/* $NetBSD: rpc_machdep.c,v 1.27 1999/04/06 06:57:00 mark Exp $ */ /* * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include "opt_cputypes.h" #include "opt_ddb.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipkdb.h" #ifdef HYDRA #include "hydrabus.h" #endif /* HYDRA */ /* * Address to call from cpu_reset() to reset the machine. * This is machine architecture dependant as it varies depending * on where the ROM appears when you turn the MMU off. */ u_int cpu_reset_address = 0; /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #if NIPKDB > 0 #define UND_STACK_SIZE 2 #else #define UND_STACK_SIZE 1 #endif BootConfig bootconfig; /* Boot config storage */ videomemory_t videomemory; /* Video memory descriptor */ vm_offset_t physical_start; vm_offset_t physical_freestart; vm_offset_t physical_freeend; vm_offset_t physical_end; u_int free_pages; int physmem = 0; #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ u_int videodram_size = 0; /* Amount of DRAM to reserve for video */ vm_offset_t videodram_start; /* Physical and virtual addresses for some global pages */ pv_addr_t systempage; pv_addr_t irqstack; pv_addr_t undstack; pv_addr_t abtstack; pv_addr_t kernelstack; #if NHYDRABUS > 0 pv_addr_t hydrascratch; #endif /* NHYDRABUS */ char *boot_args = NULL; char *boot_file = NULL; vm_offset_t msgbufphys; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif /* PMAP_DEBUG */ #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */ #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */ #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2)) #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pt_entry_t kernel_pt_table[NUM_KERNEL_PTS]; struct user *proc0paddr; extern int cold; #ifdef CPU_SA110 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2) static vaddr_t sa110_cc_base; #endif /* CPU_SA110 */ /* Prototypes */ void physcon_display_base __P((u_int addr)); extern void consinit __P((void)); void map_section __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa, int cacheable)); void map_pagetable __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); void map_entry __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); void map_entry_nc __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); void map_entry_ro __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); vm_size_t map_chunk __P((vm_offset_t pd, vm_offset_t pt, vm_offset_t va, vm_offset_t pa, vm_size_t size, u_int acc, u_int flg)); void pmap_bootstrap __P((vm_offset_t kernel_l1pt, pv_addr_t kernel_ptpt)); caddr_t allocsys __P((caddr_t v)); void data_abort_handler __P((trapframe_t *frame)); void prefetch_abort_handler __P((trapframe_t *frame)); void undefinedinstruction_bounce __P((trapframe_t *frame)); void zero_page_readonly __P((void)); void zero_page_readwrite __P((void)); static void process_kernel_args __P((void)); extern void dump_spl_masks __P((void)); extern pt_entry_t *pmap_pte __P((pmap_t pmap, vm_offset_t va)); extern void db_machine_init __P((void)); extern void console_flush __P((void)); extern void vidcconsole_reinit __P((void)); extern int vidcconsole_blank __P((struct vconsole *vc, int type)); void rpc_sa110_cc_setup __P((void)); extern void parse_mi_bootargs __P((char *args)); void parse_rpc_bootargs __P((char *args)); extern void dumpsys __P((void)); extern void hydrastop __P((void)); /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ /* NOTE: These variables will be removed, well some of them */ extern u_int spl_mask; extern u_int current_mask; extern u_int arm700bugcount; void cpu_reboot(howto, bootstr) int howto; char *bootstr; { #if NHYDRABUS > 0 /* * If we are halting the master then we should halt the slaves :-) * otherwise it can get a bit disconcerting to have 4 other * processors still tearing away doing things. */ hydrastop(); #endif /* NHYDRABUS */ #ifdef DIAGNOSTIC printf("boot: howto=%08x curproc=%p\n", howto, curproc); printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n", irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY], irqmasks[IPL_IMP]); printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n", irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]); dump_spl_masks(); /* Did we encounter the ARM700 bug we discovered ? */ if (arm700bugcount > 0) printf("ARM700 PREFETCH/SWI bug count = %d\n", arm700bugcount); #endif /* DIAGNOSTIC */ /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); printf("Halted while still in the ICE age.\n"); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* Disable console buffering */ cnpollc(1); /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the unmount. * It looks like syslogd is getting woken up only to find that it cannot * page part of the binary in as the filesystem has been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* * Auto reboot overload protection * * This code stops the kernel entering an endless loop of reboot * - panic cycles. This will have the effect of stopping further * reboots after it has rebooted 8 times after panics. A clean * halt or reboot will reset the counter. */ /* * Have we done 8 reboots in a row ? If so halt rather than reboot * since 8 panics in a row without 1 clean halt means something is * seriously wrong. */ if (cmos_read(RTC_ADDR_REBOOTCNT) > 8) howto |= RB_HALT; /* * If we are rebooting on a panic then up the reboot count * otherwise reset. * This will thus be reset if the kernel changes the boot action from * reboot to halt due to too any reboots. */ if (((howto & RB_HALT) == 0) && panicstr) cmos_write(RTC_ADDR_REBOOTCNT, cmos_read(RTC_ADDR_REBOOTCNT) + 1); else cmos_write(RTC_ADDR_REBOOTCNT, 0); /* * If we need a RiscBSD reboot, request it buy setting a bit in * the CMOS RAM. This can be detected by the RiscBSD boot loader * during a RISCOS boot. No other way to do this as RISCOS is in ROM. */ if ((howto & RB_HALT) == 0) cmos_write(RTC_ADDR_BOOTOPTS, cmos_read(RTC_ADDR_BOOTOPTS) | 0x02); /* Run any shutdown hooks */ doshutdownhooks(); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* * u_int initarm(BootConfig *bootconf) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responcible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ /* This routine is frightening mess ! This is what my mind looks like -mark */ /* * This code is looking even worse these days ... * This is the problem you get when you are booting from another Operating System * without a proper boot loader * Made even worse by the fact that if the machine does not have VRAM * the video memory tends to be physically sitting where we relocate the * kernel to. */ u_int initarm(bootconf) BootConfig *bootconf; { int loop; int loop1; u_int logical; u_int kerneldatasize; u_int l1pagetable; u_int l2pagetable; extern char page0[], page0_end[]; struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE; int id; pv_addr_t kernel_l1pt; pv_addr_t kernel_ptpt; /* * Heads up ... Setup the CPU / MMU / TLB functions */ set_cpufuncs(); /* Copy the boot configuration structure */ bootconfig = *bootconf; /* * Initialise the video memory descriptor * * Note: all references to the video memory virtual/physical address * should go via this structure. */ /* * In the future ... * * All console output will be postponed until the primary bootstrap * has been completed so that we have had a chance to reserve some * memory for the video system if we do not have separate VRAM. */ /* Hardwire it in case we have an old boot loader */ videomemory.vidm_vbase = bootconfig.display_start; videomemory.vidm_pbase = VRAM_BASE; videomemory.vidm_type = VIDEOMEM_TYPE_VRAM; videomemory.vidm_size = bootconfig.display_size; if (bootconfig.magic == BOOTCONFIG_MAGIC) { videomemory.vidm_vbase = bootconfig.display_start; videomemory.vidm_pbase = bootconfig.display_phys; videomemory.vidm_size = bootconfig.display_size; if (bootconfig.vram[0].pages) videomemory.vidm_type = VIDEOMEM_TYPE_VRAM; else videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; } /* * Initialise the physical console * This is done in main() but for the moment we do it here so that * we can use printf in initarm() before main() has been called. */ consinit(); /* Talk to the user */ printf("initarm...\n"); /* Tell the user if his boot loader is too old */ if (bootconfig.magic != BOOTCONFIG_MAGIC) { printf("\nNO MAGIC NUMBER IN BOOTCONFIG. PLEASE UPGRADE YOUR BOOT LOADER\n\n"); delay(5000000); } printf("Kernel loaded from file %s\n", bootconfig.kernelname); printf("Kernel arg string %s\n", (char *)bootconfig.argvirtualbase); printf("\nBoot configuration structure reports the following memory\n"); printf(" DRAM block 0a at %08x size %08x DRAM block 0b at %08x size %08x\n\r", bootconfig.dram[0].address, bootconfig.dram[0].pages * bootconfig.pagesize, bootconfig.dram[1].address, bootconfig.dram[1].pages * bootconfig.pagesize); printf(" DRAM block 1a at %08x size %08x DRAM block 1b at %08x size %08x\n\r", bootconfig.dram[2].address, bootconfig.dram[2].pages * bootconfig.pagesize, bootconfig.dram[3].address, bootconfig.dram[3].pages * bootconfig.pagesize); printf(" VRAM block 0 at %08x size %08x\n\r", bootconfig.vram[0].address, bootconfig.vram[0].pages * bootconfig.pagesize); /* printf(" videomem: VA=%08x PA=%08x\n", videomemory.vidm_vbase, videomemory.vidm_pbase);*/ /* Check to make sure the page size is correct */ if (NBPG != bootconfig.pagesize) panic("Page size is not %d bytes\n", NBPG); /* * Ok now we have the hard bit. * We have the kernel allocated up high. The rest of the memory map is * available. We are still running on RISC OS page tables. * * We need to construct new page tables move the kernel in physical * memory and switch to them. * * The booter will have left us 6 pages at the top of memory. * Two of these are used as L2 page tables and the other 4 form the L1 * page table. */ /* * Ok we must construct own own page table tables. * Once we have these we can reorganise the memory as required */ /* * We better check to make sure the booter has set up the scratch * area for us correctly. We use this area to create temporary pagetables * while we reorganise the memory map. */ if ((bootconfig.scratchphysicalbase & 0x3fff) != 0) panic("initarm: Scratch area not aligned on 16KB boundry\n"); if ((bootconfig.scratchsize < 0xc000) != 0) panic("initarm: Scratch area too small (need >= 48KB)\n"); /* * Ok start the primary bootstrap. * The primary bootstrap basically replaces the booter page tables with * new ones that it creates in the boot scratch area. These page tables * map the rest of the physical memory into the virtaul memory map. * This allows low physical memory to be accessed to create the * kernels page tables, relocate the kernel code from high physical * memory to low physical memory etc. */ printf("initarm: Primary bootstrap ... "); kerneldatasize = bootconfig.kernsize + bootconfig.argsize; l2pagetable = bootconfig.scratchvirtualbase; l1pagetable = l2pagetable + 0x4000; if (bootconfig.vram[0].pages > 0) { /* * Now we construct a L2 pagetables for the VRAM */ for (logical = 0; logical < 0x200000; logical += NBPG) { map_entry(l2pagetable + 0x1000, logical, bootconfig.vram[0].address + logical); map_entry(l2pagetable + 0x1000, logical + 0x200000, bootconfig.vram[0].address + logical); } /* * Update the videomemory structure to reflect the mapping * changes */ videomemory.vidm_vbase = VMEM_VBASE; videomemory.vidm_pbase = VRAM_BASE; videomemory.vidm_type = VIDEOMEM_TYPE_VRAM; videomemory.vidm_size = bootconfig.vram[0].pages * NBPG; } else { if (bootconfig.display_phys != bootconfig.dram[0].address) panic("video DRAM is being unpredictable\n"); /* * Now we construct a L2 pagetables for the DRAM */ for (logical = 0; logical < bootconfig.display_size; logical += NBPG) { map_entry(l2pagetable + 0x1000, logical, bootconfig.display_phys + logical); } /* * Update the videomemory structure to reflect the mapping * changes */ videomemory.vidm_vbase = VMEM_VBASE; videomemory.vidm_pbase = bootconfig.display_phys; videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; videomemory.vidm_size = bootconfig.display_size; } /* * Now map L2 page tables for the current kernel memory * and the new kernel memory */ for (logical = 0; logical < kerneldatasize + bootconfig.scratchsize; logical += NBPG) { map_entry(l2pagetable + 0x3000, logical, bootconfig.kernphysicalbase + logical); } #if NHYDRABUS > 0 /* * If we have the hydra nick the first physical page for hydra booting * Needs to be 2MB aligned */ for (logical = 0; logical < 0x400000; logical += NBPG) { map_entry(l2pagetable + 0x2000, logical, bootconfig.dram[0].address + logical + NBPG); } #else /* NHYDRABUS */ for (logical = 0; logical < 0x400000; logical += NBPG) { map_entry(l2pagetable + 0x2000, logical, bootconfig.dram[0].address + logical); } #endif /* NHYDRABUS */ /* * Now we construct the L1 pagetable. This only needs the minimum to * keep us going until we can contruct the proper kernel L1 page table. */ map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE, 0); map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE, 0); map_pagetable(l1pagetable, 0x00000000, bootconfig.scratchphysicalbase + 0x2000); map_pagetable(l1pagetable, KERNEL_BASE, bootconfig.scratchphysicalbase + 0x3000); map_pagetable(l1pagetable, VMEM_VBASE, bootconfig.scratchphysicalbase + 0x1000); /* Print some debugging info */ /* printf("page tables look like this ...\n"); printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000)); printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4)); printf("V0x00200000 - %08x\n", ReadWord(l1pagetable + 0x0080)); printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00)); printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00)); printf("page dir = P%08x\n", bootconfig.scratchphysicalbase + 0x4000); printf("l1= V%08x\n", l1pagetable); */ /* Grind to a halt if no VRAM */ /* if (bootconfig.vram[0].pages == 0) { printf("Switching to bootstrap pagetables\n"); printf("[Hit a key top continue]\n"); cngetc(); }*/ /* If no VRAM kill the VIDC DAC's until the end of the bootstrap */ if (bootconfig.vram[0].pages == 0) vidcconsole_blank(vconsole_current, BLANK_OFF); /* If we don't have VRAM .. * Ahhhhhhhhhhhhhhhhhhhhhh * We have just mapped the kernel across the video DRAM from RISCOS. * Better block all printing until we complete the secondary * bootstrap and have allocate new video DRAM. */ /* * Pheww right we are ready to switch page tables !!! * The L1 table is at bootconfig.scratchphysicalbase + 0x4000 */ /* Switch tables */ setttb(bootconfig.scratchphysicalbase + 0x4000); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem wil not occur after initarm(). */ cpu_cache_cleanID(); /* * Since we have mapped the VRAM up into kernel space we must * now update the the bootconfig and display structures by hand. */ if (bootconfig.vram[0].pages != 0) { bootconfig.display_start = VMEM_VBASE; physcon_display_base(VMEM_VBASE); } if (bootconfig.vram[0].pages != 0) printf("done.\n"); id = ReadByte(IOMD_BASE + (IOMD_ID0 << 2)) | (ReadByte(IOMD_BASE + (IOMD_ID1 << 2)) << 8); switch (id) { case ARM7500_IOC_ID: #ifndef CPU_ARM7500 panic("Encountered ARM7500 IOMD but no ARM7500 kernel support"); #endif /* CPU_ARM7500 */ break; case RPC600_IOMD_ID: #ifdef CPU_ARM7500 panic("Encountered ARM6/7 IOMD and ARM7500 kernel support"); #endif /* CPU_ARM7500 */ break; } /* * Ok we have finished the primary boot strap. All this has done is to * allow us to access all the physical memory from known virtual * location. We also now know that all the used pages are at the top * of the physical memory and where they are in the virtual memory map. * * This should be the stage we are at at the end of the bootstrap when * we have a two stage booter. * * The secondary bootstrap has the responcibility to sort locating the * kernel to the correct address and for creating the kernel page tables. * It must also set up various memory pointers that are used by pmap etc. */ process_kernel_args(); if (bootconfig.vram[0].pages != 0) printf("initarm: Secondary bootstrap ... "); /* Zero down the memory we mapped in for the secondary bootstrap */ memset(0x00000000, 0, 0x400000); /* XXX */ /* * Set up the variables that define the availablilty of physcial * memory */ physical_start = bootconfig.dram[0].address; physical_freestart = physical_start; physical_end = bootconfig.dram[bootconfig.dramblocks - 1].address + bootconfig.dram[bootconfig.dramblocks - 1].pages * NBPG; physical_freeend = physical_end; free_pages = bootconfig.drampages; for (loop = 0; loop < bootconfig.dramblocks; ++loop) physmem += bootconfig.dram[loop].pages; /* * Reserve some pages at the top of the memory for later use * * This area is not currently used but could be used for the allocation * of L1 page tables for each process. * The size of this memory would be determined by the maximum number of * processes. * * For the moment we just reserve a few pages just to make sure the * system copes. */ physical_freeend -= videodram_size; free_pages -= (videodram_size / NBPG); videodram_start = physical_freeend; if (videodram_size) { videomemory.vidm_vbase = VMEM_VBASE; videomemory.vidm_pbase = videodram_start; videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; videomemory.vidm_size = videodram_size; } /* * Right We have the bottom meg of memory mapped to 0x00000000 * so was can get at it. The kernel will ocupy the start of it. * After the kernel/args we allocate some the the fixed page tables * we need to get the system going. * We allocate one page directory and 8 page tables and store the * physical addresses in the kernel_pt_table array. * Must remember that neither the page L1 or L2 page tables are the * same size as a page ! * * Ok the next bit of physical allocate may look complex but it is * simple really. I have done it like this so that no memory gets * wasted during the allocate of various pages and tables that are * all different sizes. * The start address will be page aligned. * We allocate the kernel page directory on the first free 16KB * boundry we find. * We allocate the kernel page tables on the first 1KB boundry we find. * We allocate 9 PT's. This means that in the process we * KNOW that we will encounter at least 1 16KB boundry. * * Eventually if the top end of the memory gets used for process L1 * page tables the kernel L1 page table may be moved up there. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif #if NHYDRABUS > 0 /* * The Simtec Hydra board needs a 2MB aligned page for bootstrapping. * Simplest thing is to nick the bottom page of physical memory. */ hydrascratch.pv_pa = physical_start; physical_start += NBPG; --free_pages; #endif /* NHYDRABUS */ /* Update the address of the first free page of physical memory */ physical_freestart = physical_start + kerneldatasize; free_pages -= (physical_freestart - physical_start) / NBPG; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ (var) = physical_freestart; \ physical_freestart += ((np) * NBPG); \ free_pages -= (np); \ memset((char *)(var) - physical_start, 0, ((np) * NBPG)); loop1 = 0; kernel_l1pt.pv_pa = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if ((physical_freestart & (PD_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, PD_SIZE / NBPG); } else { alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG); ++loop1; } } #ifdef DIAGNOSTIC /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory\n"); #endif /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate a page for the page table to map kernel page tables*/ valloc_pages(kernel_ptpt, PT_SIZE / NBPG); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG); #ifdef CPU_SA110 /* * XXX totally stuffed hack to work round problems introduced * in recent versions of the pmap code. Due to the calls used there * we cannot allocate virtual memory during bootstrap. */ sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start) + (CPU_SA110_CACHE_CLEAN_SIZE - 1)) & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1); #endif /* CPU_SA110 */ /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table\n"); #endif /* * Now we start consturction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa - physical_start; /* Map the L2 pages tables in the L1 page table */ map_pagetable(l1pagetable, 0x00000000, kernel_pt_table[KERNEL_PT_SYS]); map_pagetable(l1pagetable, KERNEL_BASE, kernel_pt_table[KERNEL_PT_KERNEL]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, kernel_pt_table[KERNEL_PT_VMDATA + loop]); map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE, kernel_ptpt.pv_pa); map_pagetable(l1pagetable, VMEM_VBASE, kernel_pt_table[KERNEL_PT_VMEM]); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel code/data */ l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL] - physical_start; if (N_GETMAGIC(kernexec[0]) == ZMAGIC) { logical = map_chunk(0, l2pagetable, KERNEL_TEXT_BASE, physical_start, kernexec->a_text, AP_KR, PT_CACHEABLE); logical += map_chunk(0, l2pagetable, KERNEL_TEXT_BASE + logical, physical_start + logical, kerneldatasize - kernexec->a_text, AP_KRW, PT_CACHEABLE); } else map_chunk(0, l2pagetable, KERNEL_TEXT_BASE, physical_start, kerneldatasize, AP_KRW, PT_CACHEABLE); #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE); map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE); map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE); map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * NBPG, AP_KRW, PT_CACHEABLE); map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, PD_SIZE, AP_KRW, 0); /* Map the page table that maps the kernel pages */ map_entry_nc(l2pagetable, kernel_ptpt.pv_pa - physical_start, kernel_ptpt.pv_pa); /* Now we fill in the L2 pagetable for the VRAM */ /* * Current architectures mean that the VRAM is always in 1 continuous * bank. * This means that we can just map the 2 meg that the VRAM would occupy. * In theory we don't need a page table for VRAM, we could section map * it but we would need the page tables if DRAM was in use. */ l2pagetable = kernel_pt_table[KERNEL_PT_VMEM] - physical_start; map_chunk(0, l2pagetable, VMEM_VBASE, videomemory.vidm_pbase, videomemory.vidm_size, AP_KRW, PT_CACHEABLE); map_chunk(0, l2pagetable, VMEM_VBASE + videomemory.vidm_size, videomemory.vidm_pbase, videomemory.vidm_size, AP_KRW, PT_CACHEABLE); /* * Map entries in the page table used to map PTE's * Basically every kernel page table gets mapped here */ /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */ l2pagetable = kernel_ptpt.pv_pa - physical_start; map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_KERNEL]); map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)), kernel_ptpt.pv_pa); map_entry_nc(l2pagetable, (VMEM_VBASE >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_VMEM]); map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) { map_entry_nc(l2pagetable, ((KERNEL_VM_BASE + (loop * 0x00400000)) >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_VMDATA + loop]); } /* * Map the system page in the kernel page table for the bottom 1Meg * of the virtual memory map. */ l2pagetable = kernel_pt_table[KERNEL_PT_SYS] - physical_start; map_entry(l2pagetable, 0x0000000, systempage.pv_pa); /* Map the VIDC20, IOMD, COMBO and podules */ /* Map the VIDC20 */ map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE, 0); /* Map the IOMD (and SLOW and MEDIUM simple podules) */ map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE, 0); /* Map the COMBO (and module space) */ map_section(l1pagetable, IO_BASE, IO_HW_BASE, 0); /* Bit more debugging info */ /* printf("page tables look like this ...\n"); printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000)); printf("V0x03200000 - %08x\n", ReadWord(l1pagetable + 0x00c8)); printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4)); printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00)); printf("V0xf1000000 - %08x\n", ReadWord(l1pagetable + 0x3c40)); printf("V0xf2000000 - %08x\n", ReadWord(l1pagetable + 0x3c80)); printf("V0xf3000000 - %08x\n", ReadWord(l1pagetable + 0x3cc0)); printf("V0xf3300000 - %08x\n", ReadWord(l1pagetable + 0x3ccc)); printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00)); printf("V0xf6000000 - %08x\n", ReadWord(l1pagetable + 0x3d80)); */ /* printf("V0xefc00000 - %08x\n", ReadWord(l1pagetable + 0x3bf8)); printf("V0xef800000 - %08x\n", ReadWord(l1pagetable + 0x3bfc));*/ /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * The last thing we must do is copy the kernel down to the new memory. * This copies all our kernel data structures and variables as well * which is why it is left to the last moment. */ if (bootconfig.vram[0].pages != 0) printf("mapping ... "); memcpy((char *)0x00000000, (char *)KERNEL_TEXT_BASE, kerneldatasize); /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("switching to new L1 page table\n"); #endif setttb(kernel_l1pt.pv_pa); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem wil not occur after initarm(). */ cpu_cache_cleanID(); if (videodram_size != 0) { bootconfig.display_start = VMEM_VBASE; physcon_display_base(VMEM_VBASE); vidcconsole_reinit(); /* Turn the VIDC DAC's on again. */ vidcconsole_blank(vconsole_current, BLANK_NONE); printf("\x0cSecondary bootstrap: "); } printf("done.\n"); /* Right set up the vectors at the bottom of page 0 */ memcpy((char *)0x00000000, page0, page0_end - page0); /* We have modified a text page so sync the icache */ cpu_cache_syncI_rng(0, page0_end - page0); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); console_flush(); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG); #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("kstack V%08lx P%08lx\n", kernelstack.pv_va, kernelstack.pv_pa); #endif /* PMAP_DEBUG */ /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. Until then we will use a handler that just panics but * tells us why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slighly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; console_flush(); #if 0 /* Diagnostic stuff. while writing the boot code */ for (loop = 0x0; loop < 0x1000; ++loop) { if (ReadWord(PAGE_DIRS_BASE + loop * 4) != 0) printf("Pagetable for V%08x = %08x\n", loop << 20, ReadWord(0xf2000000 + loop * 4)); } for (loop = 0x0; loop < 0x400; ++loop) { if (ReadWord(kernel_pt_table[KERNEL_PT_PTE] + loop * 4) != 0) printf("Pagetable for V%08x P%08x = %08x\n", loop << 22, kernel_pt_table[KERNEL_PT_PTE]+loop*4, ReadWord(kernel_pt_table[KERNEL_PT_PTE]+loop * 4)); } #endif /* At last ! * We now have the kernel in physical memory from the bottom upwards. * Kernel page tables are physically above this. * The kernel is mapped to 0xf0000000 * The kernel data PTs will handle the mapping of 0xf1000000-0xf1ffffff * 2Meg of VRAM is mapped to 0xf4000000 * The page tables are mapped to 0xefc00000 * The IOMD is mapped to 0xf6000000 * The VIDC is mapped to 0xf6100000 */ /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); console_flush(); /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap(kernel_l1pt.pv_va, kernel_ptpt); console_flush(); /* Setup the IRQ system */ printf("irq "); console_flush(); irq_init(); printf("done.\n"); if (cmos_read(RTC_ADDR_REBOOTCNT) > 0) printf("Warning: REBOOTCNT = %d\n", cmos_read(RTC_ADDR_REBOOTCNT)); #ifdef CPU_SA110 if (cputype == ID_SA110) rpc_sa110_cc_setup(); #endif /* CPU_SA110 */ #if NIPKDB > 0 /* Initialise ipkdb */ ipkdb_init(); if (boothowto & RB_KDB) ipkdb_connect(0); #endif /* NIPKDB */ #ifdef DDB printf("ddb: "); db_machine_init(); { extern int end; extern int *esym; ddb_init(*(int *)&end, ((int *)&end) + 1, esym); } if (boothowto & RB_KDB) Debugger(); #endif /* DDB */ /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } static void process_kernel_args(void) { char *args; /* Ok now we will check the arguments for interesting parameters. */ args = (char *)bootconfig.argvirtualbase; boothowto = 0; /* Skip the first parameter (the boot loader filename) */ while (*args != ' ' && *args != 0) ++args; while (*args == ' ') ++args; /* Skip the kernel image filename */ while (*args != ' ' && *args != 0) ++args; while (*args == ' ') ++args; boot_args = args; parse_mi_bootargs(boot_args); parse_rpc_bootargs(boot_args); } void parse_rpc_bootargs(args) char *args; { int integer; if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT, &integer)) { videodram_size = integer; /* Round to 4K page */ videodram_size *= 1024; videodram_size = round_page(videodram_size); if (videodram_size > 1024*1024) videodram_size = 1024*1024; } } /* * Ok these are some development functions. They map blocks of memory * into the video ram virtual memory. * The idea is to follow this with a call to the vidc device to * reinitialise the vidc20 for the new video ram. * Only meaning full if was support VRAM. */ /* Map DRAM into the video memory */ int vmem_mapdram() { u_int l2pagetable; u_int logical; if (videodram_start == 0 || videodram_size == 0) return(ENOMEM); /* flush existing video data */ cpu_cache_purgeD(); /* Get the level 2 pagetable for the video memory */ l2pagetable = (u_int)pmap_pte(kernel_pmap, (vm_offset_t)videomemory.vidm_vbase); /* Map a block of DRAM into the video memory area */ for (logical = 0; logical < 0x200000; logical += NBPG) { map_entry(l2pagetable, logical, videodram_start + logical); map_entry(l2pagetable, logical + 0x200000, videodram_start + logical); } /* Flush the TLB so we pick up the new mappings */ cpu_tlb_flushD(); /* Rebuild the video memory descriptor */ videomemory.vidm_vbase = VMEM_VBASE; videomemory.vidm_pbase = videodram_start; videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; videomemory.vidm_size = videodram_size; /* Reinitialise the video system */ /* video_reinit();*/ return(0); } /* Map VRAM into the video memory */ int vmem_mapvram() { u_int l2pagetable; u_int logical; if (bootconfig.vram[0].address == 0 || bootconfig.vram[0].pages == 0) return(ENOMEM); /* flush existing video data */ cpu_cache_purgeD(); /* Get the level 2 pagetable for the video memory */ l2pagetable = (u_int)pmap_pte(kernel_pmap, (vm_offset_t)videomemory.vidm_vbase); /* Map the VRAM into the video memory area */ for (logical = 0; logical < 0x200000; logical += NBPG) { map_entry(l2pagetable, logical, bootconfig.vram[0].address + logical); map_entry(l2pagetable, logical + 0x200000, bootconfig.vram[0].address + logical); } /* Flush the TLB so we pick up the new mappings */ cpu_tlb_flushD(); /* Rebuild the video memory descriptor */ videomemory.vidm_vbase = VMEM_VBASE; videomemory.vidm_pbase = VRAM_BASE; videomemory.vidm_type = VIDEOMEM_TYPE_VRAM; videomemory.vidm_size = bootconfig.vram[0].pages * NBPG; /* Reinitialise the video system */ /* video_reinit();*/ return(0); } /* Set the cache behaviour for the video memory */ int vmem_cachectl(flag) int flag; { u_int l2pagetable; u_int logical; u_int pa; if (bootconfig.vram[0].address == 0 || bootconfig.vram[0].pages == 0) return(ENOMEM); /* Get the level 2 pagetable for the video memory */ l2pagetable = (u_int)pmap_pte(kernel_pmap, (vm_offset_t)videomemory.vidm_vbase); /* Map the VRAM into the video memory area */ if (flag == 0) { printf("Disabling caching and buffering of VRAM\n"); for (logical = 0; logical < 0x200000; logical += NBPG) { map_entry_nc(l2pagetable, logical, bootconfig.vram[0].address + logical); map_entry_nc(l2pagetable, logical + 0x200000, bootconfig.vram[0].address + logical); } } else if (flag == 1) { printf("Disabling caching of VRAM\n"); for (logical = 0; logical < 0x200000; logical += NBPG) { pa = bootconfig.vram[0].address + logical; WriteWord(l2pagetable + ((logical >> 10) & 0x00000ffc), L2_PTE_NC((pa & PG_FRAME), AP_KRW)); WriteWord(l2pagetable + (((logical+0x200000) >> 10) & 0x00000ffc), L2_PTE_NC((pa & PG_FRAME), AP_KRW)); } } else if (flag == 2) { printf("Disabling buffering of VRAM\n"); for (logical = 0; logical < 0x200000; logical += NBPG) { pa = bootconfig.vram[0].address + logical; WriteWord(l2pagetable + ((logical >> 10) & 0x00000ffc), L2_PTE_NC_NB((pa & PG_FRAME), AP_KRW)|PT_C); WriteWord(l2pagetable + (((logical+0x200000) >> 10) & 0x00000ffc), L2_PTE_NC_NB((pa & PG_FRAME), AP_KRW)|PT_C); } } else { printf("Enabling caching and buffering of VRAM\n"); for (logical = 0; logical < 0x200000; logical += NBPG) { map_entry(l2pagetable, logical, bootconfig.vram[0].address + logical); map_entry(l2pagetable, logical + 0x200000, bootconfig.vram[0].address + logical); } } /* clean out any existing cached video data */ cpu_cache_purgeD(); /* Flush the TLB so we pick up the new mappings */ cpu_tlb_flushD(); return(0); } #ifdef CPU_SA110 /* * For optimal cache cleaning we need two 16K banks of * virtual address space that NOTHING else will access * and then we alternate the cache cleaning between the * two banks. * The cache cleaning code requires requires 2 banks aligned * on total size boundry so the banks can be alternated by * eorring the size bit (assumes the bank size is a power of 2) */ extern unsigned int sa110_cache_clean_addr; extern unsigned int sa110_cache_clean_size; void rpc_sa110_cc_setup(void) { int loop; vm_offset_t kaddr; pt_entry_t *pte; kaddr = pmap_extract(kernel_pmap, KERNEL_TEXT_BASE); for (loop = 0; loop < CPU_SA110_CACHE_CLEAN_SIZE; loop += NBPG) { pte = pmap_pte(kernel_pmap, (sa110_cc_base + loop)); *pte = L2_PTE(kaddr, AP_KR); } sa110_cache_clean_addr = sa110_cc_base; sa110_cache_clean_size = CPU_SA110_CACHE_CLEAN_SIZE / 2; } #endif /* CPU_SA110 */ /* End of machdep.c */