/* $NetBSD: radix.c,v 1.44 2011/07/17 20:54:52 joerg Exp $ */ /* * Copyright (c) 1988, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)radix.c 8.6 (Berkeley) 10/17/95 */ /* * Routines to build and maintain radix trees for routing lookups. */ #include __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.44 2011/07/17 20:54:52 joerg Exp $"); #ifndef _NET_RADIX_H_ #include #include #include #ifdef _KERNEL #include "opt_inet.h" #include #include #define M_DONTWAIT M_NOWAIT #include #else #include #endif #include #include #endif typedef void (*rn_printer_t)(void *, const char *fmt, ...); int max_keylen; struct radix_mask *rn_mkfreelist; struct radix_node_head *mask_rnhead; static char *addmask_key; static const char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; static char *rn_zeros, *rn_ones; #define rn_masktop (mask_rnhead->rnh_treetop) static int rn_satisfies_leaf(const char *, struct radix_node *, int); static int rn_lexobetter(const void *, const void *); static struct radix_mask *rn_new_radix_mask(struct radix_node *, struct radix_mask *); static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t, void *); static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t, void *); static void rn_nodeprint(struct radix_node *, rn_printer_t, void *, const char *); #define SUBTREE_OPEN "[ " #define SUBTREE_CLOSE " ]" #ifdef RN_DEBUG static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *); #endif /* RN_DEBUG */ /* * The data structure for the keys is a radix tree with one way * branching removed. The index rn_b at an internal node n represents a bit * position to be tested. The tree is arranged so that all descendants * of a node n have keys whose bits all agree up to position rn_b - 1. * (We say the index of n is rn_b.) * * There is at least one descendant which has a one bit at position rn_b, * and at least one with a zero there. * * A route is determined by a pair of key and mask. We require that the * bit-wise logical and of the key and mask to be the key. * We define the index of a route to associated with the mask to be * the first bit number in the mask where 0 occurs (with bit number 0 * representing the highest order bit). * * We say a mask is normal if every bit is 0, past the index of the mask. * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, * and m is a normal mask, then the route applies to every descendant of n. * If the index(m) < rn_b, this implies the trailing last few bits of k * before bit b are all 0, (and hence consequently true of every descendant * of n), so the route applies to all descendants of the node as well. * * Similar logic shows that a non-normal mask m such that * index(m) <= index(n) could potentially apply to many children of n. * Thus, for each non-host route, we attach its mask to a list at an internal * node as high in the tree as we can go. * * The present version of the code makes use of normal routes in short- * circuiting an explicit mask and compare operation when testing whether * a key satisfies a normal route, and also in remembering the unique leaf * that governs a subtree. */ struct radix_node * rn_search( const void *v_arg, struct radix_node *head) { const u_char * const v = v_arg; struct radix_node *x; for (x = head; x->rn_b >= 0;) { if (x->rn_bmask & v[x->rn_off]) x = x->rn_r; else x = x->rn_l; } return x; } struct radix_node * rn_search_m( const void *v_arg, struct radix_node *head, const void *m_arg) { struct radix_node *x; const u_char * const v = v_arg; const u_char * const m = m_arg; for (x = head; x->rn_b >= 0;) { if ((x->rn_bmask & m[x->rn_off]) && (x->rn_bmask & v[x->rn_off])) x = x->rn_r; else x = x->rn_l; } return x; } int rn_refines( const void *m_arg, const void *n_arg) { const char *m = m_arg; const char *n = n_arg; const char *lim = n + *(const u_char *)n; const char *lim2 = lim; int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++); int masks_are_equal = 1; if (longer > 0) lim -= longer; while (n < lim) { if (*n & ~(*m)) return 0; if (*n++ != *m++) masks_are_equal = 0; } while (n < lim2) if (*n++) return 0; if (masks_are_equal && (longer < 0)) for (lim2 = m - longer; m < lim2; ) if (*m++) return 1; return !masks_are_equal; } struct radix_node * rn_lookup( const void *v_arg, const void *m_arg, struct radix_node_head *head) { struct radix_node *x; const char *netmask = NULL; if (m_arg) { if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) return NULL; netmask = x->rn_key; } x = rn_match(v_arg, head); if (x != NULL && netmask != NULL) { while (x != NULL && x->rn_mask != netmask) x = x->rn_dupedkey; } return x; } static int rn_satisfies_leaf( const char *trial, struct radix_node *leaf, int skip) { const char *cp = trial; const char *cp2 = leaf->rn_key; const char *cp3 = leaf->rn_mask; const char *cplim; int length = min(*(const u_char *)cp, *(const u_char *)cp2); if (cp3 == 0) cp3 = rn_ones; else length = min(length, *(const u_char *)cp3); cplim = cp + length; cp3 += skip; cp2 += skip; for (cp += skip; cp < cplim; cp++, cp2++, cp3++) if ((*cp ^ *cp2) & *cp3) return 0; return 1; } struct radix_node * rn_match( const void *v_arg, struct radix_node_head *head) { const char * const v = v_arg; struct radix_node *t = head->rnh_treetop; struct radix_node *top = t; struct radix_node *x; struct radix_node *saved_t; const char *cp = v; const char *cp2; const char *cplim; int off = t->rn_off; int vlen = *(const u_char *)cp; int matched_off; int test, b, rn_b; /* * Open code rn_search(v, top) to avoid overhead of extra * subroutine call. */ for (; t->rn_b >= 0; ) { if (t->rn_bmask & cp[t->rn_off]) t = t->rn_r; else t = t->rn_l; } /* * See if we match exactly as a host destination * or at least learn how many bits match, for normal mask finesse. * * It doesn't hurt us to limit how many bytes to check * to the length of the mask, since if it matches we had a genuine * match and the leaf we have is the most specific one anyway; * if it didn't match with a shorter length it would fail * with a long one. This wins big for class B&C netmasks which * are probably the most common case... */ if (t->rn_mask) vlen = *(const u_char *)t->rn_mask; cp += off; cp2 = t->rn_key + off; cplim = v + vlen; for (; cp < cplim; cp++, cp2++) if (*cp != *cp2) goto on1; /* * This extra grot is in case we are explicitly asked * to look up the default. Ugh! */ if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey) t = t->rn_dupedkey; return t; on1: test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ for (b = 7; (test >>= 1) > 0;) b--; matched_off = cp - v; b += matched_off << 3; rn_b = -1 - b; /* * If there is a host route in a duped-key chain, it will be first. */ if ((saved_t = t)->rn_mask == 0) t = t->rn_dupedkey; for (; t; t = t->rn_dupedkey) /* * Even if we don't match exactly as a host, * we may match if the leaf we wound up at is * a route to a net. */ if (t->rn_flags & RNF_NORMAL) { if (rn_b <= t->rn_b) return t; } else if (rn_satisfies_leaf(v, t, matched_off)) return t; t = saved_t; /* start searching up the tree */ do { struct radix_mask *m; t = t->rn_p; m = t->rn_mklist; if (m) { /* * If non-contiguous masks ever become important * we can restore the masking and open coding of * the search and satisfaction test and put the * calculation of "off" back before the "do". */ do { if (m->rm_flags & RNF_NORMAL) { if (rn_b <= m->rm_b) return m->rm_leaf; } else { off = min(t->rn_off, matched_off); x = rn_search_m(v, t, m->rm_mask); while (x && x->rn_mask != m->rm_mask) x = x->rn_dupedkey; if (x && rn_satisfies_leaf(v, x, off)) return x; } m = m->rm_mklist; } while (m); } } while (t != top); return NULL; } static void rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg, const char *delim) { (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)", delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p, rn->rn_l, rn->rn_r); } #ifdef RN_DEBUG int rn_debug = 1; static void rn_dbg_print(void *arg, const char *fmt, ...) { va_list ap; va_start(ap, fmt); vlog(LOG_DEBUG, fmt, ap); va_end(ap); } static void rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg) { struct radix_node *dup, *rn; const char *delim; if (printer == NULL) return; rn = rn_walkfirst(h->rnh_treetop, printer, arg); for (;;) { /* Process leaves */ delim = ""; for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) { if ((dup->rn_flags & RNF_ROOT) != 0) continue; rn_nodeprint(dup, printer, arg, delim); delim = ", "; } rn = rn_walknext(rn, printer, arg); if (rn->rn_flags & RNF_ROOT) return; } /* NOTREACHED */ } #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn)) #endif /* RN_DEBUG */ struct radix_node * rn_newpair( const void *v, int b, struct radix_node nodes[2]) { struct radix_node *tt = nodes; struct radix_node *t = tt + 1; t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); t->rn_l = tt; t->rn_off = b >> 3; tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t; tt->rn_flags = t->rn_flags = RNF_ACTIVE; return t; } struct radix_node * rn_insert( const void *v_arg, struct radix_node_head *head, int *dupentry, struct radix_node nodes[2]) { struct radix_node *top = head->rnh_treetop; struct radix_node *t = rn_search(v_arg, top); struct radix_node *tt; const char *v = v_arg; int head_off = top->rn_off; int vlen = *((const u_char *)v); const char *cp = v + head_off; int b; /* * Find first bit at which v and t->rn_key differ */ { const char *cp2 = t->rn_key + head_off; const char *cplim = v + vlen; int cmp_res; while (cp < cplim) if (*cp2++ != *cp++) goto on1; *dupentry = 1; return t; on1: *dupentry = 0; cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; for (b = (cp - v) << 3; cmp_res; b--) cmp_res >>= 1; } { struct radix_node *p, *x = top; cp = v; do { p = x; if (cp[x->rn_off] & x->rn_bmask) x = x->rn_r; else x = x->rn_l; } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ #ifdef RN_DEBUG if (rn_debug) log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p); #endif t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; if ((cp[p->rn_off] & p->rn_bmask) == 0) p->rn_l = t; else p->rn_r = t; x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ if ((cp[t->rn_off] & t->rn_bmask) == 0) { t->rn_r = x; } else { t->rn_r = tt; t->rn_l = x; } #ifdef RN_DEBUG if (rn_debug) { log(LOG_DEBUG, "%s: Coming Out:\n", __func__), traverse(head, p); } #endif /* RN_DEBUG */ } return tt; } struct radix_node * rn_addmask( const void *n_arg, int search, int skip) { const char *netmask = n_arg; const char *cp; const char *cplim; struct radix_node *x; struct radix_node *saved_x; int b = 0, mlen, j; int maskduplicated, m0, isnormal; static int last_zeroed = 0; if ((mlen = *(const u_char *)netmask) > max_keylen) mlen = max_keylen; if (skip == 0) skip = 1; if (mlen <= skip) return mask_rnhead->rnh_nodes; if (skip > 1) memmove(addmask_key + 1, rn_ones + 1, skip - 1); if ((m0 = mlen) > skip) memmove(addmask_key + skip, netmask + skip, mlen - skip); /* * Trim trailing zeroes. */ for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) cp--; mlen = cp - addmask_key; if (mlen <= skip) { if (m0 >= last_zeroed) last_zeroed = mlen; return mask_rnhead->rnh_nodes; } if (m0 < last_zeroed) memset(addmask_key + m0, 0, last_zeroed - m0); *addmask_key = last_zeroed = mlen; x = rn_search(addmask_key, rn_masktop); if (memcmp(addmask_key, x->rn_key, mlen) != 0) x = 0; if (x || search) return x; R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); if ((saved_x = x) == NULL) return NULL; memset(x, 0, max_keylen + 2 * sizeof (*x)); cp = netmask = (void *)(x + 2); memmove(x + 2, addmask_key, mlen); x = rn_insert(cp, mask_rnhead, &maskduplicated, x); if (maskduplicated) { log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n"); Free(saved_x); return x; } /* * Calculate index of mask, and check for normalcy. */ cplim = netmask + mlen; isnormal = 1; for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;) cp++; if (cp != cplim) { for (j = 0x80; (j & *cp) != 0; j >>= 1) b++; if (*cp != normal_chars[b] || cp != (cplim - 1)) isnormal = 0; } b += (cp - netmask) << 3; x->rn_b = -1 - b; if (isnormal) x->rn_flags |= RNF_NORMAL; return x; } static int /* XXX: arbitrary ordering for non-contiguous masks */ rn_lexobetter( const void *m_arg, const void *n_arg) { const u_char *mp = m_arg; const u_char *np = n_arg; const u_char *lim; if (*mp > *np) return 1; /* not really, but need to check longer one first */ if (*mp == *np) for (lim = mp + *mp; mp < lim;) if (*mp++ > *np++) return 1; return 0; } static struct radix_mask * rn_new_radix_mask( struct radix_node *tt, struct radix_mask *next) { struct radix_mask *m; MKGet(m); if (m == NULL) { log(LOG_ERR, "Mask for route not entered\n"); return NULL; } memset(m, 0, sizeof(*m)); m->rm_b = tt->rn_b; m->rm_flags = tt->rn_flags; if (tt->rn_flags & RNF_NORMAL) m->rm_leaf = tt; else m->rm_mask = tt->rn_mask; m->rm_mklist = next; tt->rn_mklist = m; return m; } struct radix_node * rn_addroute( const void *v_arg, const void *n_arg, struct radix_node_head *head, struct radix_node treenodes[2]) { const char *v = v_arg, *netmask = n_arg; struct radix_node *t, *x = NULL, *tt; struct radix_node *saved_tt, *top = head->rnh_treetop; short b = 0, b_leaf = 0; int keyduplicated; const char *mmask; struct radix_mask *m, **mp; /* * In dealing with non-contiguous masks, there may be * many different routes which have the same mask. * We will find it useful to have a unique pointer to * the mask to speed avoiding duplicate references at * nodes and possibly save time in calculating indices. */ if (netmask != NULL) { if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL) return NULL; b_leaf = x->rn_b; b = -1 - x->rn_b; netmask = x->rn_key; } /* * Deal with duplicated keys: attach node to previous instance */ saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); if (keyduplicated) { for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) { if (tt->rn_mask == netmask) return NULL; if (netmask == NULL || (tt->rn_mask != NULL && (b_leaf < tt->rn_b || /* index(netmask) > node */ rn_refines(netmask, tt->rn_mask) || rn_lexobetter(netmask, tt->rn_mask)))) break; } /* * If the mask is not duplicated, we wouldn't * find it among possible duplicate key entries * anyway, so the above test doesn't hurt. * * We sort the masks for a duplicated key the same way as * in a masklist -- most specific to least specific. * This may require the unfortunate nuisance of relocating * the head of the list. * * We also reverse, or doubly link the list through the * parent pointer. */ if (tt == saved_tt) { struct radix_node *xx = x; /* link in at head of list */ (tt = treenodes)->rn_dupedkey = t; tt->rn_flags = t->rn_flags; tt->rn_p = x = t->rn_p; t->rn_p = tt; if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt; saved_tt = tt; x = xx; } else { (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; t->rn_dupedkey = tt; tt->rn_p = t; if (tt->rn_dupedkey) tt->rn_dupedkey->rn_p = tt; } tt->rn_key = v; tt->rn_b = -1; tt->rn_flags = RNF_ACTIVE; } /* * Put mask in tree. */ if (netmask != NULL) { tt->rn_mask = netmask; tt->rn_b = x->rn_b; tt->rn_flags |= x->rn_flags & RNF_NORMAL; } t = saved_tt->rn_p; if (keyduplicated) goto on2; b_leaf = -1 - t->rn_b; if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r; /* Promote general routes from below */ if (x->rn_b < 0) { for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) { if (x->rn_mask != NULL && x->rn_b >= b_leaf && x->rn_mklist == NULL) { *mp = m = rn_new_radix_mask(x, NULL); if (m != NULL) mp = &m->rm_mklist; } } } else if (x->rn_mklist != NULL) { /* * Skip over masks whose index is > that of new node */ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) if (m->rm_b >= b_leaf) break; t->rn_mklist = m; *mp = NULL; } on2: /* Add new route to highest possible ancestor's list */ if (netmask == NULL || b > t->rn_b) return tt; /* can't lift at all */ b_leaf = tt->rn_b; do { x = t; t = t->rn_p; } while (b <= t->rn_b && x != top); /* * Search through routes associated with node to * insert new route according to index. * Need same criteria as when sorting dupedkeys to avoid * double loop on deletion. */ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { if (m->rm_b < b_leaf) continue; if (m->rm_b > b_leaf) break; if (m->rm_flags & RNF_NORMAL) { mmask = m->rm_leaf->rn_mask; if (tt->rn_flags & RNF_NORMAL) { log(LOG_ERR, "Non-unique normal route," " mask not entered\n"); return tt; } } else mmask = m->rm_mask; if (mmask == netmask) { m->rm_refs++; tt->rn_mklist = m; return tt; } if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) break; } *mp = rn_new_radix_mask(tt, *mp); return tt; } struct radix_node * rn_delete1( const void *v_arg, const void *netmask_arg, struct radix_node_head *head, struct radix_node *rn) { struct radix_node *t, *p, *x, *tt; struct radix_mask *m, *saved_m, **mp; struct radix_node *dupedkey, *saved_tt, *top; const char *v, *netmask; int b, head_off, vlen; v = v_arg; netmask = netmask_arg; x = head->rnh_treetop; tt = rn_search(v, x); head_off = x->rn_off; vlen = *(const u_char *)v; saved_tt = tt; top = x; if (tt == NULL || memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0) return NULL; /* * Delete our route from mask lists. */ if (netmask != NULL) { if ((x = rn_addmask(netmask, 1, head_off)) == NULL) return NULL; netmask = x->rn_key; while (tt->rn_mask != netmask) if ((tt = tt->rn_dupedkey) == NULL) return NULL; } if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL) goto on1; if (tt->rn_flags & RNF_NORMAL) { if (m->rm_leaf != tt || m->rm_refs > 0) { log(LOG_ERR, "rn_delete: inconsistent annotation\n"); return NULL; /* dangling ref could cause disaster */ } } else { if (m->rm_mask != tt->rn_mask) { log(LOG_ERR, "rn_delete: inconsistent annotation\n"); goto on1; } if (--m->rm_refs >= 0) goto on1; } b = -1 - tt->rn_b; t = saved_tt->rn_p; if (b > t->rn_b) goto on1; /* Wasn't lifted at all */ do { x = t; t = t->rn_p; } while (b <= t->rn_b && x != top); for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { if (m == saved_m) { *mp = m->rm_mklist; MKFree(m); break; } } if (m == NULL) { log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); if (tt->rn_flags & RNF_NORMAL) return NULL; /* Dangling ref to us */ } on1: /* * Eliminate us from tree */ if (tt->rn_flags & RNF_ROOT) return NULL; #ifdef RN_DEBUG if (rn_debug) log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt); #endif t = tt->rn_p; dupedkey = saved_tt->rn_dupedkey; if (dupedkey != NULL) { /* * Here, tt is the deletion target, and * saved_tt is the head of the dupedkey chain. */ if (tt == saved_tt) { x = dupedkey; x->rn_p = t; if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x; } else { /* find node in front of tt on the chain */ for (x = p = saved_tt; p != NULL && p->rn_dupedkey != tt;) p = p->rn_dupedkey; if (p != NULL) { p->rn_dupedkey = tt->rn_dupedkey; if (tt->rn_dupedkey != NULL) tt->rn_dupedkey->rn_p = p; } else log(LOG_ERR, "rn_delete: couldn't find us\n"); } t = tt + 1; if (t->rn_flags & RNF_ACTIVE) { *++x = *t; p = t->rn_p; if (p->rn_l == t) p->rn_l = x; else p->rn_r = x; x->rn_l->rn_p = x; x->rn_r->rn_p = x; } goto out; } if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l; p = t->rn_p; if (p->rn_r == t) p->rn_r = x; else p->rn_l = x; x->rn_p = p; /* * Demote routes attached to us. */ if (t->rn_mklist == NULL) ; else if (x->rn_b >= 0) { for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) ; *mp = t->rn_mklist; } else { /* If there are any key,mask pairs in a sibling duped-key chain, some subset will appear sorted in the same order attached to our mklist */ for (m = t->rn_mklist; m != NULL && x != NULL; x = x->rn_dupedkey) { if (m == x->rn_mklist) { struct radix_mask *mm = m->rm_mklist; x->rn_mklist = NULL; if (--(m->rm_refs) < 0) MKFree(m); m = mm; } } if (m != NULL) { log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n", m, x); } } /* * We may be holding an active internal node in the tree. */ x = tt + 1; if (t != x) { *t = *x; t->rn_l->rn_p = t; t->rn_r->rn_p = t; p = x->rn_p; if (p->rn_l == x) p->rn_l = t; else p->rn_r = t; } out: #ifdef RN_DEBUG if (rn_debug) { log(LOG_DEBUG, "%s: Coming Out:\n", __func__), traverse(head, tt); } #endif /* RN_DEBUG */ tt->rn_flags &= ~RNF_ACTIVE; tt[1].rn_flags &= ~RNF_ACTIVE; return tt; } struct radix_node * rn_delete( const void *v_arg, const void *netmask_arg, struct radix_node_head *head) { return rn_delete1(v_arg, netmask_arg, head, NULL); } static struct radix_node * rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg) { /* If at right child go back up, otherwise, go right */ while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) { if (printer != NULL) (*printer)(arg, SUBTREE_CLOSE); rn = rn->rn_p; } if (printer) rn_nodeprint(rn->rn_p, printer, arg, ""); /* Find the next *leaf* since next node might vanish, too */ for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) { if (printer != NULL) (*printer)(arg, SUBTREE_OPEN); rn = rn->rn_l; } return rn; } static struct radix_node * rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg) { /* First time through node, go left */ while (rn->rn_b >= 0) { if (printer != NULL) (*printer)(arg, SUBTREE_OPEN); rn = rn->rn_l; } return rn; } int rn_walktree( struct radix_node_head *h, int (*f)(struct radix_node *, void *), void *w) { int error; struct radix_node *base, *next, *rn; /* * This gets complicated because we may delete the node * while applying the function f to it, so we need to calculate * the successor node in advance. */ rn = rn_walkfirst(h->rnh_treetop, NULL, NULL); for (;;) { base = rn; next = rn_walknext(rn, NULL, NULL); /* Process leaves */ while ((rn = base) != NULL) { base = rn->rn_dupedkey; if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) return error; } rn = next; if (rn->rn_flags & RNF_ROOT) return 0; } /* NOTREACHED */ } struct delayinit { void **head; int off; SLIST_ENTRY(delayinit) entries; }; static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads); static int radix_initialized; /* * Initialize a radix tree once radix is initialized. Only for bootstrap. * Assume that no concurrency protection is necessary at this stage. */ void rn_delayedinit(void **head, int off) { struct delayinit *di; KASSERT(radix_initialized == 0); di = kmem_alloc(sizeof(*di), KM_SLEEP); di->head = head; di->off = off; SLIST_INSERT_HEAD(&delayinits, di, entries); } int rn_inithead(void **head, int off) { struct radix_node_head *rnh; if (*head != NULL) return 1; R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); if (rnh == NULL) return 0; *head = rnh; return rn_inithead0(rnh, off); } int rn_inithead0(struct radix_node_head *rnh, int off) { struct radix_node *t; struct radix_node *tt; struct radix_node *ttt; memset(rnh, 0, sizeof(*rnh)); t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); ttt = rnh->rnh_nodes + 2; t->rn_r = ttt; t->rn_p = t; tt = t->rn_l; tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; tt->rn_b = -1 - off; *ttt = *tt; ttt->rn_key = rn_ones; rnh->rnh_addaddr = rn_addroute; rnh->rnh_deladdr = rn_delete; rnh->rnh_matchaddr = rn_match; rnh->rnh_lookup = rn_lookup; rnh->rnh_treetop = t; return 1; } void rn_init(void) { char *cp, *cplim; struct delayinit *di; #ifdef _KERNEL struct domain *dp; if (radix_initialized) panic("radix already initialized"); radix_initialized = 1; DOMAIN_FOREACH(dp) { if (dp->dom_maxrtkey > max_keylen) max_keylen = dp->dom_maxrtkey; } #endif if (max_keylen == 0) { log(LOG_ERR, "rn_init: radix functions require max_keylen be set\n"); return; } R_Malloc(rn_zeros, char *, 3 * max_keylen); if (rn_zeros == NULL) panic("rn_init"); memset(rn_zeros, 0, 3 * max_keylen); rn_ones = cp = rn_zeros + max_keylen; addmask_key = cplim = rn_ones + max_keylen; while (cp < cplim) *cp++ = -1; if (rn_inithead((void *)&mask_rnhead, 0) == 0) panic("rn_init 2"); while ((di = SLIST_FIRST(&delayinits)) != NULL) { if (!rn_inithead(di->head, di->off)) panic("delayed rn_inithead failed"); SLIST_REMOVE_HEAD(&delayinits, entries); kmem_free(di, sizeof(*di)); } }