WRITE_4(sc, ATL2_PCELTM, PCELTM_DEF); AT_WRITE_4(sc, ATL2_PCEDTXC, PCEDTX_DEF); return 0; } static bool lii_eeprom_present(struct lii_softc *sc) { /* * The Linux driver does this, but then it has a very weird way of * checking whether the PCI configuration space exposes the Vital * Product Data capability, so maybe it's not really needed. */ #ifdef weirdloonix uint32_t val; val = AT_READ_4(sc, ATL2_SFC); if (val & SFC_EN_VPD) AT_WRITE_4(sc, ATL2_SFC, val & ~(SFC_EN_VPD)); #endif return pci_get_capability(sc->sc_pc, sc->sc_tag, PCI_CAP_VPD, NULL, NULL) == 1; } static int lii_eeprom_read(struct lii_softc *sc, uint32_t reg, uint32_t *val) { int r = pci_vpd_read(sc->sc_pc, sc->sc_tag, reg, 1, (pcireg_t *)val); DPRINTF(("lii_eeprom_read(%x) = %x\n", reg, *val)); return r; } static void lii_spi_configure(struct lii_softc *sc) { /* * We don't offer a way to configure the SPI Flash vendor parameter, so * the table is given for reference */ static const struct lii_spi_flash_vendor { const char *sfv_name; const uint8_t sfv_opcodes[9]; } lii_sfv[] = { { "Atmel", { 0x00, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 } }, { "SST", { 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 } }, { "ST", { 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xab, 0xd8, 0xc7 } }, }; #define SF_OPCODE_WRSR 0 #define SF_OPCODE_READ 1 #define SF_OPCODE_PRGM 2 #define SF_OPCODE_WREN 3 #define SF_OPCODE_WRDI 4 #define SF_OPCODE_RDSR 5 #define SF_OPCODE_RDID 6 #define SF_OPCODE_SECT_ER 7 #define SF_OPCODE_CHIP_ER 8 #define SF_DEFAULT_VENDOR 0 static const uint8_t vendor = SF_DEFAULT_VENDOR; /* * Why isn't WRDI used? Heck if I know. */ AT_WRITE_1(sc, ATL2_SFOP_WRSR, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_WRSR]); AT_WRITE_1(sc, ATL2_SFOP_READ, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_READ]); AT_WRITE_1(sc, ATL2_SFOP_PROGRAM, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_PRGM]); AT_WRITE_1(sc, ATL2_SFOP_WREN, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_WREN]); AT_WRITE_1(sc, ATL2_SFOP_RDSR, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_RDSR]); AT_WRITE_1(sc, ATL2_SFOP_RDID, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_RDID]); AT_WRITE_1(sc, ATL2_SFOP_SC_ERASE, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_SECT_ER]); AT_WRITE_1(sc, ATL2_SFOP_CHIP_ERASE, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_CHIP_ER]); } #define MAKE_SFC(cssetup, clkhi, clklo, cshold, cshi, ins) \ ( (((cssetup) & SFC_CS_SETUP_MASK) \ << SFC_CS_SETUP_SHIFT) \ | (((clkhi) & SFC_CLK_HI_MASK) \ << SFC_CLK_HI_SHIFT) \ | (((clklo) & SFC_CLK_LO_MASK) \ << SFC_CLK_LO_SHIFT) \ | (((cshold) & SFC_CS_HOLD_MASK) \ << SFC_CS_HOLD_SHIFT) \ | (((cshi) & SFC_CS_HI_MASK) \ << SFC_CS_HI_SHIFT) \ | (((ins) & SFC_INS_MASK) \ << SFC_INS_SHIFT)) /* Magic settings from the Linux driver */ #define CUSTOM_SPI_CS_SETUP 2 #define CUSTOM_SPI_CLK_HI 2 #define CUSTOM_SPI_CLK_LO 2 #define CUSTOM_SPI_CS_HOLD 2 #define CUSTOM_SPI_CS_HI 3 static int lii_spi_read(struct lii_softc *sc, uint32_t reg, uint32_t *val) { uint32_t v; int i; AT_WRITE_4(sc, ATL2_SF_DATA, 0); AT_WRITE_4(sc, ATL2_SF_ADDR, reg); v = SFC_WAIT_READY | MAKE_SFC(CUSTOM_SPI_CS_SETUP, CUSTOM_SPI_CLK_HI, CUSTOM_SPI_CLK_LO, CUSTOM_SPI_CS_HOLD, CUSTOM_SPI_CS_HI, 1); AT_WRITE_4(sc, ATL2_SFC, v); v |= SFC_START; AT_WRITE_4(sc, ATL2_SFC, v); for (i = 0; i < 10; ++i) { DELAY(1000); if (!(AT_READ_4(sc, ATL2_SFC) & SFC_START)) break; } if (i == 10) return EBUSY; *val = AT_READ_4(sc, ATL2_SF_DATA); return 0; } static int lii_read_macaddr(struct lii_softc *sc, uint8_t *ea) { uint32_t offset = 0x100; uint32_t val, val1, addr0 = 0, addr1 = 0; uint8_t found = 0; while ((*sc->sc_memread)(sc, offset, &val) == 0) { offset += 4; /* Each chunk of data starts with a signature */ if ((val & 0xff) != 0x5a) break; if ((*sc->sc_memread)(sc, offset, &val1)) break; offset += 4; val >>= 16; switch (val) { case ATL2_MAC_ADDR_0: addr0 = val1; ++found; break; case ATL2_MAC_ADDR_1: addr1 = val1; ++found; break; default: continue; } } if (found < 2) { aprint_error_dev(sc->sc_dev, "error reading MAC address\n"); return 1; } addr0 = htole32(addr0); addr1 = htole32(addr1); if ((addr0 == 0xffffff && (addr1 & 0xffff) == 0xffff) || (addr0 == 0 && (addr1 & 0xffff) == 0)) { addr0 = htole32(AT_READ_4(sc, ATL2_MAC_ADDR_0)); addr1 = htole32(AT_READ_4(sc, ATL2_MAC_ADDR_1)); } ea[0] = (addr1 & 0x0000ff00) >> 8; ea[1] = (addr1 & 0x000000ff); ea[2] = (addr0 & 0xff000000) >> 24; ea[3] = (addr0 & 0x00ff0000) >> 16; ea[4] = (addr0 & 0x0000ff00) >> 8; ea[5] = (addr0 & 0x000000ff); return 0; } static int lii_mii_readreg(device_t dev, int phy, int reg) { struct lii_softc *sc = device_private(dev); uint32_t val; int i; val = (reg & MDIOC_REG_MASK) << MDIOC_REG_SHIFT; val |= MDIOC_START | MDIOC_SUP_PREAMBLE; val |= MDIOC_CLK_25_4 << MDIOC_CLK_SEL_SHIFT; val |= MDIOC_READ; AT_WRITE_4(sc, ATL2_MDIOC, val); for (i = 0; i < MDIO_WAIT_TIMES; ++i) { DELAY(2); val = AT_READ_4(sc, ATL2_MDIOC); if ((val & (MDIOC_START | MDIOC_BUSY)) == 0) break; } if (i == MDIO_WAIT_TIMES) aprint_error_dev(dev, "timeout reading PHY %d reg %d\n", phy, reg); return (val & 0x0000ffff); } static void lii_mii_writereg(device_t dev, int phy, int reg, int data) { struct lii_softc *sc = device_private(dev); uint32_t val; int i; val = (reg & MDIOC_REG_MASK) << MDIOC_REG_SHIFT; val |= (data & MDIOC_DATA_MASK) << MDIOC_DATA_SHIFT; val |= MDIOC_START | MDIOC_SUP_PREAMBLE; val |= MDIOC_CLK_25_4 << MDIOC_CLK_SEL_SHIFT; /* val |= MDIOC_WRITE; */ AT_WRITE_4(sc, ATL2_MDIOC, val); for (i = 0; i < MDIO_WAIT_TIMES; ++i) { DELAY(2); val = AT_READ_4(sc, ATL2_MDIOC); if ((val & (MDIOC_START | MDIOC_BUSY)) == 0) break; } if (i == MDIO_WAIT_TIMES) aprint_error_dev(dev, "timeout writing PHY %d reg %d\n", phy, reg); } static void lii_mii_statchg(device_t dev) { struct lii_softc *sc = device_private(dev); uint32_t val; DPRINTF(("lii_mii_statchg\n")); val = AT_READ_4(sc, ATL2_MACC); if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX) val |= MACC_FDX; else val &= ~MACC_FDX; AT_WRITE_4(sc, ATL2_MACC, val); } static int lii_media_change(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; DPRINTF(("lii_media_change\n")); if (ifp->if_flags & IFF_UP) mii_mediachg(&sc->sc_mii); return 0; } static void lii_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct lii_softc *sc = ifp->if_softc; DPRINTF(("lii_media_status\n")); mii_pollstat(&sc->sc_mii); imr->ifm_status = sc->sc_mii.mii_media_status; imr->ifm_active = sc->sc_mii.mii_media_active; } static int lii_init(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; uint32_t val; int error; DPRINTF(("lii_init\n")); lii_stop(ifp, 0); memset(sc->sc_ring, 0, sc->sc_ringsize); /* Disable all interrupts */ AT_WRITE_4(sc, ATL2_ISR, 0xffffffff); /* XXX endianness */ AT_WRITE_4(sc, ATL2_MAC_ADDR_0, sc->sc_eaddr[2] << 24 | sc->sc_eaddr[3] << 16 | sc->sc_eaddr[4] << 8 | sc->sc_eaddr[5]); AT_WRITE_4(sc, ATL2_MAC_ADDR_1, sc->sc_eaddr[0] << 8 | sc->sc_eaddr[1]); AT_WRITE_4(sc, ATL2_DESC_BASE_ADDR_HI, 0); /* XXX sc->sc_ringmap->dm_segs[0].ds_addr >> 32); */ AT_WRITE_4(sc, ATL2_RXD_BASE_ADDR_LO, (sc->sc_ringmap->dm_segs[0].ds_addr & 0xffffffff) + AT_RXD_PADDING); AT_WRITE_4(sc, ATL2_TXS_BASE_ADDR_LO, sc->sc_txsp & 0xffffffff); AT_WRITE_4(sc, ATL2_TXD_BASE_ADDR_LO, sc->sc_txdp & 0xffffffff); AT_WRITE_2(sc, ATL2_TXD_BUFFER_SIZE, AT_TXD_BUFFER_SIZE / 4); AT_WRITE_2(sc, ATL2_TXS_NUM_ENTRIES, AT_TXD_NUM); AT_WRITE_2(sc, ATL2_RXD_NUM_ENTRIES, AT_RXD_NUM); /* * Inter Paket Gap Time = 0x60 (IPGT) * Minimum inter-frame gap for RX = 0x50 (MIFG) * 64-bit Carrier-Sense window = 0x40 (IPGR1) * 96-bit IPG window = 0x60 (IPGR2) */ AT_WRITE_4(sc, ATL2_MIPFG, 0x60405060); /* * Collision window = 0x37 (LCOL) * Maximum # of retrans = 0xf (RETRY) * Maximum binary expansion # = 0xa (ABEBT) * IPG to start jam = 0x7 (JAMIPG) */ AT_WRITE_4(sc, ATL2_MHDC, 0x07a0f037 | MHDC_EXC_DEF_EN); /* 100 means 200us */ AT_WRITE_2(sc, ATL2_IMTIV, 100); AT_WRITE_2(sc, ATL2_SMC, SMC_ITIMER_EN); /* 500000 means 100ms */ AT_WRITE_2(sc, ATL2_IALTIV, 50000); AT_WRITE_4(sc, ATL2_MTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); /* unit unknown for TX cur-through threshold */ AT_WRITE_4(sc, ATL2_TX_CUT_THRESH, 0x177); AT_WRITE_2(sc, ATL2_PAUSE_ON_TH, AT_RXD_NUM * 7 / 8); AT_WRITE_2(sc, ATL2_PAUSE_OFF_TH, AT_RXD_NUM / 12); sc->sc_rxcur = 0; sc->sc_txs_cur = sc->sc_txs_ack = 0; sc->sc_txd_cur = sc->sc_txd_ack = 0; sc->sc_free_tx_slots = true; AT_WRITE_2(sc, ATL2_MB_TXD_WR_IDX, sc->sc_txd_cur); AT_WRITE_2(sc, ATL2_MB_RXD_RD_IDX, sc->sc_rxcur); AT_WRITE_1(sc, ATL2_DMAR, DMAR_EN); AT_WRITE_1(sc, ATL2_DMAW, DMAW_EN); AT_WRITE_4(sc, ATL2_SMC, AT_READ_4(sc, ATL2_SMC) | SMC_MANUAL_INT); error = ((AT_READ_4(sc, ATL2_ISR) & ISR_PHY_LINKDOWN) != 0); AT_WRITE_4(sc, ATL2_ISR, 0x3fffffff); AT_WRITE_4(sc, ATL2_ISR, 0); if (error) { aprint_error_dev(sc->sc_dev, "init failed\n"); goto out; } lii_setmulti(sc); val = AT_READ_4(sc, ATL2_MACC) & MACC_FDX; val |= MACC_RX_EN | MACC_TX_EN | MACC_MACLP_CLK_PHY | MACC_TX_FLOW_EN | MACC_RX_FLOW_EN | MACC_ADD_CRC | MACC_PAD | MACC_BCAST_EN; if (ifp->if_flags & IFF_PROMISC) val |= MACC_PROMISC_EN; else if (ifp->if_flags & IFF_ALLMULTI) val |= MACC_ALLMULTI_EN; val |= 7 << MACC_PREAMBLE_LEN_SHIFT; val |= 2 << MACC_HDX_LEFT_BUF_SHIFT; AT_WRITE_4(sc, ATL2_MACC, val); mii_mediachg(&sc->sc_mii); AT_WRITE_4(sc, ATL2_IMR, IMR_NORMAL_MASK); callout_schedule(&sc->sc_tick_ch, hz); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; out: return error; } static void lii_tx_put(struct lii_softc *sc, struct mbuf *m) { int left; struct tx_pkt_header *tph = (struct tx_pkt_header *)(sc->sc_txdbase + sc->sc_txd_cur); memset(tph, 0, sizeof *tph); tph->txph_size = m->m_pkthdr.len; sc->sc_txd_cur = (sc->sc_txd_cur + 4) % AT_TXD_BUFFER_SIZE; /* * We already know we have enough space, so if there is a part of the * space ahead of txd_cur that is active, it doesn't matter because * left will be large enough even without it. */ left = AT_TXD_BUFFER_SIZE - sc->sc_txd_cur; if (left > m->m_pkthdr.len) { m_copydata(m, 0, m->m_pkthdr.len, sc->sc_txdbase + sc->sc_txd_cur); sc->sc_txd_cur += m->m_pkthdr.len; } else { m_copydata(m, 0, left, sc->sc_txdbase + sc->sc_txd_cur); m_copydata(m, left, m->m_pkthdr.len - left, sc->sc_txdbase); sc->sc_txd_cur = m->m_pkthdr.len - left; } /* Round to a 32-bit boundary */ sc->sc_txd_cur = ((sc->sc_txd_cur + 3) & ~3) % AT_TXD_BUFFER_SIZE; if (sc->sc_txd_cur == sc->sc_txd_ack) sc->sc_free_tx_slots = false; } static int lii_free_tx_space(struct lii_softc *sc) { int space; if (sc->sc_txd_cur >= sc->sc_txd_ack) space = (AT_TXD_BUFFER_SIZE - sc->sc_txd_cur) + sc->sc_txd_ack; else space = sc->sc_txd_ack - sc->sc_txd_cur; /* Account for the tx_pkt_header */ return (space - 4); } static void lii_start(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; struct mbuf *m0; DPRINTF(("lii_start\n")); if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (!sc->sc_free_tx_slots || lii_free_tx_space(sc) < m0->m_pkthdr.len) { ifp->if_flags |= IFF_OACTIVE; break; } lii_tx_put(sc, m0); DPRINTF(("lii_start: put %d\n", sc->sc_txs_cur)); sc->sc_txs[sc->sc_txs_cur].txps_update = 0; sc->sc_txs_cur = (sc->sc_txs_cur + 1) % AT_TXD_NUM; if (sc->sc_txs_cur == sc->sc_txs_ack) sc->sc_free_tx_slots = false; AT_WRITE_2(sc, ATL2_MB_TXD_WR_IDX, sc->sc_txd_cur/4); IFQ_DEQUEUE(&ifp->if_snd, m0); if (ifp->if_bpf != NULL) bpf_ops->bpf_mtap(ifp->if_bpf, m0); m_freem(m0); } } static void lii_stop(struct ifnet *ifp, int disable) { struct lii_softc *sc = ifp->if_softc; callout_stop(&sc->sc_tick_ch); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); mii_down(&sc->sc_mii); lii_reset(sc); AT_WRITE_4(sc, ATL2_IMR, 0); } static int lii_intr(void *v) { struct lii_softc *sc = v; uint32_t status; status = AT_READ_4(sc, ATL2_ISR); if (status == 0) return 0; DPRINTF(("lii_intr (%x)\n", status)); /* Clear the interrupt and disable them */ AT_WRITE_4(sc, ATL2_ISR, status | ISR_DIS_INT); if (status & (ISR_PHY | ISR_MANUAL)) { /* Ack PHY interrupt. Magic register */ if (status & ISR_PHY) (void)lii_mii_readreg(sc->sc_dev, 1, 19); mii_mediachg(&sc->sc_mii); } if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST | ISR_PHY_LINKDOWN)) { lii_init(&sc->sc_ec.ec_if); return 1; } if (status & ISR_RX_EVENT) { #ifdef LII_DEBUG if (!(status & ISR_RS_UPDATE)) printf("rxintr %08x\n", status); #endif lii_rxintr(sc); } if (status & ISR_TX_EVENT) lii_txintr(sc); /* Re-enable interrupts */ AT_WRITE_4(sc, ATL2_ISR, 0); return 1; } static void lii_rxintr(struct lii_softc *sc) { struct ifnet *ifp = &sc->sc_ec.ec_if; struct rx_pkt *rxp; struct mbuf *m; uint16_t size; DPRINTF(("lii_rxintr\n")); for (;;) { rxp = &sc->sc_rxp[sc->sc_rxcur]; if (rxp->rxp_update == 0) break; DPRINTF(("lii_rxintr: getting %u (%u) [%x]\n", sc->sc_rxcur, rxp->rxp_size, rxp->rxp_flags)); sc->sc_rxcur = (sc->sc_rxcur + 1) % AT_RXD_NUM; rxp->rxp_update = 0; if (!(rxp->rxp_flags & ATL2_RXF_SUCCESS)) { ++ifp->if_ierrors; continue; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ++ifp->if_ierrors; continue; } size = rxp->rxp_size - ETHER_CRC_LEN; if (size > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); ++ifp->if_ierrors; continue; } } m->m_pkthdr.rcvif = ifp; /* Copy the packet withhout the FCS */ m->m_pkthdr.len = m->m_len = size; memcpy(mtod(m, void *), &rxp->rxp_data[0], size); ++ifp->if_ipackets; if (ifp->if_bpf) bpf_ops->bpf_mtap(ifp->if_bpf, m); (*ifp->if_input)(ifp, m); } AT_WRITE_4(sc, ATL2_MB_RXD_RD_IDX, sc->sc_rxcur); } static void lii_txintr(struct lii_softc *sc) { struct ifnet *ifp = &sc->sc_ec.ec_if; struct tx_pkt_status *txs; struct tx_pkt_header *txph; DPRINTF(("lii_txintr\n")); for (;;) { txs = &sc->sc_txs[sc->sc_txs_ack]; if (txs->txps_update == 0) break; DPRINTF(("lii_txintr: ack'd %d\n", sc->sc_txs_ack)); sc->sc_txs_ack = (sc->sc_txs_ack + 1) % AT_TXD_NUM; sc->sc_free_tx_slots = true; txs->txps_update = 0; txph = (struct tx_pkt_header *) (sc->sc_txdbase + sc->sc_txd_ack); if (txph->txph_size != txs->txps_size) aprint_error_dev(sc->sc_dev, "mismatched status and packet\n"); /* * Move ack by the packet size, taking the packet header in * account and round to the next 32-bit boundary * (7 = sizeof(header) + 3) */ sc->sc_txd_ack = (sc->sc_txd_ack + txph->txph_size + 7 ) & ~3; sc->sc_txd_ack %= AT_TXD_BUFFER_SIZE; if (txs->txps_flags & ATL2_TXF_SUCCESS) ++ifp->if_opackets; else ++ifp->if_oerrors; ifp->if_flags &= ~IFF_OACTIVE; } if (sc->sc_free_tx_slots) lii_start(ifp); } static int lii_alloc_rings(struct lii_softc *sc) { int nsegs; bus_size_t bs; /* * We need a big chunk of DMA-friendly memory because descriptors * are not separate from data on that crappy hardware, which means * we'll have to copy data from and to that memory zone to and from * the mbufs. * * How lame is that? Using the default values from the Linux driver, * we allocate space for receiving up to 64 full-size Ethernet frames, * and only 8kb for transmitting up to 64 Ethernet frames. */ sc->sc_ringsize = bs = AT_RXD_PADDING + AT_RXD_NUM * sizeof(struct rx_pkt) + AT_TXD_NUM * sizeof(struct tx_pkt_status) + AT_TXD_BUFFER_SIZE; if (bus_dmamap_create(sc->sc_dmat, bs, 1, bs, (1<<30), BUS_DMA_NOWAIT, &sc->sc_ringmap) != 0) { aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed\n"); return 1; } if (bus_dmamem_alloc(sc->sc_dmat, bs, PAGE_SIZE, (1<<30), &sc->sc_ringseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0) { aprint_error_dev(sc->sc_dev, "bus_dmamem_alloc failed\n"); goto fail; } if (bus_dmamem_map(sc->sc_dmat, &sc->sc_ringseg, nsegs, bs, (void **)&sc->sc_ring, BUS_DMA_NOWAIT) != 0) { aprint_error_dev(sc->sc_dev, "bus_dmamem_map failed\n"); goto fail1; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_ringmap, sc->sc_ring, bs, NULL, BUS_DMA_NOWAIT) != 0) { aprint_error_dev(sc->sc_dev, "bus_dmamap_load failed\n"); goto fail2; } sc->sc_rxp = (void *)(sc->sc_ring + AT_RXD_PADDING); sc->sc_txs = (void *)(sc->sc_ring + AT_RXD_PADDING + AT_RXD_NUM * sizeof(struct rx_pkt)); sc->sc_txdbase = ((char *)sc->sc_txs) + AT_TXD_NUM * sizeof(struct tx_pkt_status); sc->sc_txsp = sc->sc_ringmap->dm_segs[0].ds_addr + ((char *)sc->sc_txs - (char *)sc->sc_ring); sc->sc_txdp = sc->sc_ringmap->dm_segs[0].ds_addr + ((char *)sc->sc_txdbase - (char *)sc->sc_ring); return 0; fail2: bus_dmamem_unmap(sc->sc_dmat, sc->sc_ring, bs); fail1: bus_dmamem_free(sc->sc_dmat, &sc->sc_ringseg, nsegs); fail: bus_dmamap_destroy(sc->sc_dmat, sc->sc_ringmap); return 1; } static void lii_watchdog(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); ++ifp->if_oerrors; lii_init(ifp); } static int lii_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct lii_softc *sc = ifp->if_softc; int s, error; s = splnet(); switch(cmd) { case SIOCADDMULTI: case SIOCDELMULTI: if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) lii_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, (struct ifreq *)data, &sc->sc_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) lii_setmulti(sc); error = 0; } break; } splx(s); return error; } static void lii_setmulti(struct lii_softc *sc) { struct ethercom *ec = &sc->sc_ec; struct ifnet *ifp = &ec->ec_if; uint32_t mht0 = 0, mht1 = 0, crc; struct ether_multi *enm; struct ether_multistep step; /* Clear multicast hash table */ AT_WRITE_4(sc, ATL2_MHT, 0); AT_WRITE_4(sc, ATL2_MHT + 4, 0); ifp->if_flags &= ~IFF_ALLMULTI; ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; mht0 = mht1 = 0; goto alldone; } crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); if (crc & (1 << 31)) mht1 |= (1 << ((crc >> 26) & 0x0000001f)); else mht0 |= (1 << ((crc >> 26) & 0x0000001f)); ETHER_NEXT_MULTI(step, enm); } alldone: AT_WRITE_4(sc, ATL2_MHT, mht0); AT_WRITE_4(sc, ATL2_MHT+4, mht1); } static void lii_tick(void *v) { struct lii_softc *sc = v; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_schedule(&sc->sc_tick_ch, hz); }