/* $NetBSD: an.c,v 1.20 2001/07/18 02:06:44 onoe Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $ */ /* * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Aironet 4500/4800 series cards some in PCMCIA, ISA and PCI form. * This driver supports all three device types (PCI devices are supported * through an extra PCI shim: /sys/pci/if_an_p.c). ISA devices can be * supported either using hard-coded IO port/IRQ settings or via Plug * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates. * The 4800 devices support 1, 2, 5.5 and 11Mbps rates. * * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are * a couple of important differences though: * * - Lucent doesn't currently offer a PCI card, however Aironet does * - Lucent ISA card looks to the host like a PCMCIA controller with * a PCMCIA WaveLAN card inserted. This means that even desktop * machines need to be configured with PCMCIA support in order to * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand * actually look like normal ISA and PCI devices to the host, so * no PCMCIA controller support is needed * * The latter point results in a small gotcha. The Aironet PCMCIA * cards can be configured for one of two operating modes depending * on how the Vpp1 and Vpp2 programming voltages are set when the * card is activated. In order to put the card in proper PCMCIA * operation (where the CIS table is visible and the interface is * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages, * which leaves the card in ISA/PCI mode, which prevents it from * being activated as an PCMCIA device. Consequently, /sys/pccard/pccard.c * has to be patched slightly in order to enable the Vpp voltages in * order to make the Aironet PCMCIA cards work. * * Note that some PCMCIA controller software packages for Windows NT * fail to set the voltages as well. * * The Aironet devices can operate in both station mode and access point * mode. Typically, when programmed for station mode, the card can be set * to automatically perform encapsulation/decapsulation of Ethernet II * and 802.3 frames within 802.11 frames so that the host doesn't have * to do it itself. This driver doesn't program the card that way: the * driver handles all of the encapsulation/decapsulation itself. */ /* * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego * IETF meeting. */ #include "opt_inet.h" #include "bpfilter.h" #ifdef INET /* * It is designed for IPv4 only. * no one use it and disabled for now. -- onoe */ #undef ANCACHE /* enable signal strength cache */ #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef ANCACHE #include #include #endif #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #if !defined(lint) static const char rcsid[] = "$FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $"; #endif /* These are global because we need them in sys/pci/if_an_p.c. */ static void an_reset __P((struct an_softc *)); static void an_wait __P((struct an_softc *)); static int an_ioctl __P((struct ifnet *, u_long, caddr_t)); static int an_set_nwkey __P((struct an_softc *, struct ieee80211_nwkey *)); static int an_set_nwkey_wep __P((struct an_softc *, struct ieee80211_nwkey *)); static int an_set_nwkey_eap __P((struct an_softc *, struct ieee80211_nwkey *)); static int an_get_nwkey __P((struct an_softc *, struct ieee80211_nwkey *)); static int an_write_wepkey __P((struct an_softc *sc, int type, struct an_wepkey *keys, int kid)); static int an_init __P((struct ifnet *)); static void an_stop __P((struct ifnet *, int)); static int an_init_tx_ring __P((struct an_softc *)); static void an_start __P((struct ifnet *)); static void an_watchdog __P((struct ifnet *)); static void an_rxeof __P((struct an_softc *)); static void an_txeof __P((struct an_softc *, int)); static int an_cmd __P((struct an_softc *, int, int)); static int an_read_record __P((struct an_softc *, struct an_ltv_gen *)); static int an_write_record __P((struct an_softc *, struct an_ltv_gen *)); static int an_read_data __P((struct an_softc *, int, int, caddr_t, int)); static int an_write_data __P((struct an_softc *, int, int, caddr_t, int)); static int an_seek __P((struct an_softc *, int, int, int)); static int an_alloc_nicmem __P((struct an_softc *, int, int *)); static void an_stats_update __P((void *)); static int an_setdef __P((struct an_softc *, struct an_req *)); #ifdef ANCACHE static void an_cache_store __P((struct an_softc *, struct ether_header *, struct mbuf *, unsigned short)); #endif #ifdef IFM_IEEE80211 static int an_media_change __P((struct ifnet *ifp)); static void an_media_status __P((struct ifnet *ifp, struct ifmediareq *imr)); #endif int an_attach(struct an_softc *sc) { struct ifnet *ifp = &sc->arpcom.ec_if; int i, s; struct an_ltv_wepkey *akey; #ifdef IFM_IEEE80211 int mtype; struct ifmediareq imr; #endif s = splnet(); sc->an_associated = 0; an_wait(sc); /* Load factory config */ if (an_cmd(sc, AN_CMD_READCFG, 0)) { splx(s); printf("%s: failed to load config data\n", sc->an_dev.dv_xname); return(EIO); } /* Read the current configuration */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) { splx(s); printf("%s: read record failed\n", sc->an_dev.dv_xname); return(EIO); } /* Read the card capabilities */ sc->an_caps.an_type = AN_RID_CAPABILITIES; sc->an_caps.an_len = sizeof(struct an_ltv_caps); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) { splx(s); printf("%s: read record failed\n", sc->an_dev.dv_xname); return(EIO); } /* Read ssid list */ sc->an_ssidlist.an_type = AN_RID_SSIDLIST; sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) { splx(s); printf("%s: read record failed\n", sc->an_dev.dv_xname); return(EIO); } /* Read AP list */ sc->an_aplist.an_type = AN_RID_APLIST; sc->an_aplist.an_len = sizeof(struct an_ltv_aplist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) { splx(s); printf("%s: read record failed\n", sc->an_dev.dv_xname); return(EIO); } /* Read WEP settings from persistent memory */ akey = (struct an_ltv_wepkey *)&sc->an_reqbuf; akey->an_type = AN_RID_WEP_VOLATILE; akey->an_len = sizeof(struct an_ltv_wepkey); while (an_read_record(sc, (struct an_ltv_gen *)akey) == 0) { if (akey->an_key_index == 0xffff) { sc->an_tx_perskey = akey->an_mac_addr[0]; sc->an_tx_key = -1; break; } if (akey->an_key_index >= IEEE80211_WEP_NKID) break; sc->an_perskeylen[akey->an_key_index] = akey->an_key_len; sc->an_wepkeys[akey->an_key_index].an_wep_keylen = -1; akey->an_type = AN_RID_WEP_PERSISTENT; /* for next key */ akey->an_len = sizeof(*akey); } /* XXX not sure if persistent key settings should be printed here */ printf("%s: 802.11 address: %s\n", sc->an_dev.dv_xname, ether_sprintf(sc->an_caps.an_oemaddr)); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALLMULTI; ifp->if_ioctl = an_ioctl; ifp->if_start = an_start; ifp->if_init = an_init; ifp->if_stop = an_stop; ifp->if_watchdog = an_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->an_dev.dv_xname, IFNAMSIZ); memset(sc->an_config.an_nodename, 0, sizeof(sc->an_config.an_nodename)); memcpy(sc->an_config.an_nodename, AN_DEFAULT_NODENAME, sizeof(AN_DEFAULT_NODENAME) - 1); memset(sc->an_ssidlist.an_ssid1, 0, sizeof(sc->an_ssidlist.an_ssid1)); memcpy(sc->an_ssidlist.an_ssid1, AN_DEFAULT_NETNAME, sizeof(AN_DEFAULT_NETNAME) - 1); sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME); sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION; sc->an_tx_rate = 0; #if 0 memset(&sc->an_stats, 0, sizeof(sc->an_stats)); #endif /* * Call MI attach routine. */ if_attach(ifp); ether_ifattach(ifp, sc->an_caps.an_oemaddr); #ifdef IFM_IEEE80211 ifmedia_init(&sc->sc_media, 0, an_media_change, an_media_status); ifmedia_add(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0, NULL); ifmedia_add(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0, NULL); for (i = 0; i < sizeof(sc->an_caps.an_rates); i++) { switch (sc->an_caps.an_rates[i]) { case AN_RATE_1MBPS: mtype = IFM_IEEE80211_DS1; break; case AN_RATE_2MBPS: mtype = IFM_IEEE80211_DS2; break; case AN_RATE_5_5MBPS: mtype = IFM_IEEE80211_DS5; break; case AN_RATE_11MBPS: mtype = IFM_IEEE80211_DS11; break; default: continue; } ifmedia_add(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, mtype, 0, 0), 0, NULL); ifmedia_add(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, mtype, IFM_IEEE80211_ADHOC, 0), 0, NULL); } an_media_status(ifp, &imr); ifmedia_set(&sc->sc_media, imr.ifm_active); #endif callout_init(&sc->an_stat_ch); splx(s); return(0); } int an_detach(struct an_softc *sc) { struct ifnet *ifp = &sc->arpcom.ec_if; int s; s = splnet(); an_stop(ifp, 1); ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); splx(s); return 0; } int an_activate(struct device *self, enum devact act) { struct an_softc *sc = (struct an_softc *)self; int s, error = 0; s = splnet(); switch (act) { case DVACT_ACTIVATE: error = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(&sc->arpcom.ec_if); break; } splx(s); return error; } void an_power(int why, void *arg) { int s; struct an_softc *sc = arg; struct ifnet *ifp = &sc->arpcom.ec_if; s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: an_stop(ifp, 1); break; case PWR_RESUME: if (ifp->if_flags & IFF_UP) an_init(ifp); break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } splx(s); } void an_shutdown(void *arg) { struct an_softc *sc = arg; an_stop(&sc->arpcom.ec_if, 1); return; } static int an_setdef(struct an_softc *sc, struct an_req *areq) { int error; struct ifnet *ifp = &sc->arpcom.ec_if; struct an_ltv_genconfig *cfg; struct an_ltv_gen *sp; error = 0; switch (areq->an_type) { case AN_RID_GENCONFIG: cfg = (struct an_ltv_genconfig *)areq; memcpy(sc->an_caps.an_oemaddr, cfg->an_macaddr, ETHER_ADDR_LEN); memcpy(LLADDR(ifp->if_sadl), cfg->an_macaddr, ETHER_ADDR_LEN); memcpy(&sc->an_config, areq, sizeof(struct an_ltv_genconfig)); error = ENETRESET; break; case AN_RID_SSIDLIST: memcpy(&sc->an_ssidlist, areq, sizeof(struct an_ltv_ssidlist)); error = ENETRESET; break; case AN_RID_APLIST: memcpy(&sc->an_aplist, areq, sizeof(struct an_ltv_aplist)); error = ENETRESET; break; case AN_RID_TX_SPEED: sp = (struct an_ltv_gen *)areq; sc->an_tx_rate = sp->an_val; break; case AN_RID_WEP_VOLATILE: case AN_RID_WEP_PERSISTENT: case AN_RID_LEAP_USER: case AN_RID_LEAP_PASS: if (!sc->sc_enabled) { error = ENXIO; break; } an_cmd(sc, AN_CMD_DISABLE, 0); an_write_record(sc, (struct an_ltv_gen *)areq); if (an_cmd(sc, AN_CMD_ENABLE, 0)) error = EIO; break; default: if (ifp->if_flags & IFF_DEBUG) printf("%s: unknown RID: %x\n", sc->an_dev.dv_xname, areq->an_type); error = EINVAL; break; } return error; } static int an_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { int s; int error = 0; struct an_softc *sc; struct an_req *areq; struct ifreq *ifr; struct ieee80211_nwid nwid; struct ieee80211_power *power; sc = ifp->if_softc; ifr = (struct ifreq *)data; s = splnet(); switch (command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (sc->sc_enabled) { /* * To avoid rescanning another access point, * do not call an_init() here. Instead, only * reflect promisc mode settings. */ error = an_cmd(sc, AN_CMD_SET_MODE, (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0); } else error = an_init(ifp); } else if (sc->sc_enabled) an_stop(ifp, 1); break; case SIOCGAIRONET: areq = &sc->an_reqbuf; error = copyin(ifr->ifr_data, areq, sizeof(struct an_req)); if (error) break; switch (areq->an_type) { #ifdef ANCACHE case AN_RID_ZERO_CACHE: /* XXX suser()? -- should belong to SIOCSAIRONET */ sc->an_sigitems = sc->an_nextitem = 0; goto out; case AN_RID_READ_CACHE: caddr_t pt = (char *)&areq->an_val; memcpy(pt, &sc->an_sigitems, sizeof(int)); pt += sizeof(int); areq->an_len = sizeof(int) / 2; memcpy(pt, &sc->an_sigcache, sizeof(struct an_sigcache) * sc->an_sigitems); areq->an_len += ((sizeof(struct an_sigcache) * sc->an_sigitems) / 2) + 1; break; #endif default: if (an_read_record(sc, (struct an_ltv_gen *)areq)) { error = EINVAL; break; } break; } error = copyout(areq, ifr->ifr_data, sizeof(struct an_req)); break; case SIOCSAIRONET: if ((error = suser(curproc->p_ucred, &curproc->p_acflag))) break; areq = &sc->an_reqbuf; error = copyin(ifr->ifr_data, areq, sizeof(struct an_req)); if (error) break; error = an_setdef(sc, areq); break; case SIOCS80211NWID: error = copyin(ifr->ifr_data, &nwid, sizeof(nwid)); if (error) break; if (nwid.i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } if (sc->an_ssidlist.an_ssid1_len == nwid.i_len && memcmp(sc->an_ssidlist.an_ssid1, nwid.i_nwid, nwid.i_len) == 0) break; memset(sc->an_ssidlist.an_ssid1, 0, IEEE80211_NWID_LEN); sc->an_ssidlist.an_ssid1_len = nwid.i_len; memcpy(sc->an_ssidlist.an_ssid1, nwid.i_nwid, nwid.i_len); error = ENETRESET; break; case SIOCG80211NWID: memset(&nwid, 0, sizeof(nwid)); if (sc->sc_enabled && sc->an_associated) { nwid.i_len = sc->an_status.an_ssidlen; memcpy(nwid.i_nwid, sc->an_status.an_ssid, nwid.i_len); } else { nwid.i_len = sc->an_ssidlist.an_ssid1_len; memcpy(nwid.i_nwid, sc->an_ssidlist.an_ssid1, nwid.i_len); } error = copyout(&nwid, ifr->ifr_data, sizeof(nwid)); break; case SIOCS80211NWKEY: error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCG80211NWKEY: error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCS80211POWER: power = (struct ieee80211_power *)data; sc->an_config.an_psave_mode = power->i_enabled ? AN_PSAVE_PSP : AN_PSAVE_NONE; sc->an_config.an_listen_interval = power->i_maxsleep; error = ENETRESET; break; case SIOCG80211POWER: power = (struct ieee80211_power *)data; power->i_enabled = sc->an_config.an_psave_mode != AN_PSAVE_NONE ? 1 : 0; power->i_maxsleep = sc->an_config.an_listen_interval; break; #ifdef IFM_IEEE80211 case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); break; #endif case SIOCADDMULTI: case SIOCDELMULTI: error = ether_ioctl(ifp, command, data); if (error == ENETRESET) { /* we don't have multicast filter. */ error = 0; } break; default: error = ether_ioctl(ifp, command, data); break; } if (error == ENETRESET) { if (sc->sc_enabled) error = an_init(ifp); else error = 0; } #ifdef ANCACHE out: #endif splx(s); return error; } static int an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) { int error; u_int16_t prevauth; error = 0; prevauth = sc->an_config.an_authtype; switch (nwkey->i_wepon) { case IEEE80211_NWKEY_OPEN: sc->an_config.an_authtype = AN_AUTHTYPE_OPEN; break; case IEEE80211_NWKEY_WEP: case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST: error = an_set_nwkey_wep(sc, nwkey); if (error == 0 || error == ENETRESET) sc->an_config.an_authtype = AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE; break; case IEEE80211_NWKEY_EAP: error = an_set_nwkey_eap(sc, nwkey); if (error == 0 || error == ENETRESET) sc->an_config.an_authtype = AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_LEAP; break; default: error = EINVAL; break; } if (error == 0 && prevauth != sc->an_config.an_authtype) error = ENETRESET; return error; } static int an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey) { int i, txkey, anysetkey, needreset, error; struct an_wepkey keys[IEEE80211_WEP_NKID]; error = 0; memset(keys, 0, sizeof(keys)); anysetkey = needreset = 0; /* load argument and sanity check */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen; if (keys[i].an_wep_keylen < 0) continue; if (keys[i].an_wep_keylen != 0 && keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN) return EINVAL; if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key)) return EINVAL; if ((error = copyin(nwkey->i_key[i].i_keydat, keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0) return error; anysetkey++; } txkey = nwkey->i_defkid - 1; if (txkey >= 0) { if (txkey >= IEEE80211_WEP_NKID) return EINVAL; /* default key must have a valid value */ if (keys[txkey].an_wep_keylen == 0 || (keys[txkey].an_wep_keylen < 0 && sc->an_perskeylen[txkey] == 0)) return EINVAL; anysetkey++; } if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) { /* set temporary keys */ sc->an_tx_key = txkey; for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (keys[i].an_wep_keylen < 0) continue; memcpy(&sc->an_wepkeys[i], &keys[i], sizeof(keys[i])); } } else { /* set persist keys */ if (anysetkey) { /* prepare to write nvram */ if (!sc->sc_enabled) { if (sc->sc_enable) (*sc->sc_enable)(sc); an_wait(sc); sc->sc_enabled = 1; error = an_write_wepkey(sc, AN_RID_WEP_PERSISTENT, keys, txkey); if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } else { an_cmd(sc, AN_CMD_DISABLE, 0); error = an_write_wepkey(sc, AN_RID_WEP_PERSISTENT, keys, txkey); an_cmd(sc, AN_CMD_ENABLE, 0); } if (error) return error; } if (txkey >= 0) sc->an_tx_perskey = txkey; if (sc->an_tx_key >= 0) { sc->an_tx_key = -1; needreset++; } for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (sc->an_wepkeys[i].an_wep_keylen >= 0) { memset(&sc->an_wepkeys[i].an_wep_key, 0, sizeof(sc->an_wepkeys[i].an_wep_key)); sc->an_wepkeys[i].an_wep_keylen = -1; needreset++; } if (keys[i].an_wep_keylen >= 0) sc->an_perskeylen[i] = keys[i].an_wep_keylen; } } if (needreset) { /* firmware restart to reload persistent key */ an_reset(sc); } if (anysetkey || needreset) error = ENETRESET; return error; } static int an_set_nwkey_eap(struct an_softc *sc, struct ieee80211_nwkey *nwkey) { int i, error; struct an_ltv_leapkey *key; u_int16_t unibuf[sizeof(key->an_key)]; MD4_CTX ctx; error = 0; if (nwkey->i_key[0].i_keydat == NULL && nwkey->i_key[1].i_keydat == NULL) return 0; if (!sc->sc_enabled) return ENXIO; an_cmd(sc, AN_CMD_DISABLE, 0); key = (struct an_ltv_leapkey *)&sc->an_reqbuf; if (nwkey->i_key[0].i_keydat != NULL) { memset(key, 0, sizeof(*key)); key->an_type = AN_RID_LEAP_USER; key->an_len = sizeof(*key); key->an_key_len = nwkey->i_key[0].i_keylen; if (key->an_key_len > sizeof(key->an_key)) return EINVAL; if ((error = copyin(nwkey->i_key[0].i_keydat, key->an_key, key->an_key_len)) != 0) return error; an_write_record(sc, (struct an_ltv_gen *)key); } if (nwkey->i_key[1].i_keydat != NULL) { memset(key, 0, sizeof(*key)); key->an_type = AN_RID_LEAP_PASS; key->an_len = sizeof(*key); key->an_key_len = nwkey->i_key[1].i_keylen; if (key->an_key_len > sizeof(key->an_key)) return EINVAL; if ((error = copyin(nwkey->i_key[1].i_keydat, key->an_key, key->an_key_len)) != 0) return error; /* * Cisco seems to use PasswordHash and PasswordHashHash * in RFC-2759 (MS-CHAP-V2). */ memset(unibuf, 0, sizeof(unibuf)); /* XXX: convert password to unicode */ for (i = 0; i < key->an_key_len; i++) unibuf[i] = key->an_key[i]; /* set PasswordHash */ MD4Init(&ctx); MD4Update(&ctx, (u_int8_t *)unibuf, key->an_key_len * 2); MD4Final(key->an_key, &ctx); /* set PasswordHashHash */ MD4Init(&ctx); MD4Update(&ctx, key->an_key, 16); MD4Final(key->an_key + 16, &ctx); key->an_key_len = 32; an_write_record(sc, (struct an_ltv_gen *)key); } error = an_cmd(sc, AN_CMD_ENABLE, 0); if (error) printf("%s: an_set_nwkey: failed to enable MAC\n", sc->an_dev.dv_xname); else error = ENETRESET; return error; } static int an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) { int i, error; error = 0; if (sc->an_config.an_authtype & AN_AUTHTYPE_LEAP) nwkey->i_wepon = IEEE80211_NWKEY_EAP; else if (sc->an_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) nwkey->i_wepon = IEEE80211_NWKEY_WEP; else nwkey->i_wepon = IEEE80211_NWKEY_OPEN; if (sc->an_tx_key == -1) nwkey->i_defkid = sc->an_tx_perskey + 1; else nwkey->i_defkid = sc->an_tx_key + 1; if (nwkey->i_key[0].i_keydat == NULL) return 0; for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (nwkey->i_key[i].i_keydat == NULL) continue; /* do not show any keys to non-root user */ if ((error = suser(curproc->p_ucred, &curproc->p_acflag)) != 0) break; nwkey->i_key[i].i_keylen = sc->an_wepkeys[i].an_wep_keylen; if (nwkey->i_key[i].i_keylen < 0) { if (sc->an_perskeylen[i] == 0) nwkey->i_key[i].i_keylen = 0; continue; } if ((error = copyout(sc->an_wepkeys[i].an_wep_key, nwkey->i_key[i].i_keydat, sc->an_wepkeys[i].an_wep_keylen)) != 0) break; } return error; } static int an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid) { int i, error; struct an_ltv_wepkey *akey; error = 0; akey = (struct an_ltv_wepkey *)&sc->an_reqbuf; memset(akey, 0, sizeof(struct an_ltv_wepkey)); akey->an_type = type; akey->an_len = sizeof(struct an_ltv_wepkey); for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (keys[i].an_wep_keylen < 0 || keys[i].an_wep_keylen > sizeof(akey->an_key)) continue; akey->an_key_len = keys[i].an_wep_keylen; akey->an_key_index = i; akey->an_mac_addr[0] = 1; /* default mac */ memcpy(akey->an_key, keys[i].an_wep_key, akey->an_key_len); error = an_write_record(sc, (struct an_ltv_gen *)akey); if (error) return error; } if (kid >= 0) { akey->an_key_index = 0xffff; akey->an_mac_addr[0] = kid; akey->an_key_len = 0; memset(akey->an_key, 0, sizeof(akey->an_key)); error = an_write_record(sc, (struct an_ltv_gen *)akey); } return error; } #ifdef IFM_IEEE80211 static int an_media_change(struct ifnet *ifp) { struct an_softc *sc = ifp->if_softc; struct ifmedia_entry *ime; int error; error = 0; ime = sc->sc_media.ifm_cur; switch (IFM_SUBTYPE(ime->ifm_media)) { case IFM_AUTO: sc->an_tx_rate = 0; break; case IFM_IEEE80211_DS1: sc->an_tx_rate = AN_RATE_1MBPS; break; case IFM_IEEE80211_DS2: sc->an_tx_rate = AN_RATE_2MBPS; break; case IFM_IEEE80211_DS5: sc->an_tx_rate = AN_RATE_5_5MBPS; break; case IFM_IEEE80211_DS11: sc->an_tx_rate = AN_RATE_11MBPS; break; } if (ime->ifm_media & IFM_IEEE80211_ADHOC) sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC; else sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION; /* * XXX: how to set txrate for the firmware? * There is a struct defined as an_txframe, which is used nowhere. * Perhaps we need to change the transmit mode from 802.3 to native. */ /* we cannot return ENETRESET here */ if (sc->sc_enabled) error = an_init(ifp); return error; } static void an_media_status(ifp, imr) struct ifnet *ifp; struct ifmediareq *imr; { struct an_softc *sc = ifp->if_softc; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (sc->sc_enabled && sc->an_associated) { imr->ifm_status |= IFM_ACTIVE; switch (sc->an_status.an_current_tx_rate) { case 0: imr->ifm_active |= IFM_AUTO; break; case AN_RATE_1MBPS: imr->ifm_active |= IFM_IEEE80211_DS1; break; case AN_RATE_2MBPS: imr->ifm_active |= IFM_IEEE80211_DS2; break; case AN_RATE_5_5MBPS: imr->ifm_active |= IFM_IEEE80211_DS5; break; case AN_RATE_11MBPS: imr->ifm_active |= IFM_IEEE80211_DS11; break; } } if ((sc->an_config.an_opmode & 0x0f) == AN_OPMODE_IBSS_ADHOC) imr->ifm_active |= IFM_IEEE80211_ADHOC; } #endif /* IFM_IEEE80211 */ static int an_init_tx_ring(struct an_softc *sc) { int i, id; for (i = 0; i < AN_TX_RING_CNT; i++) { if (an_alloc_nicmem(sc, ETHER_MAX_LEN + ETHER_TYPE_LEN + AN_802_11_OFFSET, &id)) return ENOMEM; sc->an_rdata.an_tx_fids[i] = id; sc->an_rdata.an_tx_ring[i] = 0; } sc->an_rdata.an_tx_prod = 0; sc->an_rdata.an_tx_cons = 0; return 0; } static int an_init(struct ifnet *ifp) { struct an_softc *sc = (struct an_softc *)ifp->if_softc; if (sc->sc_enabled) { an_stop(ifp, 0); } else { if (sc->sc_enable) (*sc->sc_enable)(sc); sc->sc_enabled = 1; an_wait(sc); } sc->an_associated = 0; /* Allocate the TX buffers */ if (an_init_tx_ring(sc)) { an_reset(sc); if (an_init_tx_ring(sc)) { printf("%s: tx buffer allocation failed\n", sc->an_dev.dv_xname); an_stop(ifp, 1); return ENOMEM; } } /* Set our MAC address. */ memcpy(sc->an_config.an_macaddr, sc->an_caps.an_oemaddr, ETHER_ADDR_LEN); if (ifp->if_flags & IFF_MULTICAST) sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR; else if (ifp->if_flags & IFF_BROADCAST) sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR; else sc->an_config.an_rxmode = AN_RXMODE_ADDR; /* Set the ssid list */ sc->an_ssidlist.an_type = AN_RID_SSIDLIST; sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist); if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) { printf("%s: failed to set ssid list\n", sc->an_dev.dv_xname); an_stop(ifp, 1); return ENXIO; } /* Set the AP list */ sc->an_aplist.an_type = AN_RID_APLIST; sc->an_aplist.an_len = sizeof(struct an_ltv_aplist); if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) { printf("%s: failed to set AP list\n", sc->an_dev.dv_xname); an_stop(ifp, 1); return ENXIO; } /* Set the configuration in the NIC */ sc->an_config.an_len = sizeof(struct an_ltv_genconfig); sc->an_config.an_type = AN_RID_GENCONFIG; if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) { printf("%s: failed to set configuration\n", sc->an_dev.dv_xname); an_stop(ifp, 1); return ENXIO; } /* Set the WEP Keys */ if ((sc->an_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) != 0) an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->an_wepkeys, sc->an_tx_key); /* Enable the MAC */ if (an_cmd(sc, AN_CMD_ENABLE, 0)) { printf("%s: failed to enable MAC\n", sc->an_dev.dv_xname); an_stop(ifp, 1); return ENXIO; } an_cmd(sc, AN_CMD_SET_MODE, (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0); /* enable interrupts */ CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc); return 0; } static void an_start(struct ifnet *ifp) { struct an_softc *sc = (struct an_softc *)ifp->if_softc; struct mbuf *m0 = NULL, *m; struct an_txframe_802_3 tx_frame_802_3; struct ether_header *eh; int id, idx; u_int16_t txctl; if (!sc->sc_enabled) return; if (ifp->if_flags & IFF_OACTIVE) return; if (!sc->an_associated) return; idx = sc->an_rdata.an_tx_prod; memset(&tx_frame_802_3, 0, sizeof(tx_frame_802_3)); for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->an_rdata.an_tx_ring[idx] != 0) break; id = sc->an_rdata.an_tx_fids[idx]; IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif txctl = AN_TXCTL_8023; /* write the txctl only */ an_write_data(sc, id, 0x08, (caddr_t)&txctl, sizeof(txctl)); eh = mtod(m0, struct ether_header *); memcpy(tx_frame_802_3.an_tx_dst_addr, eh->ether_dhost, ETHER_ADDR_LEN); memcpy(tx_frame_802_3.an_tx_src_addr, eh->ether_shost, ETHER_ADDR_LEN); tx_frame_802_3.an_tx_802_3_payload_len = m0->m_pkthdr.len - ETHER_ADDR_LEN * 2; m_adj(m0, ETHER_ADDR_LEN * 2); /* 802_3 header */ an_write_data(sc, id, AN_802_3_OFFSET, (caddr_t)&tx_frame_802_3, sizeof(struct an_txframe_802_3)); for (m = m0; m != NULL; m = m->m_next) an_write_data(sc, id, -1, mtod(m, caddr_t), m->m_len); m_freem(m0); m0 = NULL; sc->an_rdata.an_tx_ring[idx] = id; if (an_cmd(sc, AN_CMD_TX, id)) printf("%s: xmit failed\n", sc->an_dev.dv_xname); AN_INC(idx, AN_TX_RING_CNT); } if (m0 != NULL) ifp->if_flags |= IFF_OACTIVE; sc->an_rdata.an_tx_prod = idx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void an_stop(struct ifnet *ifp, int disable) { struct an_softc *sc = (struct an_softc *)ifp->if_softc; int i; callout_stop(&sc->an_stat_ch); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); ifp->if_timer = 0; if (!sc->sc_enabled) return; an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0); CSR_WRITE_2(sc, AN_INT_EN, 0); an_cmd(sc, AN_CMD_DISABLE, 0); for (i = 0; i < AN_TX_RING_CNT; i++) an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]); if (disable) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } } static void an_watchdog(struct ifnet *ifp) { struct an_softc *sc; sc = ifp->if_softc; if (!sc->sc_enabled) return; printf("%s: device timeout\n", sc->an_dev.dv_xname); an_reset(sc); an_init(ifp); ifp->if_oerrors++; return; } /* * Low level functions */ static void an_rxeof(struct an_softc *sc) { struct ifnet *ifp = &sc->arpcom.ec_if; struct ether_header *eh; #ifdef ANCACHE struct an_rxframe rx_frame; #endif struct an_rxframe_802_3 rx_frame_802_3; struct mbuf *m; int id, error = 0; id = CSR_READ_2(sc, AN_RX_FID); MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; /* Align the data after the ethernet header */ m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); eh = mtod(m, struct ether_header *); #ifdef ANCACHE /* Read NIC frame header */ if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } #endif /* Read in the 802_3 frame header */ if (an_read_data(sc, id, AN_802_3_OFFSET, (caddr_t)&rx_frame_802_3, sizeof(rx_frame_802_3))) { ifp->if_ierrors++; return; } if (rx_frame_802_3.an_rx_802_3_status != 0) { ifp->if_ierrors++; return; } /* Check for insane frame length */ if (rx_frame_802_3.an_rx_802_3_payload_len > MCLBYTES) { ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = rx_frame_802_3.an_rx_802_3_payload_len + ETHER_ADDR_LEN * 2; memcpy(&eh->ether_dhost, &rx_frame_802_3.an_rx_dst_addr, ETHER_ADDR_LEN); memcpy(&eh->ether_shost, &rx_frame_802_3.an_rx_src_addr, ETHER_ADDR_LEN); /* in mbuf header type is just before payload */ error = an_read_data(sc, id, -1, (caddr_t)&(eh->ether_type), rx_frame_802_3.an_rx_802_3_payload_len); if (error) { m_freem(m); ifp->if_ierrors++; return; } ifp->if_ipackets++; /* Receive packet. */ #ifdef ANCACHE an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength); #endif #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif (*ifp->if_input)(ifp, m); } static void an_txeof(struct an_softc *sc, int status) { struct ifnet *ifp = &sc->arpcom.ec_if; int i, id; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; id = CSR_READ_2(sc, AN_TX_CMP_FID); if (status & AN_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; /* fix from Doug Ambrisko -wsr */ for (i = 0; i < AN_TX_RING_CNT; i++) { if (id == sc->an_rdata.an_tx_ring[i]) { sc->an_rdata.an_tx_ring[i] = 0; break; } } if (i != sc->an_rdata.an_tx_cons) { if (ifp->if_flags & IFF_DEBUG) printf("%s: id mismatch: id %x, " "expected %x(%d), actual %x(%d)\n", sc->an_dev.dv_xname, id, sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons], sc->an_rdata.an_tx_cons, id, i); } AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT); return; } /* * We abuse the stats updater to check the current NIC status. This * is important because we don't want to allow transmissions until * the NIC has synchronized to the current cell (either as the master * in an ad-hoc group, or as a station connected to an access point). */ void an_stats_update(void *xsc) { struct an_softc *sc = xsc; if (sc->sc_enabled) { sc->an_status.an_type = AN_RID_STATUS; sc->an_status.an_len = sizeof(struct an_ltv_status); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_status) == 0) { if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC) sc->an_associated = 1; else sc->an_associated = 0; #if 0 /* Don't do this while we're transmitting */ if (sc->arpcom.ec_if.if_flags & IFF_OACTIVE) { sc->an_stats.an_len = sizeof(struct an_ltv_stats); sc->an_stats.an_type = AN_RID_32BITS_CUM; an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len); } #endif } } callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc); } int an_intr(void *arg) { struct an_softc *sc = arg; struct ifnet *ifp = &sc->arpcom.ec_if; u_int16_t status; if (!sc->sc_enabled) return 0; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, AN_INT_EN, 0); return 0; } /* Disable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN, 0); while ((status = (CSR_READ_2(sc, AN_EVENT_STAT) & AN_INTRS)) != 0) { if (status & AN_EV_RX) { an_rxeof(sc); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); status &= ~AN_EV_RX; } if (status & (AN_EV_TX | AN_EV_TX_EXC)) { an_txeof(sc, status); CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC)); status &= ~(AN_EV_TX | AN_EV_TX_EXC); } if (status & AN_EV_LINKSTAT) { if (CSR_READ_2(sc, AN_LINKSTAT) == AN_LINKSTAT_ASSOCIATED) sc->an_associated = 1; else sc->an_associated = 0; CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT); status &= ~AN_EV_LINKSTAT; } #if 0 if (status & AN_EV_CMD) { wakeup(sc); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); status &= ~AN_EV_CMD; } #endif if (status) CSR_WRITE_2(sc, AN_EVENT_ACK, status); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) an_start(ifp); return 1; } static int an_cmd(struct an_softc *sc, int cmd, int val) { int i, stat; /* make sure that previous command completed */ if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) { if (sc->arpcom.ec_if.if_flags & IFF_DEBUG) printf("%s: command 0x%x busy\n", sc->an_dev.dv_xname, CSR_READ_2(sc, AN_COMMAND)); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); } CSR_WRITE_2(sc, AN_PARAM0, val); CSR_WRITE_2(sc, AN_PARAM1, 0); CSR_WRITE_2(sc, AN_PARAM2, 0); CSR_WRITE_2(sc, AN_COMMAND, cmd); for (i = 0; i < AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) break; /* make sure the command is accepted */ if (CSR_READ_2(sc, AN_COMMAND) == cmd) CSR_WRITE_2(sc, AN_COMMAND, cmd); DELAY(10); } stat = CSR_READ_2(sc, AN_STATUS); /* clear stuck command busy if necessary */ if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); /* Ack the command */ CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); if (i == AN_TIMEOUT) { if (sc->arpcom.ec_if.if_flags & IFF_DEBUG) printf("%s: command 0x%x param 0x%x timeout\n", sc->an_dev.dv_xname, cmd, val); return ETIMEDOUT; } if (stat & AN_STAT_CMD_RESULT) { if (sc->arpcom.ec_if.if_flags & IFF_DEBUG) printf("%s: command 0x%x param 0x%x stat 0x%x\n", sc->an_dev.dv_xname, cmd, val, stat); return EIO; } return 0; } /* * This reset sequence may look a little strange, but this is the * most reliable method I've found to really kick the NIC in the * head and force it to reboot correctly. */ static void an_reset(struct an_softc *sc) { if (!sc->sc_enabled) return; an_cmd(sc, AN_CMD_ENABLE, 0); an_cmd(sc, AN_CMD_FW_RESTART, 0); an_cmd(sc, AN_CMD_NOOP2, 0); if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) printf("%s: reset failed\n", sc->an_dev.dv_xname); an_cmd(sc, AN_CMD_DISABLE, 0); } /* * Wait for firmware come up after power enabled. */ static void an_wait(struct an_softc *sc) { int i; CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2); for (i = 0; i < 3*hz; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) break; (void)tsleep(sc, PWAIT, "anatch", 1); } CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); } /* * Read an LTV record from the NIC. */ static int an_read_record(struct an_softc *sc, struct an_ltv_gen *ltv) { u_int16_t *ptr; int i, len; if (ltv->an_len == 0 || ltv->an_type == 0) return EINVAL; /* Tell the NIC to enter record read mode. */ if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) return EIO; /* Seek to the record. */ if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) return EIO; /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, AN_DATA1); if (len > ltv->an_len) { if (sc->arpcom.ec_if.if_flags & IFF_DEBUG) printf("%s: RID 0x%04x record length mismatch" "-- expected %d, got %d\n", sc->an_dev.dv_xname, ltv->an_type, ltv->an_len, len); return ENOSPC; } ltv->an_len = len; /* Now read the data. */ ptr = <v->an_val; for (i = 0; i < (ltv->an_len - 2) >> 1; i++) ptr[i] = CSR_READ_2(sc, AN_DATA1); return 0; } /* * Same as read, except we inject data instead of reading it. */ static int an_write_record(struct an_softc *sc, struct an_ltv_gen *ltv) { u_int16_t *ptr; int i; if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) return EIO; if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) return EIO; CSR_WRITE_2(sc, AN_DATA1, ltv->an_len-2); ptr = <v->an_val; for (i = 0; i < (ltv->an_len - 4) >> 1; i++) CSR_WRITE_2(sc, AN_DATA1, ptr[i]); if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type)) return EIO; return 0; } static int an_seek(struct an_softc *sc, int id, int off, int chan) { int i, selreg, offreg; switch (chan) { case AN_BAP0: selreg = AN_SEL0; offreg = AN_OFF0; break; case AN_BAP1: selreg = AN_SEL1; offreg = AN_OFF1; break; default: panic("%s: invalid chan: %x\n", sc->an_dev.dv_xname, chan); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < AN_TIMEOUT; i++) { if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR))) break; DELAY(10); } if (i == AN_TIMEOUT) { if (sc->arpcom.ec_if.if_flags & IFF_DEBUG) printf("%s: seek(0x%x, 0x%x, 0x%x) timeout\n", sc->an_dev.dv_xname, id, off, chan); return ETIMEDOUT; } return 0; } static int an_read_data(struct an_softc *sc, int id, int off, caddr_t buf, int len) { int i; u_int16_t *ptr; u_int8_t *ptr2; if (off != -1) { if (an_seek(sc, id, off, AN_BAP1)) return EIO; } ptr = (u_int16_t *)buf; for (i = 0; i < len / 2; i++) ptr[i] = CSR_READ_2(sc, AN_DATA1); i *= 2; if (i < len){ ptr2 = (u_int8_t *)buf; ptr2[i] = CSR_READ_1(sc, AN_DATA1); } return 0; } static int an_write_data(struct an_softc *sc, int id, int off, caddr_t buf, int len) { int i; u_int16_t *ptr; u_int8_t *ptr2; if (off != -1) { if (an_seek(sc, id, off, AN_BAP0)) return EIO; } ptr = (u_int16_t *)buf; for (i = 0; i < (len / 2); i++) CSR_WRITE_2(sc, AN_DATA0, ptr[i]); i *= 2; if (i < len){ ptr2 = (u_int8_t *)buf; CSR_WRITE_1(sc, AN_DATA0, ptr2[i]); } return 0; } /* * Allocate a region of memory inside the NIC and zero * it out. */ static int an_alloc_nicmem(struct an_softc *sc, int len, int *id) { int i; if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) { printf("%s: failed to allocate %d bytes on NIC\n", sc->an_dev.dv_xname, len); return ENOMEM; } for (i = 0; i < AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC) break; DELAY(10); } if (i == AN_TIMEOUT) return(ETIMEDOUT); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); *id = CSR_READ_2(sc, AN_ALLOC_FID); if (an_seek(sc, *id, 0, AN_BAP0)) return EIO; for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, AN_DATA0, 0); return 0; } #ifdef ANCACHE /* Aironet signal strength cache code. * store signal/noise/quality on per MAC src basis in * a small fixed cache. The cache wraps if > MAX slots * used. The cache may be zeroed out to start over. * Two simple filters exist to reduce computation: * 1. ip only (literally 0x800) which may be used * to ignore some packets. It defaults to ip only. * it could be used to focus on broadcast, non-IP 802.11 beacons. * 2. multicast/broadcast only. This may be used to * ignore unicast packets and only cache signal strength * for multicast/broadcast packets (beacons); e.g., Mobile-IP * beacons and not unicast traffic. * * The cache stores (MAC src(index), IP src (major clue), signal, * quality, noise) * * No apologies for storing IP src here. It's easy and saves much * trouble elsewhere. The cache is assumed to be INET dependent, * although it need not be. * * Note: the Aironet only has a single byte of signal strength value * in the rx frame header, and it's not scaled to anything sensible. * This is kind of lame, but it's all we've got. */ #ifdef documentation int an_sigitems; /* number of cached entries */ struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */ int an_nextitem; /* index/# of entries */ #endif /* control variables for cache filtering. Basic idea is * to reduce cost (e.g., to only Mobile-IP agent beacons * which are broadcast or multicast). Still you might * want to measure signal strength anth unicast ping packets * on a pt. to pt. ant. setup. */ /* set true if you want to limit cache items to broadcast/mcast * only packets (not unicast). Useful for mobile-ip beacons which * are broadcast/multicast at network layer. Default is all packets * so ping/unicast anll work say anth pt. to pt. antennae setup. */ static int an_cache_mcastonly = 0; #if 0 SYSCTL_INT(_machdep, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW, &an_cache_mcastonly, 0, ""); #endif /* set true if you want to limit cache items to IP packets only */ static int an_cache_iponly = 1; #if 0 SYSCTL_INT(_machdep, OID_AUTO, an_cache_iponly, CTLFLAG_RW, &an_cache_iponly, 0, ""); #endif /* * an_cache_store, per rx packet store signal * strength in MAC (src) indexed cache. */ static void an_cache_store (sc, eh, m, rx_quality) struct an_softc *sc; struct ether_header *eh; struct mbuf *m; unsigned short rx_quality; { struct ip *ip = 0; int i; static int cache_slot = 0; /* use this cache entry */ static int wrapindex = 0; /* next "free" cache entry */ int saanp=0; /* filters: * 1. ip only * 2. configurable filter to throw out unicast packets, * keep multicast only. */ if ((ntohs(eh->ether_type) == 0x800)) { saanp = 1; } /* filter for ip packets only */ if (an_cache_iponly && !saanp) { return; } /* filter for broadcast/multicast only */ if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) { return; } #ifdef SIGDEBUG printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n", rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff); #endif /* find the ip header. we want to store the ip_src * address. */ if (saanp) { ip = (struct ip *)(mtod(m, caddr_t) + 14); } /* do a linear search for a matching MAC address * in the cache table * . MAC address is 6 bytes, * . var w_nextitem holds total number of entries already cached */ for(i = 0; i < sc->an_nextitem; i++) { if (!memcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) { /* Match!, * so we already have this entry, * update the data */ break; } } /* did we find a matching mac address? * if yes, then overwrite a previously existing cache entry */ if (i < sc->an_nextitem ) { cache_slot = i; } /* else, have a new address entry,so * add this new entry, * if table full, then we need to replace LRU entry */ else { /* check for space in cache table * note: an_nextitem also holds number of entries * added in the cache table */ if (sc->an_nextitem < MAXANCACHE ) { cache_slot = sc->an_nextitem; sc->an_nextitem++; sc->an_sigitems = sc->an_nextitem; } /* no space found, so simply wrap anth wrap index * and "zap" the next entry */ else { if (wrapindex == MAXANCACHE) { wrapindex = 0; } cache_slot = wrapindex++; } } /* invariant: cache_slot now points at some slot * in cache. */ if (cache_slot < 0 || cache_slot >= MAXANCACHE) { log(LOG_ERR, "an_cache_store, bad index: %d of " "[0..%d], gross cache error\n", cache_slot, MAXANCACHE); return; } /* store items in cache * .ip source address * .mac src * .signal, etc. */ if (saanp) { sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr; } memcpy(sc->an_sigcache[cache_slot].macsrc, eh->ether_shost, 6); sc->an_sigcache[cache_slot].signal = rx_quality; return; } #endif