/* $NetBSD: sysv_sem.c,v 1.79 2008/01/02 11:48:54 ad Exp $ */ /*- * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Implementation of SVID semaphores * * Author: Daniel Boulet * * This software is provided ``AS IS'' without any warranties of any kind. */ #include __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.79 2008/01/02 11:48:54 ad Exp $"); #define SYSVSEM #include #include #include #include #include #include /* XXX for */ #include #include /* * Memory areas: * 1st: Pool of semaphore identifiers * 2nd: Semaphores * 3rd: Conditional variables * 4th: Undo structures */ struct semid_ds *sema; static struct __sem *sem; static kcondvar_t *semcv; static int *semu; static kmutex_t semlock; static struct sem_undo *semu_list; /* list of active undo structures */ static u_int semtot = 0; /* total number of semaphores */ static u_int sem_waiters = 0; /* total number of semop waiters */ static bool sem_realloc_state; static kcondvar_t sem_realloc_cv; /* Macro to find a particular sem_undo vector */ #define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz)) #ifdef SEM_DEBUG #define SEM_PRINTF(a) printf a #else #define SEM_PRINTF(a) #endif struct sem_undo *semu_alloc(struct proc *); int semundo_adjust(struct proc *, struct sem_undo **, int, int, int); void semundo_clear(int, int); void seminit(void) { int i, sz; vaddr_t v; mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE); cv_init(&sem_realloc_cv, "semrealc"); sem_realloc_state = false; /* Allocate the wired memory for our structures */ sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) + ALIGN(seminfo.semmns * sizeof(struct __sem)) + ALIGN(seminfo.semmni * sizeof(kcondvar_t)) + ALIGN(seminfo.semmnu * seminfo.semusz); v = uvm_km_alloc(kernel_map, round_page(sz), 0, UVM_KMF_WIRED|UVM_KMF_ZERO); if (v == 0) panic("sysv_sem: cannot allocate memory"); sema = (void *)v; sem = (void *)(ALIGN(sema) + seminfo.semmni * sizeof(struct semid_ds)); semcv = (void *)(ALIGN(sem) + seminfo.semmns * sizeof(struct __sem)); semu = (void *)(ALIGN(semcv) + seminfo.semmni * sizeof(kcondvar_t)); for (i = 0; i < seminfo.semmni; i++) { sema[i]._sem_base = 0; sema[i].sem_perm.mode = 0; cv_init(&semcv[i], "semwait"); } for (i = 0; i < seminfo.semmnu; i++) { struct sem_undo *suptr = SEMU(semu, i); suptr->un_proc = NULL; } semu_list = NULL; exithook_establish(semexit, NULL); } static int semrealloc(int newsemmni, int newsemmns, int newsemmnu) { struct semid_ds *new_sema, *old_sema; struct __sem *new_sem; struct sem_undo *new_semu_list, *suptr, *nsuptr; int *new_semu; kcondvar_t *new_semcv; vaddr_t v; int i, j, lsemid, nmnus, sz; if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1) return EINVAL; /* Allocate the wired memory for our structures */ sz = ALIGN(newsemmni * sizeof(struct semid_ds)) + ALIGN(newsemmns * sizeof(struct __sem)) + ALIGN(newsemmni * sizeof(kcondvar_t)) + ALIGN(newsemmnu * seminfo.semusz); v = uvm_km_alloc(kernel_map, round_page(sz), 0, UVM_KMF_WIRED|UVM_KMF_ZERO); if (v == 0) return ENOMEM; mutex_enter(&semlock); if (sem_realloc_state) { mutex_exit(&semlock); uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED); return EBUSY; } sem_realloc_state = true; if (sem_waiters) { /* * Mark reallocation state, wake-up all waiters, * and wait while they will all exit. */ for (i = 0; i < seminfo.semmni; i++) cv_broadcast(&semcv[i]); while (sem_waiters) cv_wait(&sem_realloc_cv, &semlock); } old_sema = sema; /* Get the number of last slot */ lsemid = 0; for (i = 0; i < seminfo.semmni; i++) if (sema[i].sem_perm.mode & SEM_ALLOC) lsemid = i; /* Get the number of currently used undo structures */ nmnus = 0; for (i = 0; i < seminfo.semmnu; i++) { suptr = SEMU(semu, i); if (suptr->un_proc == NULL) continue; nmnus++; } /* We cannot reallocate less memory than we use */ if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) { mutex_exit(&semlock); uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED); return EBUSY; } new_sema = (void *)v; new_sem = (void *)(ALIGN(new_sema) + newsemmni * sizeof(struct semid_ds)); new_semcv = (void *)(ALIGN(new_sem) + newsemmns * sizeof(struct __sem)); new_semu = (void *)(ALIGN(new_semcv) + newsemmni * sizeof(kcondvar_t)); /* Initialize all semaphore identifiers and condvars */ for (i = 0; i < newsemmni; i++) { new_sema[i]._sem_base = 0; new_sema[i].sem_perm.mode = 0; cv_init(&new_semcv[i], "semwait"); } for (i = 0; i < newsemmnu; i++) { nsuptr = SEMU(new_semu, i); nsuptr->un_proc = NULL; } /* * Copy all identifiers, semaphores and list of the * undo structures to the new memory allocation. */ j = 0; for (i = 0; i <= lsemid; i++) { if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0) continue; memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds)); new_sema[i]._sem_base = &new_sem[j]; memcpy(new_sema[i]._sem_base, sema[i]._sem_base, (sizeof(struct __sem) * sema[i].sem_nsems)); j += sema[i].sem_nsems; } KASSERT(j == semtot); j = 0; new_semu_list = NULL; for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) { KASSERT(j < newsemmnu); nsuptr = SEMU(new_semu, j); memcpy(nsuptr, suptr, SEMUSZ); nsuptr->un_next = new_semu_list; new_semu_list = nsuptr; j++; } for (i = 0; i < seminfo.semmni; i++) { KASSERT(cv_has_waiters(&semcv[i]) == false); cv_destroy(&semcv[i]); } sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) + ALIGN(seminfo.semmns * sizeof(struct __sem)) + ALIGN(seminfo.semmni * sizeof(kcondvar_t)) + ALIGN(seminfo.semmnu * seminfo.semusz); /* Set the pointers and update the new values */ sema = new_sema; sem = new_sem; semcv = new_semcv; semu = new_semu; semu_list = new_semu_list; seminfo.semmni = newsemmni; seminfo.semmns = newsemmns; seminfo.semmnu = newsemmnu; /* Reallocation completed - notify all waiters, if any */ sem_realloc_state = false; cv_broadcast(&sem_realloc_cv); mutex_exit(&semlock); uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED); return 0; } /* * Placebo. */ int sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval) { *retval = 0; return 0; } /* * Allocate a new sem_undo structure for a process * (returns ptr to structure or NULL if no more room) */ struct sem_undo * semu_alloc(struct proc *p) { int i; struct sem_undo *suptr; struct sem_undo **supptr; int attempt; KASSERT(mutex_owned(&semlock)); /* * Try twice to allocate something. * (we'll purge any empty structures after the first pass so * two passes are always enough) */ for (attempt = 0; attempt < 2; attempt++) { /* * Look for a free structure. * Fill it in and return it if we find one. */ for (i = 0; i < seminfo.semmnu; i++) { suptr = SEMU(semu, i); if (suptr->un_proc == NULL) { suptr->un_next = semu_list; semu_list = suptr; suptr->un_cnt = 0; suptr->un_proc = p; return (suptr); } } /* * We didn't find a free one, if this is the first attempt * then try to free some structures. */ if (attempt == 0) { /* All the structures are in use - try to free some */ int did_something = 0; supptr = &semu_list; while ((suptr = *supptr) != NULL) { if (suptr->un_cnt == 0) { suptr->un_proc = NULL; *supptr = suptr->un_next; did_something = 1; } else supptr = &suptr->un_next; } /* If we didn't free anything then just give-up */ if (!did_something) return (NULL); } else { /* * The second pass failed even though we freed * something after the first pass! * This is IMPOSSIBLE! */ panic("semu_alloc - second attempt failed"); } } return NULL; } /* * Adjust a particular entry for a particular proc */ int semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum, int adjval) { struct sem_undo *suptr; struct undo *sunptr; int i; KASSERT(mutex_owned(&semlock)); /* * Look for and remember the sem_undo if the caller doesn't * provide it */ suptr = *supptr; if (suptr == NULL) { for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) if (suptr->un_proc == p) break; if (suptr == NULL) { suptr = semu_alloc(p); if (suptr == NULL) return (ENOSPC); } *supptr = suptr; } /* * Look for the requested entry and adjust it (delete if * adjval becomes 0). */ sunptr = &suptr->un_ent[0]; for (i = 0; i < suptr->un_cnt; i++, sunptr++) { if (sunptr->un_id != semid || sunptr->un_num != semnum) continue; sunptr->un_adjval += adjval; if (sunptr->un_adjval == 0) { suptr->un_cnt--; if (i < suptr->un_cnt) suptr->un_ent[i] = suptr->un_ent[suptr->un_cnt]; } return (0); } /* Didn't find the right entry - create it */ if (suptr->un_cnt == SEMUME) return (EINVAL); sunptr = &suptr->un_ent[suptr->un_cnt]; suptr->un_cnt++; sunptr->un_adjval = adjval; sunptr->un_id = semid; sunptr->un_num = semnum; return (0); } void semundo_clear(int semid, int semnum) { struct sem_undo *suptr; struct undo *sunptr, *sunend; KASSERT(mutex_owned(&semlock)); for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) for (sunptr = &suptr->un_ent[0], sunend = sunptr + suptr->un_cnt; sunptr < sunend;) { if (sunptr->un_id == semid) { if (semnum == -1 || sunptr->un_num == semnum) { suptr->un_cnt--; sunend--; if (sunptr != sunend) *sunptr = *sunend; if (semnum != -1) break; else continue; } } sunptr++; } } int sys_____semctl13(struct lwp *l, const struct sys_____semctl13_args *uap, register_t *retval) { /* { syscallarg(int) semid; syscallarg(int) semnum; syscallarg(int) cmd; syscallarg(union __semun *) arg; } */ struct semid_ds sembuf; int cmd, error; void *pass_arg; union __semun karg; cmd = SCARG(uap, cmd); pass_arg = get_semctl_arg(cmd, &sembuf, &karg); if (pass_arg) { error = copyin(SCARG(uap, arg), &karg, sizeof(karg)); if (error) return error; if (cmd == IPC_SET) { error = copyin(karg.buf, &sembuf, sizeof(sembuf)); if (error) return (error); } } error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd, pass_arg, retval); if (error == 0 && cmd == IPC_STAT) error = copyout(&sembuf, karg.buf, sizeof(sembuf)); return (error); } int semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v, register_t *retval) { kauth_cred_t cred = l->l_cred; union __semun *arg = v; struct semid_ds *sembuf = v, *semaptr; int i, error, ix; SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n", semid, semnum, cmd, v)); mutex_enter(&semlock); ix = IPCID_TO_IX(semid); if (ix < 0 || ix >= seminfo.semmni) { mutex_exit(&semlock); return (EINVAL); } semaptr = &sema[ix]; if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) { mutex_exit(&semlock); return (EINVAL); } switch (cmd) { case IPC_RMID: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0) break; semaptr->sem_perm.cuid = kauth_cred_geteuid(cred); semaptr->sem_perm.uid = kauth_cred_geteuid(cred); semtot -= semaptr->sem_nsems; for (i = semaptr->_sem_base - sem; i < semtot; i++) sem[i] = sem[i + semaptr->sem_nsems]; for (i = 0; i < seminfo.semmni; i++) { if ((sema[i].sem_perm.mode & SEM_ALLOC) && sema[i]._sem_base > semaptr->_sem_base) sema[i]._sem_base -= semaptr->sem_nsems; } semaptr->sem_perm.mode = 0; semundo_clear(ix, -1); cv_broadcast(&semcv[ix]); break; case IPC_SET: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M))) break; KASSERT(sembuf != NULL); semaptr->sem_perm.uid = sembuf->sem_perm.uid; semaptr->sem_perm.gid = sembuf->sem_perm.gid; semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) | (sembuf->sem_perm.mode & 0777); semaptr->sem_ctime = time_second; break; case IPC_STAT: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) break; KASSERT(sembuf != NULL); memcpy(sembuf, semaptr, sizeof(struct semid_ds)); break; case GETNCNT: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) break; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; break; } *retval = semaptr->_sem_base[semnum].semncnt; break; case GETPID: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) break; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; break; } *retval = semaptr->_sem_base[semnum].sempid; break; case GETVAL: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) break; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; break; } *retval = semaptr->_sem_base[semnum].semval; break; case GETALL: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) break; KASSERT(arg != NULL); for (i = 0; i < semaptr->sem_nsems; i++) { error = copyout(&semaptr->_sem_base[i].semval, &arg->array[i], sizeof(arg->array[i])); if (error != 0) break; } break; case GETZCNT: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) break; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; break; } *retval = semaptr->_sem_base[semnum].semzcnt; break; case SETVAL: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) break; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; break; } KASSERT(arg != NULL); semaptr->_sem_base[semnum].semval = arg->val; semundo_clear(ix, semnum); cv_broadcast(&semcv[ix]); break; case SETALL: if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) break; KASSERT(arg != NULL); for (i = 0; i < semaptr->sem_nsems; i++) { error = copyin(&arg->array[i], &semaptr->_sem_base[i].semval, sizeof(arg->array[i])); if (error != 0) break; } semundo_clear(ix, -1); cv_broadcast(&semcv[ix]); break; default: error = EINVAL; break; } mutex_exit(&semlock); return (error); } int sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval) { /* { syscallarg(key_t) key; syscallarg(int) nsems; syscallarg(int) semflg; } */ int semid, error = 0; int key = SCARG(uap, key); int nsems = SCARG(uap, nsems); int semflg = SCARG(uap, semflg); kauth_cred_t cred = l->l_cred; SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg)); mutex_enter(&semlock); if (key != IPC_PRIVATE) { for (semid = 0; semid < seminfo.semmni; semid++) { if ((sema[semid].sem_perm.mode & SEM_ALLOC) && sema[semid].sem_perm._key == key) break; } if (semid < seminfo.semmni) { SEM_PRINTF(("found public key\n")); if ((error = ipcperm(cred, &sema[semid].sem_perm, semflg & 0700))) goto out; if (nsems > 0 && sema[semid].sem_nsems < nsems) { SEM_PRINTF(("too small\n")); error = EINVAL; goto out; } if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) { SEM_PRINTF(("not exclusive\n")); error = EEXIST; goto out; } goto found; } } SEM_PRINTF(("need to allocate the semid_ds\n")); if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) { if (nsems <= 0 || nsems > seminfo.semmsl) { SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems, seminfo.semmsl)); error = EINVAL; goto out; } if (nsems > seminfo.semmns - semtot) { SEM_PRINTF(("not enough semaphores left " "(need %d, got %d)\n", nsems, seminfo.semmns - semtot)); error = ENOSPC; goto out; } for (semid = 0; semid < seminfo.semmni; semid++) { if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0) break; } if (semid == seminfo.semmni) { SEM_PRINTF(("no more semid_ds's available\n")); error = ENOSPC; goto out; } SEM_PRINTF(("semid %d is available\n", semid)); sema[semid].sem_perm._key = key; sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred); sema[semid].sem_perm.uid = kauth_cred_geteuid(cred); sema[semid].sem_perm.cgid = kauth_cred_getegid(cred); sema[semid].sem_perm.gid = kauth_cred_getegid(cred); sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC; sema[semid].sem_perm._seq = (sema[semid].sem_perm._seq + 1) & 0x7fff; sema[semid].sem_nsems = nsems; sema[semid].sem_otime = 0; sema[semid].sem_ctime = time_second; sema[semid]._sem_base = &sem[semtot]; semtot += nsems; memset(sema[semid]._sem_base, 0, sizeof(sema[semid]._sem_base[0]) * nsems); SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base, &sem[semtot])); } else { SEM_PRINTF(("didn't find it and wasn't asked to create it\n")); error = ENOENT; goto out; } found: *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm); out: mutex_exit(&semlock); return (error); } #define SMALL_SOPS 8 int sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval) { /* { syscallarg(int) semid; syscallarg(struct sembuf *) sops; syscallarg(size_t) nsops; } */ struct proc *p = l->l_proc; int semid = SCARG(uap, semid), seq; size_t nsops = SCARG(uap, nsops); struct sembuf small_sops[SMALL_SOPS]; struct sembuf *sops; struct semid_ds *semaptr; struct sembuf *sopptr = NULL; struct __sem *semptr = NULL; struct sem_undo *suptr = NULL; kauth_cred_t cred = l->l_cred; int i, error; int do_wakeup, do_undos; SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops)); restart: if (nsops <= SMALL_SOPS) { sops = small_sops; } else if (nsops <= seminfo.semopm) { sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP); } else { SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n", seminfo.semopm, nsops)); return (E2BIG); } error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0])); if (error) { SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error, SCARG(uap, sops), &sops, nsops * sizeof(sops[0]))); if (sops != small_sops) kmem_free(sops, nsops * sizeof(*sops)); return error; } mutex_enter(&semlock); /* In case of reallocation, we will wait for completion */ while (__predict_false(sem_realloc_state)) cv_wait(&sem_realloc_cv, &semlock); semid = IPCID_TO_IX(semid); /* Convert back to zero origin */ if (semid < 0 || semid >= seminfo.semmni) { error = EINVAL; goto out; } semaptr = &sema[semid]; seq = IPCID_TO_SEQ(SCARG(uap, semid)); if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || semaptr->sem_perm._seq != seq) { error = EINVAL; goto out; } if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) { SEM_PRINTF(("error = %d from ipaccess\n", error)); goto out; } for (i = 0; i < nsops; i++) if (sops[i].sem_num >= semaptr->sem_nsems) { error = EFBIG; goto out; } /* * Loop trying to satisfy the vector of requests. * If we reach a point where we must wait, any requests already * performed are rolled back and we go to sleep until some other * process wakes us up. At this point, we start all over again. * * This ensures that from the perspective of other tasks, a set * of requests is atomic (never partially satisfied). */ do_undos = 0; for (;;) { do_wakeup = 0; for (i = 0; i < nsops; i++) { sopptr = &sops[i]; semptr = &semaptr->_sem_base[sopptr->sem_num]; SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, " "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n", semaptr, semaptr->_sem_base, semptr, sopptr->sem_num, semptr->semval, sopptr->sem_op, (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait")); if (sopptr->sem_op < 0) { if ((int)(semptr->semval + sopptr->sem_op) < 0) { SEM_PRINTF(("semop: " "can't do it now\n")); break; } else { semptr->semval += sopptr->sem_op; if (semptr->semval == 0 && semptr->semzcnt > 0) do_wakeup = 1; } if (sopptr->sem_flg & SEM_UNDO) do_undos = 1; } else if (sopptr->sem_op == 0) { if (semptr->semval > 0) { SEM_PRINTF(("semop: not zero now\n")); break; } } else { if (semptr->semncnt > 0) do_wakeup = 1; semptr->semval += sopptr->sem_op; if (sopptr->sem_flg & SEM_UNDO) do_undos = 1; } } /* * Did we get through the entire vector? */ if (i >= nsops) goto done; /* * No ... rollback anything that we've already done */ SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1)); while (i-- > 0) semaptr->_sem_base[sops[i].sem_num].semval -= sops[i].sem_op; /* * If the request that we couldn't satisfy has the * NOWAIT flag set then return with EAGAIN. */ if (sopptr->sem_flg & IPC_NOWAIT) { error = EAGAIN; goto out; } if (sopptr->sem_op == 0) semptr->semzcnt++; else semptr->semncnt++; sem_waiters++; SEM_PRINTF(("semop: good night!\n")); error = cv_wait_sig(&semcv[semid], &semlock); SEM_PRINTF(("semop: good morning (error=%d)!\n", error)); sem_waiters--; /* Notify reallocator, if it is waiting */ cv_broadcast(&sem_realloc_cv); /* * Make sure that the semaphore still exists */ if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || semaptr->sem_perm._seq != seq) { error = EIDRM; goto out; } /* * The semaphore is still alive. Readjust the count of * waiting processes. */ semptr = &semaptr->_sem_base[sopptr->sem_num]; if (sopptr->sem_op == 0) semptr->semzcnt--; else semptr->semncnt--; /* In case of such state, restart the call */ if (sem_realloc_state) { mutex_exit(&semlock); goto restart; } /* Is it really morning, or was our sleep interrupted? */ if (error != 0) { error = EINTR; goto out; } SEM_PRINTF(("semop: good morning!\n")); } done: /* * Process any SEM_UNDO requests. */ if (do_undos) { for (i = 0; i < nsops; i++) { /* * We only need to deal with SEM_UNDO's for non-zero * op's. */ int adjval; if ((sops[i].sem_flg & SEM_UNDO) == 0) continue; adjval = sops[i].sem_op; if (adjval == 0) continue; error = semundo_adjust(p, &suptr, semid, sops[i].sem_num, -adjval); if (error == 0) continue; /* * Oh-Oh! We ran out of either sem_undo's or undo's. * Rollback the adjustments to this point and then * rollback the semaphore ups and down so we can return * with an error with all structures restored. We * rollback the undo's in the exact reverse order that * we applied them. This guarantees that we won't run * out of space as we roll things back out. */ while (i-- > 0) { if ((sops[i].sem_flg & SEM_UNDO) == 0) continue; adjval = sops[i].sem_op; if (adjval == 0) continue; if (semundo_adjust(p, &suptr, semid, sops[i].sem_num, adjval) != 0) panic("semop - can't undo undos"); } for (i = 0; i < nsops; i++) semaptr->_sem_base[sops[i].sem_num].semval -= sops[i].sem_op; SEM_PRINTF(("error = %d from semundo_adjust\n", error)); goto out; } /* loop through the sops */ } /* if (do_undos) */ /* We're definitely done - set the sempid's */ for (i = 0; i < nsops; i++) { sopptr = &sops[i]; semptr = &semaptr->_sem_base[sopptr->sem_num]; semptr->sempid = p->p_pid; } /* Update sem_otime */ semaptr->sem_otime = time_second; /* Do a wakeup if any semaphore was up'd. */ if (do_wakeup) { SEM_PRINTF(("semop: doing wakeup\n")); cv_broadcast(&semcv[semid]); SEM_PRINTF(("semop: back from wakeup\n")); } SEM_PRINTF(("semop: done\n")); *retval = 0; out: mutex_exit(&semlock); if (sops != small_sops) kmem_free(sops, nsops * sizeof(*sops)); return error; } /* * Go through the undo structures for this process and apply the * adjustments to semaphores. */ /*ARGSUSED*/ void semexit(struct proc *p, void *v) { struct sem_undo *suptr; struct sem_undo **supptr; mutex_enter(&semlock); /* * Go through the chain of undo vectors looking for one * associated with this process. */ for (supptr = &semu_list; (suptr = *supptr) != NULL; supptr = &suptr->un_next) { if (suptr->un_proc == p) break; } /* * If there is no undo vector, skip to the end. */ if (suptr == NULL) { mutex_exit(&semlock); return; } /* * We now have an undo vector for this process. */ SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p, suptr->un_cnt)); /* * If there are any active undo elements then process them. */ if (suptr->un_cnt > 0) { int ix; for (ix = 0; ix < suptr->un_cnt; ix++) { int semid = suptr->un_ent[ix].un_id; int semnum = suptr->un_ent[ix].un_num; int adjval = suptr->un_ent[ix].un_adjval; struct semid_ds *semaptr; semaptr = &sema[semid]; if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) panic("semexit - semid not allocated"); if (semnum >= semaptr->sem_nsems) panic("semexit - semnum out of range"); SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; " "sem=%d\n", suptr->un_proc, suptr->un_ent[ix].un_id, suptr->un_ent[ix].un_num, suptr->un_ent[ix].un_adjval, semaptr->_sem_base[semnum].semval)); if (adjval < 0 && semaptr->_sem_base[semnum].semval < -adjval) semaptr->_sem_base[semnum].semval = 0; else semaptr->_sem_base[semnum].semval += adjval; cv_broadcast(&semcv[semid]); SEM_PRINTF(("semexit: back from wakeup\n")); } } /* * Deallocate the undo vector. */ SEM_PRINTF(("removing vector\n")); suptr->un_proc = NULL; *supptr = suptr->un_next; mutex_exit(&semlock); } /* * Sysctl initialization and nodes. */ static int sysctl_ipc_semmni(SYSCTLFN_ARGS) { int newsize, error; struct sysctlnode node; node = *rnode; node.sysctl_data = &newsize; newsize = seminfo.semmni; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; return semrealloc(newsize, seminfo.semmns, seminfo.semmnu); } static int sysctl_ipc_semmns(SYSCTLFN_ARGS) { int newsize, error; struct sysctlnode node; node = *rnode; node.sysctl_data = &newsize; newsize = seminfo.semmns; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; return semrealloc(seminfo.semmni, newsize, seminfo.semmnu); } static int sysctl_ipc_semmnu(SYSCTLFN_ARGS) { int newsize, error; struct sysctlnode node; node = *rnode; node.sysctl_data = &newsize; newsize = seminfo.semmnu; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; return semrealloc(seminfo.semmni, seminfo.semmns, newsize); } SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup") { const struct sysctlnode *node = NULL; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "kern", NULL, NULL, 0, NULL, 0, CTL_KERN, CTL_EOL); sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ipc", SYSCTL_DESCR("SysV IPC options"), NULL, 0, NULL, 0, CTL_KERN, KERN_SYSVIPC, CTL_EOL); if (node == NULL) return; sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "semmni", SYSCTL_DESCR("Max number of number of semaphore identifiers"), sysctl_ipc_semmni, 0, &seminfo.semmni, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "semmns", SYSCTL_DESCR("Max number of number of semaphores in system"), sysctl_ipc_semmns, 0, &seminfo.semmns, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "semmnu", SYSCTL_DESCR("Max number of undo structures in system"), sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0, CTL_CREATE, CTL_EOL); }