/* $NetBSD: ld.c,v 1.67 2010/08/19 17:59:10 jmcneill Exp $ */ /*- * Copyright (c) 1998, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran and Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Disk driver for use by RAID controllers. */ #include __KERNEL_RCSID(0, "$NetBSD: ld.c,v 1.67 2010/08/19 17:59:10 jmcneill Exp $"); #include "rnd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #include static void ldgetdefaultlabel(struct ld_softc *, struct disklabel *); static void ldgetdisklabel(struct ld_softc *); static void ldminphys(struct buf *bp); static bool ld_suspend(device_t, const pmf_qual_t *); static bool ld_shutdown(device_t, int); static void ldstart(struct ld_softc *, struct buf *); static void ld_set_properties(struct ld_softc *); static void ld_config_interrupts (device_t); static int ldlastclose(device_t); extern struct cfdriver ld_cd; static dev_type_open(ldopen); static dev_type_close(ldclose); static dev_type_read(ldread); static dev_type_write(ldwrite); static dev_type_ioctl(ldioctl); static dev_type_strategy(ldstrategy); static dev_type_dump(lddump); static dev_type_size(ldsize); const struct bdevsw ld_bdevsw = { ldopen, ldclose, ldstrategy, ldioctl, lddump, ldsize, D_DISK }; const struct cdevsw ld_cdevsw = { ldopen, ldclose, ldread, ldwrite, ldioctl, nostop, notty, nopoll, nommap, nokqfilter, D_DISK }; static struct dkdriver lddkdriver = { ldstrategy, ldminphys }; void ldattach(struct ld_softc *sc) { char tbuf[9]; mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_VM); if ((sc->sc_flags & LDF_ENABLED) == 0) { aprint_normal_dev(sc->sc_dv, "disabled\n"); return; } /* Initialise and attach the disk structure. */ disk_init(&sc->sc_dk, device_xname(sc->sc_dv), &lddkdriver); disk_attach(&sc->sc_dk); if (sc->sc_maxxfer > MAXPHYS) sc->sc_maxxfer = MAXPHYS; /* Build synthetic geometry if necessary. */ if (sc->sc_nheads == 0 || sc->sc_nsectors == 0 || sc->sc_ncylinders == 0) { uint64_t ncyl; if (sc->sc_secperunit <= 528 * 2048) /* 528MB */ sc->sc_nheads = 16; else if (sc->sc_secperunit <= 1024 * 2048) /* 1GB */ sc->sc_nheads = 32; else if (sc->sc_secperunit <= 21504 * 2048) /* 21GB */ sc->sc_nheads = 64; else if (sc->sc_secperunit <= 43008 * 2048) /* 42GB */ sc->sc_nheads = 128; else sc->sc_nheads = 255; sc->sc_nsectors = 63; sc->sc_ncylinders = INT_MAX; ncyl = sc->sc_secperunit / (sc->sc_nheads * sc->sc_nsectors); if (ncyl < INT_MAX) sc->sc_ncylinders = (int)ncyl; } format_bytes(tbuf, sizeof(tbuf), sc->sc_secperunit * sc->sc_secsize); aprint_normal_dev(sc->sc_dv, "%s, %d cyl, %d head, %d sec, " "%d bytes/sect x %"PRIu64" sectors\n", tbuf, sc->sc_ncylinders, sc->sc_nheads, sc->sc_nsectors, sc->sc_secsize, sc->sc_secperunit); ld_set_properties(sc); #if NRND > 0 /* Attach the device into the rnd source list. */ rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dv), RND_TYPE_DISK, 0); #endif /* Register with PMF */ if (!pmf_device_register1(sc->sc_dv, ld_suspend, NULL, ld_shutdown)) aprint_error_dev(sc->sc_dv, "couldn't establish power handler\n"); bufq_alloc(&sc->sc_bufq, BUFQ_DISK_DEFAULT_STRAT, BUFQ_SORT_RAWBLOCK); /* Discover wedges on this disk. */ config_interrupts(sc->sc_dv, ld_config_interrupts); } int ldadjqparam(struct ld_softc *sc, int xmax) { int s; s = splbio(); sc->sc_maxqueuecnt = xmax; splx(s); return (0); } int ldbegindetach(struct ld_softc *sc, int flags) { int s, rv = 0; if ((sc->sc_flags & LDF_ENABLED) == 0) return (0); rv = disk_begindetach(&sc->sc_dk, ldlastclose, sc->sc_dv, flags); if (rv != 0) return rv; s = splbio(); sc->sc_maxqueuecnt = 0; sc->sc_flags |= LDF_DETACH; while (sc->sc_queuecnt > 0) { sc->sc_flags |= LDF_DRAIN; rv = tsleep(&sc->sc_queuecnt, PRIBIO, "lddrn", 0); if (rv) break; } splx(s); return (rv); } void ldenddetach(struct ld_softc *sc) { int s, bmaj, cmaj, i, mn; if ((sc->sc_flags & LDF_ENABLED) == 0) return; /* Wait for commands queued with the hardware to complete. */ if (sc->sc_queuecnt != 0) if (tsleep(&sc->sc_queuecnt, PRIBIO, "lddtch", 30 * hz)) printf("%s: not drained\n", device_xname(sc->sc_dv)); /* Locate the major numbers. */ bmaj = bdevsw_lookup_major(&ld_bdevsw); cmaj = cdevsw_lookup_major(&ld_cdevsw); /* Kill off any queued buffers. */ s = splbio(); bufq_drain(sc->sc_bufq); splx(s); bufq_free(sc->sc_bufq); /* Nuke the vnodes for any open instances. */ for (i = 0; i < MAXPARTITIONS; i++) { mn = DISKMINOR(device_unit(sc->sc_dv), i); vdevgone(bmaj, mn, mn, VBLK); vdevgone(cmaj, mn, mn, VCHR); } /* Delete all of our wedges. */ dkwedge_delall(&sc->sc_dk); /* Detach from the disk list. */ disk_detach(&sc->sc_dk); disk_destroy(&sc->sc_dk); #if NRND > 0 /* Unhook the entropy source. */ rnd_detach_source(&sc->sc_rnd_source); #endif /* Deregister with PMF */ pmf_device_deregister(sc->sc_dv); /* * XXX We can't really flush the cache here, beceause the * XXX device may already be non-existent from the controller's * XXX perspective. */ #if 0 /* Flush the device's cache. */ if (sc->sc_flush != NULL) if ((*sc->sc_flush)(sc, 0) != 0) aprint_error_dev(&sc->sc_dv, "unable to flush cache\n"); #endif mutex_destroy(&sc->sc_mutex); } /* ARGSUSED */ static bool ld_suspend(device_t dev, const pmf_qual_t *qual) { return ld_shutdown(dev, 0); } /* ARGSUSED */ static bool ld_shutdown(device_t dev, int flags) { struct ld_softc *sc = device_private(dev); if (sc->sc_flush != NULL && (*sc->sc_flush)(sc, LDFL_POLL) != 0) { printf("%s: unable to flush cache\n", device_xname(dev)); return false; } return true; } /* ARGSUSED */ static int ldopen(dev_t dev, int flags, int fmt, struct lwp *l) { struct ld_softc *sc; int error, unit, part; unit = DISKUNIT(dev); if ((sc = device_lookup_private(&ld_cd, unit)) == NULL) return (ENXIO); if ((sc->sc_flags & LDF_ENABLED) == 0) return (ENODEV); part = DISKPART(dev); mutex_enter(&sc->sc_dk.dk_openlock); if (sc->sc_dk.dk_openmask == 0) { /* Load the partition info if not already loaded. */ if ((sc->sc_flags & LDF_VLABEL) == 0) ldgetdisklabel(sc); } /* Check that the partition exists. */ if (part != RAW_PART && (part >= sc->sc_dk.dk_label->d_npartitions || sc->sc_dk.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) { error = ENXIO; goto bad1; } /* Ensure only one open at a time. */ switch (fmt) { case S_IFCHR: sc->sc_dk.dk_copenmask |= (1 << part); break; case S_IFBLK: sc->sc_dk.dk_bopenmask |= (1 << part); break; } sc->sc_dk.dk_openmask = sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; error = 0; bad1: mutex_exit(&sc->sc_dk.dk_openlock); return (error); } static int ldlastclose(device_t self) { struct ld_softc *sc = device_private(self); if (sc->sc_flush != NULL && (*sc->sc_flush)(sc, 0) != 0) aprint_error_dev(self, "unable to flush cache\n"); if ((sc->sc_flags & LDF_KLABEL) == 0) sc->sc_flags &= ~LDF_VLABEL; return 0; } /* ARGSUSED */ static int ldclose(dev_t dev, int flags, int fmt, struct lwp *l) { struct ld_softc *sc; int part, unit; unit = DISKUNIT(dev); part = DISKPART(dev); sc = device_lookup_private(&ld_cd, unit); mutex_enter(&sc->sc_dk.dk_openlock); switch (fmt) { case S_IFCHR: sc->sc_dk.dk_copenmask &= ~(1 << part); break; case S_IFBLK: sc->sc_dk.dk_bopenmask &= ~(1 << part); break; } sc->sc_dk.dk_openmask = sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; if (sc->sc_dk.dk_openmask == 0) ldlastclose(sc->sc_dv); mutex_exit(&sc->sc_dk.dk_openlock); return (0); } /* ARGSUSED */ static int ldread(dev_t dev, struct uio *uio, int ioflag) { return (physio(ldstrategy, NULL, dev, B_READ, ldminphys, uio)); } /* ARGSUSED */ static int ldwrite(dev_t dev, struct uio *uio, int ioflag) { return (physio(ldstrategy, NULL, dev, B_WRITE, ldminphys, uio)); } /* ARGSUSED */ static int ldioctl(dev_t dev, u_long cmd, void *addr, int32_t flag, struct lwp *l) { struct ld_softc *sc; int part, unit, error; #ifdef __HAVE_OLD_DISKLABEL struct disklabel newlabel; #endif struct disklabel *lp; unit = DISKUNIT(dev); part = DISKPART(dev); sc = device_lookup_private(&ld_cd, unit); error = disk_ioctl(&sc->sc_dk, cmd, addr, flag, l); if (error != EPASSTHROUGH) return (error); error = 0; switch (cmd) { case DIOCGDINFO: memcpy(addr, sc->sc_dk.dk_label, sizeof(struct disklabel)); return (0); #ifdef __HAVE_OLD_DISKLABEL case ODIOCGDINFO: newlabel = *(sc->sc_dk.dk_label); if (newlabel.d_npartitions > OLDMAXPARTITIONS) return ENOTTY; memcpy(addr, &newlabel, sizeof(struct olddisklabel)); return (0); #endif case DIOCGPART: ((struct partinfo *)addr)->disklab = sc->sc_dk.dk_label; ((struct partinfo *)addr)->part = &sc->sc_dk.dk_label->d_partitions[part]; break; case DIOCWDINFO: case DIOCSDINFO: #ifdef __HAVE_OLD_DISKLABEL case ODIOCWDINFO: case ODIOCSDINFO: if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) { memset(&newlabel, 0, sizeof newlabel); memcpy(&newlabel, addr, sizeof (struct olddisklabel)); lp = &newlabel; } else #endif lp = (struct disklabel *)addr; if ((flag & FWRITE) == 0) return (EBADF); mutex_enter(&sc->sc_dk.dk_openlock); sc->sc_flags |= LDF_LABELLING; error = setdisklabel(sc->sc_dk.dk_label, lp, /*sc->sc_dk.dk_openmask : */0, sc->sc_dk.dk_cpulabel); if (error == 0 && (cmd == DIOCWDINFO #ifdef __HAVE_OLD_DISKLABEL || cmd == ODIOCWDINFO #endif )) error = writedisklabel( MAKEDISKDEV(major(dev), DISKUNIT(dev), RAW_PART), ldstrategy, sc->sc_dk.dk_label, sc->sc_dk.dk_cpulabel); sc->sc_flags &= ~LDF_LABELLING; mutex_exit(&sc->sc_dk.dk_openlock); break; case DIOCKLABEL: if ((flag & FWRITE) == 0) return (EBADF); if (*(int *)addr) sc->sc_flags |= LDF_KLABEL; else sc->sc_flags &= ~LDF_KLABEL; break; case DIOCWLABEL: if ((flag & FWRITE) == 0) return (EBADF); if (*(int *)addr) sc->sc_flags |= LDF_WLABEL; else sc->sc_flags &= ~LDF_WLABEL; break; case DIOCGDEFLABEL: ldgetdefaultlabel(sc, (struct disklabel *)addr); break; #ifdef __HAVE_OLD_DISKLABEL case ODIOCGDEFLABEL: ldgetdefaultlabel(sc, &newlabel); if (newlabel.d_npartitions > OLDMAXPARTITIONS) return ENOTTY; memcpy(addr, &newlabel, sizeof (struct olddisklabel)); break; #endif case DIOCCACHESYNC: /* * XXX Do we really need to care about having a writable * file descriptor here? */ if ((flag & FWRITE) == 0) error = EBADF; else if (sc->sc_flush) error = (*sc->sc_flush)(sc, 0); else error = 0; /* XXX Error out instead? */ break; case DIOCAWEDGE: { struct dkwedge_info *dkw = (void *) addr; if ((flag & FWRITE) == 0) return (EBADF); /* If the ioctl happens here, the parent is us. */ strlcpy(dkw->dkw_parent, device_xname(sc->sc_dv), sizeof(dkw->dkw_parent)); return (dkwedge_add(dkw)); } case DIOCDWEDGE: { struct dkwedge_info *dkw = (void *) addr; if ((flag & FWRITE) == 0) return (EBADF); /* If the ioctl happens here, the parent is us. */ strlcpy(dkw->dkw_parent, device_xname(sc->sc_dv), sizeof(dkw->dkw_parent)); return (dkwedge_del(dkw)); } case DIOCLWEDGES: { struct dkwedge_list *dkwl = (void *) addr; return (dkwedge_list(&sc->sc_dk, dkwl, l)); } case DIOCGSTRATEGY: { struct disk_strategy *dks = (void *)addr; mutex_enter(&sc->sc_mutex); strlcpy(dks->dks_name, bufq_getstrategyname(sc->sc_bufq), sizeof(dks->dks_name)); mutex_exit(&sc->sc_mutex); dks->dks_paramlen = 0; return 0; } case DIOCSSTRATEGY: { struct disk_strategy *dks = (void *)addr; struct bufq_state *new, *old; if ((flag & FWRITE) == 0) return EPERM; if (dks->dks_param != NULL) return EINVAL; dks->dks_name[sizeof(dks->dks_name) - 1] = 0; /* ensure term */ error = bufq_alloc(&new, dks->dks_name, BUFQ_EXACT|BUFQ_SORT_RAWBLOCK); if (error) return error; mutex_enter(&sc->sc_mutex); old = sc->sc_bufq; bufq_move(new, old); sc->sc_bufq = new; mutex_exit(&sc->sc_mutex); bufq_free(old); return 0; } default: error = ENOTTY; break; } return (error); } static void ldstrategy(struct buf *bp) { struct ld_softc *sc; struct disklabel *lp; daddr_t blkno; int s, part; sc = device_lookup_private(&ld_cd, DISKUNIT(bp->b_dev)); part = DISKPART(bp->b_dev); if ((sc->sc_flags & LDF_DETACH) != 0) { bp->b_error = EIO; goto done; } lp = sc->sc_dk.dk_label; /* * The transfer must be a whole number of blocks and the offset must * not be negative. */ if ((bp->b_bcount % lp->d_secsize) != 0 || bp->b_blkno < 0) { bp->b_error = EINVAL; goto done; } /* If it's a null transfer, return immediately. */ if (bp->b_bcount == 0) goto done; /* * Do bounds checking and adjust the transfer. If error, process. * If past the end of partition, just return. */ if (part != RAW_PART && bounds_check_with_label(&sc->sc_dk, bp, (sc->sc_flags & (LDF_WLABEL | LDF_LABELLING)) != 0) <= 0) { goto done; } /* * Convert the block number to absolute and put it in terms * of the device's logical block size. */ if (lp->d_secsize == DEV_BSIZE) blkno = bp->b_blkno; else if (lp->d_secsize > DEV_BSIZE) blkno = bp->b_blkno / (lp->d_secsize / DEV_BSIZE); else blkno = bp->b_blkno * (DEV_BSIZE / lp->d_secsize); if (part != RAW_PART) blkno += lp->d_partitions[part].p_offset; bp->b_rawblkno = blkno; s = splbio(); ldstart(sc, bp); splx(s); return; done: bp->b_resid = bp->b_bcount; biodone(bp); } static void ldstart(struct ld_softc *sc, struct buf *bp) { int error; mutex_enter(&sc->sc_mutex); if (bp != NULL) bufq_put(sc->sc_bufq, bp); while (sc->sc_queuecnt < sc->sc_maxqueuecnt) { /* See if there is work to do. */ if ((bp = bufq_peek(sc->sc_bufq)) == NULL) break; disk_busy(&sc->sc_dk); sc->sc_queuecnt++; if (__predict_true((error = (*sc->sc_start)(sc, bp)) == 0)) { /* * The back-end is running the job; remove it from * the queue. */ (void) bufq_get(sc->sc_bufq); } else { disk_unbusy(&sc->sc_dk, 0, (bp->b_flags & B_READ)); sc->sc_queuecnt--; if (error == EAGAIN) { /* * Temporary resource shortage in the * back-end; just defer the job until * later. * * XXX We might consider a watchdog timer * XXX to make sure we are kicked into action. */ break; } else { (void) bufq_get(sc->sc_bufq); bp->b_error = error; bp->b_resid = bp->b_bcount; mutex_exit(&sc->sc_mutex); biodone(bp); mutex_enter(&sc->sc_mutex); } } } mutex_exit(&sc->sc_mutex); } void lddone(struct ld_softc *sc, struct buf *bp) { if (bp->b_error != 0) { diskerr(bp, "ld", "error", LOG_PRINTF, 0, sc->sc_dk.dk_label); printf("\n"); } disk_unbusy(&sc->sc_dk, bp->b_bcount - bp->b_resid, (bp->b_flags & B_READ)); #if NRND > 0 rnd_add_uint32(&sc->sc_rnd_source, bp->b_rawblkno); #endif biodone(bp); mutex_enter(&sc->sc_mutex); if (--sc->sc_queuecnt <= sc->sc_maxqueuecnt) { if ((sc->sc_flags & LDF_DRAIN) != 0) { sc->sc_flags &= ~LDF_DRAIN; wakeup(&sc->sc_queuecnt); } mutex_exit(&sc->sc_mutex); ldstart(sc, NULL); } else mutex_exit(&sc->sc_mutex); } static int ldsize(dev_t dev) { struct ld_softc *sc; int part, unit, omask, size; unit = DISKUNIT(dev); if ((sc = device_lookup_private(&ld_cd, unit)) == NULL) return (ENODEV); if ((sc->sc_flags & LDF_ENABLED) == 0) return (ENODEV); part = DISKPART(dev); omask = sc->sc_dk.dk_openmask & (1 << part); if (omask == 0 && ldopen(dev, 0, S_IFBLK, NULL) != 0) return (-1); else if (sc->sc_dk.dk_label->d_partitions[part].p_fstype != FS_SWAP) size = -1; else size = sc->sc_dk.dk_label->d_partitions[part].p_size * (sc->sc_dk.dk_label->d_secsize / DEV_BSIZE); if (omask == 0 && ldclose(dev, 0, S_IFBLK, NULL) != 0) return (-1); return (size); } /* * Load the label information from the specified device. */ static void ldgetdisklabel(struct ld_softc *sc) { const char *errstring; ldgetdefaultlabel(sc, sc->sc_dk.dk_label); /* Call the generic disklabel extraction routine. */ errstring = readdisklabel(MAKEDISKDEV(0, device_unit(sc->sc_dv), RAW_PART), ldstrategy, sc->sc_dk.dk_label, sc->sc_dk.dk_cpulabel); if (errstring != NULL) printf("%s: %s\n", device_xname(sc->sc_dv), errstring); /* In-core label now valid. */ sc->sc_flags |= LDF_VLABEL; } /* * Construct a ficticious label. */ static void ldgetdefaultlabel(struct ld_softc *sc, struct disklabel *lp) { memset(lp, 0, sizeof(struct disklabel)); lp->d_secsize = sc->sc_secsize; lp->d_ntracks = sc->sc_nheads; lp->d_nsectors = sc->sc_nsectors; lp->d_ncylinders = sc->sc_ncylinders; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; lp->d_type = DTYPE_LD; strlcpy(lp->d_typename, "unknown", sizeof(lp->d_typename)); strlcpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); lp->d_secperunit = sc->sc_secperunit; lp->d_rpm = 7200; lp->d_interleave = 1; lp->d_flags = 0; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secperunit * (lp->d_secsize / DEV_BSIZE); lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); } /* * Take a dump. */ static int lddump(dev_t dev, daddr_t blkno, void *vav, size_t size) { char *va = vav; struct ld_softc *sc; struct disklabel *lp; int unit, part, nsects, sectoff, towrt, nblk, maxblkcnt, rv; static int dumping; unit = DISKUNIT(dev); if ((sc = device_lookup_private(&ld_cd, unit)) == NULL) return (ENXIO); if ((sc->sc_flags & LDF_ENABLED) == 0) return (ENODEV); if (sc->sc_dump == NULL) return (ENXIO); /* Check if recursive dump; if so, punt. */ if (dumping) return (EFAULT); dumping = 1; /* Convert to disk sectors. Request must be a multiple of size. */ part = DISKPART(dev); lp = sc->sc_dk.dk_label; if ((size % lp->d_secsize) != 0) return (EFAULT); towrt = size / lp->d_secsize; blkno = dbtob(blkno) / lp->d_secsize; /* blkno in DEV_BSIZE units */ nsects = lp->d_partitions[part].p_size; sectoff = lp->d_partitions[part].p_offset; /* Check transfer bounds against partition size. */ if ((blkno < 0) || ((blkno + towrt) > nsects)) return (EINVAL); /* Offset block number to start of partition. */ blkno += sectoff; /* Start dumping and return when done. */ maxblkcnt = sc->sc_maxxfer / sc->sc_secsize - 1; while (towrt > 0) { nblk = min(maxblkcnt, towrt); if ((rv = (*sc->sc_dump)(sc, va, blkno, nblk)) != 0) return (rv); towrt -= nblk; blkno += nblk; va += nblk * sc->sc_secsize; } dumping = 0; return (0); } /* * Adjust the size of a transfer. */ static void ldminphys(struct buf *bp) { struct ld_softc *sc; sc = device_lookup_private(&ld_cd, DISKUNIT(bp->b_dev)); if (bp->b_bcount > sc->sc_maxxfer) bp->b_bcount = sc->sc_maxxfer; minphys(bp); } static void ld_set_properties(struct ld_softc *ld) { prop_dictionary_t disk_info, odisk_info, geom; disk_info = prop_dictionary_create(); geom = prop_dictionary_create(); prop_dictionary_set_uint64(geom, "sectors-per-unit", ld->sc_secperunit); prop_dictionary_set_uint32(geom, "sector-size", ld->sc_secsize); prop_dictionary_set_uint16(geom, "sectors-per-track", ld->sc_nsectors); prop_dictionary_set_uint16(geom, "tracks-per-cylinder", ld->sc_nheads); prop_dictionary_set_uint64(geom, "cylinders-per-unit", ld->sc_ncylinders); prop_dictionary_set(disk_info, "geometry", geom); prop_object_release(geom); prop_dictionary_set(device_properties(ld->sc_dv), "disk-info", disk_info); /* * Don't release disk_info here; we keep a reference to it. * disk_detach() will release it when we go away. */ odisk_info = ld->sc_dk.dk_info; ld->sc_dk.dk_info = disk_info; if (odisk_info) prop_object_release(odisk_info); } static void ld_config_interrupts(device_t d) { struct ld_softc *sc = device_private(d); dkwedge_discover(&sc->sc_dk); }