/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdb_string.h" #include "frame.h" #include "inferior.h" #include "symtab.h" #include "value.h" #include "gdbcmd.h" #include "language.h" #include "gdbcore.h" #include "symfile.h" #include "objfiles.h" #include "gdbtypes.h" #include "opcode/mips.h" #define VM_MIN_ADDRESS (unsigned)0x400000 /* FIXME: Put this declaration in frame.h. */ extern struct obstack frame_cache_obstack; #if 0 static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); #endif static void mips_set_fpu_command PARAMS ((char *, int, struct cmd_list_element *)); static void mips_show_fpu_command PARAMS ((char *, int, struct cmd_list_element *)); void mips_set_processor_type_command PARAMS ((char *, int)); int mips_set_processor_type PARAMS ((char *)); static void mips_show_processor_type_command PARAMS ((char *, int)); static void reinit_frame_cache_sfunc PARAMS ((char *, int, struct cmd_list_element *)); static mips_extra_func_info_t find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame)); static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, mips_extra_func_info_t proc_desc)); /* This value is the model of MIPS in use. It is derived from the value of the PrID register. */ char *mips_processor_type; char *tmp_mips_processor_type; /* Some MIPS boards don't support floating point, so we permit the user to turn it off. */ enum mips_fpu_type mips_fpu; static char *mips_fpu_string; /* A set of original names, to be used when restoring back to generic registers from a specific set. */ char *mips_generic_reg_names[] = REGISTER_NAMES; /* Names of IDT R3041 registers. */ char *mips_r3041_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "sr", "lo", "hi", "bad", "cause","pc", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "fsr", "fir", "fp", "", "", "", "bus", "ccfg", "", "", "", "", "", "", "port", "cmp", "", "", "epc", "prid", }; /* Names of IDT R3051 registers. */ char *mips_r3051_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "sr", "lo", "hi", "bad", "cause","pc", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "fsr", "fir", "fp", "", "inx", "rand", "elo", "", "ctxt", "", "", "", "", "", "ehi", "", "", "", "epc", "prid", }; /* Names of IDT R3081 registers. */ char *mips_r3081_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "sr", "lo", "hi", "bad", "cause","pc", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "fsr", "fir", "fp", "", "inx", "rand", "elo", "cfg", "ctxt", "", "", "", "", "", "ehi", "", "", "", "epc", "prid", }; /* Names of LSI 33k registers. */ char *mips_lsi33k_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "epc", "hi", "lo", "sr", "cause","badvaddr", "dcic", "bpc", "bda", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", }; struct { char *name; char **regnames; } mips_processor_type_table[] = { { "generic", mips_generic_reg_names }, { "r3041", mips_r3041_reg_names }, { "r3051", mips_r3051_reg_names }, { "r3071", mips_r3081_reg_names }, { "r3081", mips_r3081_reg_names }, { "lsi33k", mips_lsi33k_reg_names }, { NULL, NULL } }; /* Heuristic_proc_start may hunt through the text section for a long time across a 2400 baud serial line. Allows the user to limit this search. */ static unsigned int heuristic_fence_post = 0; #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */ #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) #define _PROC_MAGIC_ 0x0F0F0F0F #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) struct linked_proc_info { struct mips_extra_func_info info; struct linked_proc_info *next; } *linked_proc_desc_table = NULL; /* This returns the PC of the first inst after the prologue. If we can't find the prologue, then return 0. */ static CORE_ADDR after_prologue (pc, proc_desc) CORE_ADDR pc; mips_extra_func_info_t proc_desc; { struct symtab_and_line sal; CORE_ADDR func_addr, func_end; if (!proc_desc) proc_desc = find_proc_desc (pc, NULL); if (proc_desc) { /* If function is frameless, then we need to do it the hard way. I strongly suspect that frameless always means prologueless... */ if (PROC_FRAME_REG (proc_desc) == SP_REGNUM && PROC_FRAME_OFFSET (proc_desc) == 0) return 0; } if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) return 0; /* Unknown */ sal = find_pc_line (func_addr, 0); if (sal.end < func_end) return sal.end; /* The line after the prologue is after the end of the function. In this case, tell the caller to find the prologue the hard way. */ return 0; } /* Guaranteed to set fci->saved_regs to some values (it never leaves it NULL). */ void mips_find_saved_regs (fci) struct frame_info *fci; { int ireg; CORE_ADDR reg_position; /* r0 bit means kernel trap */ int kernel_trap; /* What registers have been saved? Bitmasks. */ unsigned long gen_mask, float_mask; mips_extra_func_info_t proc_desc; fci->saved_regs = (struct frame_saved_regs *) obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs)); memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs)); /* If it is the frame for sigtramp, the saved registers are located in a sigcontext structure somewhere on the stack. If the stack layout for sigtramp changes we might have to change these constants and the companion fixup_sigtramp in mdebugread.c */ #ifndef SIGFRAME_BASE /* To satisfy alignment restrictions, sigcontext is located 4 bytes above the sigtramp frame. */ #define SIGFRAME_BASE 4 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * 4) #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * 4) #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 4 + 3 * 4) #endif #ifndef SIGFRAME_REG_SIZE #define SIGFRAME_REG_SIZE 4 #endif if (fci->signal_handler_caller) { for (ireg = 0; ireg < 32; ireg++) { reg_position = fci->frame + SIGFRAME_REGSAVE_OFF + ireg * SIGFRAME_REG_SIZE; fci->saved_regs->regs[ireg] = reg_position; } for (ireg = 0; ireg < 32; ireg++) { reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF + ireg * SIGFRAME_REG_SIZE; fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position; } fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; return; } proc_desc = fci->proc_desc; if (proc_desc == NULL) /* I'm not sure how/whether this can happen. Normally when we can't find a proc_desc, we "synthesize" one using heuristic_proc_desc and set the saved_regs right away. */ return; kernel_trap = PROC_REG_MASK(proc_desc) & 1; gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc); float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc); if (/* In any frame other than the innermost, we assume that all registers have been saved. This assumes that all register saves in a function happen before the first function call. */ fci->next == NULL /* In a dummy frame we know exactly where things are saved. */ && !PROC_DESC_IS_DUMMY (proc_desc) /* Don't bother unless we are inside a function prologue. Outside the prologue, we know where everything is. */ && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) /* Not sure exactly what kernel_trap means, but if it means the kernel saves the registers without a prologue doing it, we better not examine the prologue to see whether registers have been saved yet. */ && !kernel_trap) { /* We need to figure out whether the registers that the proc_desc claims are saved have been saved yet. */ CORE_ADDR addr; int status; char buf[4]; unsigned long inst; /* Bitmasks; set if we have found a save for the register. */ unsigned long gen_save_found = 0; unsigned long float_save_found = 0; for (addr = PROC_LOW_ADDR (proc_desc); addr < fci->pc /*&& (gen_mask != gen_save_found || float_mask != float_save_found)*/; addr += 4) { status = read_memory_nobpt (addr, buf, 4); if (status) memory_error (status, addr); inst = extract_unsigned_integer (buf, 4); if (/* sw reg,n($sp) */ (inst & 0xffe00000) == 0xafa00000 /* sw reg,n($r30) */ || (inst & 0xffe00000) == 0xafc00000 /* sd reg,n($sp) */ || (inst & 0xffe00000) == 0xffa00000) { /* It might be possible to use the instruction to find the offset, rather than the code below which is based on things being in a certain order in the frame, but figuring out what the instruction's offset is relative to might be a little tricky. */ int reg = (inst & 0x001f0000) >> 16; gen_save_found |= (1 << reg); } else if (/* swc1 freg,n($sp) */ (inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($r30) */ || (inst & 0xffe00000) == 0xe7c00000 /* sdc1 freg,n($sp) */ || (inst & 0xffe00000) == 0xf7a00000) { int reg = ((inst & 0x001f0000) >> 16); float_save_found |= (1 << reg); } } gen_mask = gen_save_found; float_mask = float_save_found; } /* Fill in the offsets for the registers which gen_mask says were saved. */ reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); for (ireg= 31; gen_mask; --ireg, gen_mask <<= 1) if (gen_mask & 0x80000000) { fci->saved_regs->regs[ireg] = reg_position; reg_position -= MIPS_REGSIZE; } /* Fill in the offsets for the registers which float_mask says were saved. */ reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); /* The freg_offset points to where the first *double* register is saved. So skip to the high-order word. */ reg_position += 4; for (ireg = 31; float_mask; --ireg, float_mask <<= 1) if (float_mask & 0x80000000) { fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position; reg_position -= MIPS_REGSIZE; } fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM]; } static int read_next_frame_reg(fi, regno) struct frame_info *fi; int regno; { for (; fi; fi = fi->next) { /* We have to get the saved sp from the sigcontext if it is a signal handler frame. */ if (regno == SP_REGNUM && !fi->signal_handler_caller) return fi->frame; else { if (fi->saved_regs == NULL) mips_find_saved_regs (fi); if (fi->saved_regs->regs[regno]) return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE); } } return read_register (regno); } int mips_frame_saved_pc(frame) struct frame_info *frame; { mips_extra_func_info_t proc_desc = frame->proc_desc; /* We have to get the saved pc from the sigcontext if it is a signal handler frame. */ int pcreg = frame->signal_handler_caller ? PC_REGNUM : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM); if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) return read_memory_integer(frame->frame - 4, 4); return read_next_frame_reg(frame, pcreg); } static struct mips_extra_func_info temp_proc_desc; static struct frame_saved_regs temp_saved_regs; /* This fencepost looks highly suspicious to me. Removing it also seems suspicious as it could affect remote debugging across serial lines. */ static CORE_ADDR heuristic_proc_start(pc) CORE_ADDR pc; { CORE_ADDR start_pc = pc; CORE_ADDR fence = start_pc - heuristic_fence_post; if (start_pc == 0) return 0; if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS) fence = VM_MIN_ADDRESS; /* search back for previous return */ for (start_pc -= 4; ; start_pc -= 4) if (start_pc < fence) { /* It's not clear to me why we reach this point when stop_soon_quietly, but with this test, at least we don't print out warnings for every child forked (eg, on decstation). 22apr93 rich@cygnus.com. */ if (!stop_soon_quietly) { static int blurb_printed = 0; if (fence == VM_MIN_ADDRESS) warning("Hit beginning of text section without finding"); else warning("Hit heuristic-fence-post without finding"); warning("enclosing function for address 0x%x", pc); if (!blurb_printed) { printf_filtered ("\ This warning occurs if you are debugging a function without any symbols\n\ (for example, in a stripped executable). In that case, you may wish to\n\ increase the size of the search with the `set heuristic-fence-post' command.\n\ \n\ Otherwise, you told GDB there was a function where there isn't one, or\n\ (more likely) you have encountered a bug in GDB.\n"); blurb_printed = 1; } } return 0; } else if (ABOUT_TO_RETURN(start_pc)) break; start_pc += 8; /* skip return, and its delay slot */ #if 0 /* skip nops (usually 1) 0 - is this */ while (start_pc < pc && read_memory_integer (start_pc, 4) == 0) start_pc += 4; #endif return start_pc; } static mips_extra_func_info_t heuristic_proc_desc(start_pc, limit_pc, next_frame) CORE_ADDR start_pc, limit_pc; struct frame_info *next_frame; { CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); CORE_ADDR cur_pc; int frame_size; int has_frame_reg = 0; int reg30 = 0; /* Value of $r30. Used by gcc for frame-pointer */ unsigned long reg_mask = 0; if (start_pc == 0) return NULL; memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc)); memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); PROC_LOW_ADDR (&temp_proc_desc) = start_pc; if (start_pc + 200 < limit_pc) limit_pc = start_pc + 200; restart: frame_size = 0; for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4) { char buf[4]; unsigned long word; int status; status = read_memory_nobpt (cur_pc, buf, 4); if (status) memory_error (status, cur_pc); word = extract_unsigned_integer (buf, 4); if ((word & 0xFFFF0000) == 0x27bd0000) /* addiu $sp,$sp,-i */ frame_size += (-word) & 0xFFFF; else if ((word & 0xFFFF0000) == 0x23bd0000) /* addu $sp,$sp,-i */ frame_size += (-word) & 0xFFFF; else if ((word & 0xFFE00000) == 0xafa00000) { /* sw reg,offset($sp) */ int reg = (word & 0x001F0000) >> 16; reg_mask |= 1 << reg; temp_saved_regs.regs[reg] = sp + (word & 0xffff); } else if ((word & 0xFFFF0000) == 0x27be0000) { /* addiu $30,$sp,size */ if ((word & 0xffff) != frame_size) reg30 = sp + (word & 0xffff); else if (!has_frame_reg) { int alloca_adjust; has_frame_reg = 1; reg30 = read_next_frame_reg(next_frame, 30); alloca_adjust = reg30 - (sp + (word & 0xffff)); if (alloca_adjust > 0) { /* FP > SP + frame_size. This may be because * of an alloca or somethings similar. * Fix sp to "pre-alloca" value, and try again. */ sp += alloca_adjust; goto restart; } } } else if ((word & 0xFFE00000) == 0xafc00000) { /* sw reg,offset($30) */ int reg = (word & 0x001F0000) >> 16; reg_mask |= 1 << reg; temp_saved_regs.regs[reg] = reg30 + (word & 0xffff); } } if (has_frame_reg) { PROC_FRAME_REG(&temp_proc_desc) = 30; PROC_FRAME_OFFSET(&temp_proc_desc) = 0; } else { PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM; PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size; } PROC_REG_MASK(&temp_proc_desc) = reg_mask; PROC_PC_REG(&temp_proc_desc) = RA_REGNUM; return &temp_proc_desc; } static mips_extra_func_info_t find_proc_desc (pc, next_frame) CORE_ADDR pc; struct frame_info *next_frame; { mips_extra_func_info_t proc_desc; struct block *b = block_for_pc(pc); struct symbol *sym; CORE_ADDR startaddr; find_pc_partial_function (pc, NULL, &startaddr, NULL); if (b == NULL) sym = NULL; else { if (startaddr > BLOCK_START (b)) /* This is the "pathological" case referred to in a comment in print_frame_info. It might be better to move this check into symbol reading. */ sym = NULL; else sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); } /* If we never found a PDR for this function in symbol reading, then examine prologues to find the information. */ if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1) sym = NULL; if (sym) { /* IF this is the topmost frame AND * (this proc does not have debugging information OR * the PC is in the procedure prologue) * THEN create a "heuristic" proc_desc (by analyzing * the actual code) to replace the "official" proc_desc. */ proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); if (next_frame == NULL) { struct symtab_and_line val; struct symbol *proc_symbol = PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc); if (proc_symbol) { val = find_pc_line (BLOCK_START (SYMBOL_BLOCK_VALUE(proc_symbol)), 0); val.pc = val.end ? val.end : pc; } if (!proc_symbol || pc < val.pc) { mips_extra_func_info_t found_heuristic = heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), pc, next_frame); if (found_heuristic) proc_desc = found_heuristic; } } } else { /* Is linked_proc_desc_table really necessary? It only seems to be used by procedure call dummys. However, the procedures being called ought to have their own proc_descs, and even if they don't, heuristic_proc_desc knows how to create them! */ register struct linked_proc_info *link; for (link = linked_proc_desc_table; link; link = link->next) if (PROC_LOW_ADDR(&link->info) <= pc && PROC_HIGH_ADDR(&link->info) > pc) return &link->info; if (startaddr == 0) startaddr = heuristic_proc_start (pc); proc_desc = heuristic_proc_desc (startaddr, pc, next_frame); } return proc_desc; } mips_extra_func_info_t cached_proc_desc; CORE_ADDR mips_frame_chain(frame) struct frame_info *frame; { mips_extra_func_info_t proc_desc; CORE_ADDR saved_pc = FRAME_SAVED_PC(frame); if (saved_pc == 0 || inside_entry_file (saved_pc)) return 0; proc_desc = find_proc_desc(saved_pc, frame); if (!proc_desc) return 0; cached_proc_desc = proc_desc; /* If no frame pointer and frame size is zero, we must be at end of stack (or otherwise hosed). If we don't check frame size, we loop forever if we see a zero size frame. */ if (PROC_FRAME_REG (proc_desc) == SP_REGNUM && PROC_FRAME_OFFSET (proc_desc) == 0 /* The previous frame from a sigtramp frame might be frameless and have frame size zero. */ && !frame->signal_handler_caller) return 0; else return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc)) + PROC_FRAME_OFFSET(proc_desc); } void init_extra_frame_info(fci) struct frame_info *fci; { /* Use proc_desc calculated in frame_chain */ mips_extra_func_info_t proc_desc = fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next); fci->saved_regs = NULL; fci->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc; if (proc_desc) { /* Fixup frame-pointer - only needed for top frame */ /* This may not be quite right, if proc has a real frame register. Get the value of the frame relative sp, procedure might have been interrupted by a signal at it's very start. */ if (fci->pc == PROC_LOW_ADDR (proc_desc) && !PROC_DESC_IS_DUMMY (proc_desc)) fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); else fci->frame = read_next_frame_reg (fci->next, PROC_FRAME_REG (proc_desc)) + PROC_FRAME_OFFSET (proc_desc); if (proc_desc == &temp_proc_desc) { char *name; /* Do not set the saved registers for a sigtramp frame, mips_find_saved_registers will do that for us. We can't use fci->signal_handler_caller, it is not yet set. */ find_pc_partial_function (fci->pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); if (!IN_SIGTRAMP (fci->pc, name)) { fci->saved_regs = (struct frame_saved_regs*) obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs)); *fci->saved_regs = temp_saved_regs; fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM]; } } /* hack: if argument regs are saved, guess these contain args */ if ((PROC_REG_MASK(proc_desc) & 0xF0) == 0) fci->num_args = -1; else if ((PROC_REG_MASK(proc_desc) & 0x80) == 0) fci->num_args = 4; else if ((PROC_REG_MASK(proc_desc) & 0x40) == 0) fci->num_args = 3; else if ((PROC_REG_MASK(proc_desc) & 0x20) == 0) fci->num_args = 2; else if ((PROC_REG_MASK(proc_desc) & 0x10) == 0) fci->num_args = 1; } } /* MIPS stack frames are almost impenetrable. When execution stops, we basically have to look at symbol information for the function that we stopped in, which tells us *which* register (if any) is the base of the frame pointer, and what offset from that register the frame itself is at. This presents a problem when trying to examine a stack in memory (that isn't executing at the moment), using the "frame" command. We don't have a PC, nor do we have any registers except SP. This routine takes two arguments, SP and PC, and tries to make the cached frames look as if these two arguments defined a frame on the cache. This allows the rest of info frame to extract the important arguments without difficulty. */ struct frame_info * setup_arbitrary_frame (argc, argv) int argc; CORE_ADDR *argv; { if (argc != 2) error ("MIPS frame specifications require two arguments: sp and pc"); return create_new_frame (argv[0], argv[1]); } CORE_ADDR mips_push_arguments(nargs, args, sp, struct_return, struct_addr) int nargs; value_ptr *args; CORE_ADDR sp; int struct_return; CORE_ADDR struct_addr; { register i; int accumulate_size = struct_return ? MIPS_REGSIZE : 0; struct mips_arg { char *contents; int len; int offset; }; struct mips_arg *mips_args = (struct mips_arg*)alloca((nargs + 4) * sizeof(struct mips_arg)); register struct mips_arg *m_arg; int fake_args = 0; for (i = 0, m_arg = mips_args; i < nargs; i++, m_arg++) { value_ptr arg = args[i]; m_arg->len = TYPE_LENGTH (VALUE_TYPE (arg)); /* This entire mips-specific routine is because doubles must be aligned * on 8-byte boundaries. It still isn't quite right, because MIPS decided * to align 'struct {int a, b}' on 4-byte boundaries (even though this * breaks their varargs implementation...). A correct solution * requires an simulation of gcc's 'alignof' (and use of 'alignof' * in stdarg.h/varargs.h). * On the 64 bit r4000 we always pass the first four arguments * using eight bytes each, so that we can load them up correctly * in CALL_DUMMY. */ if (m_arg->len > 4) accumulate_size = (accumulate_size + 7) & -8; m_arg->offset = accumulate_size; m_arg->contents = VALUE_CONTENTS(arg); if (! GDB_TARGET_IS_MIPS64) accumulate_size = (accumulate_size + m_arg->len + 3) & -4; else { if (accumulate_size >= 4 * MIPS_REGSIZE) accumulate_size = (accumulate_size + m_arg->len + 3) &~ 4; else { static char zeroes[8] = { 0 }; int len = m_arg->len; if (len < 8) { if (TARGET_BYTE_ORDER == BIG_ENDIAN) m_arg->offset += 8 - len; ++m_arg; m_arg->len = 8 - len; m_arg->contents = zeroes; if (TARGET_BYTE_ORDER == BIG_ENDIAN) m_arg->offset = accumulate_size; else m_arg->offset = accumulate_size + len; ++fake_args; } accumulate_size = (accumulate_size + len + 7) & ~8; } } } accumulate_size = (accumulate_size + 7) & (-8); if (accumulate_size < 4 * MIPS_REGSIZE) accumulate_size = 4 * MIPS_REGSIZE; sp -= accumulate_size; for (i = nargs + fake_args; m_arg--, --i >= 0; ) write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len); if (struct_return) { char buf[TARGET_PTR_BIT / HOST_CHAR_BIT]; store_address (buf, sizeof buf, struct_addr); write_memory (sp, buf, sizeof buf); } return sp; } /* MASK(i,j) == (1<info; CORE_ADDR sp = read_register (SP_REGNUM); CORE_ADDR save_address; link->next = linked_proc_desc_table; linked_proc_desc_table = link; #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<31) #define GEN_REG_SAVE_COUNT 22 #define FLOAT_REG_SAVE_MASK MASK(0,19) #define FLOAT_REG_SAVE_COUNT 20 #define FLOAT_SINGLE_REG_SAVE_MASK \ ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) #define FLOAT_SINGLE_REG_SAVE_COUNT 10 #define SPECIAL_REG_SAVE_COUNT 4 /* * The registers we must save are all those not preserved across * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. * In addition, we must save the PC, and PUSH_FP_REGNUM. * (Ideally, we should also save MDLO/-HI and FP Control/Status reg.) * * Dummy frame layout: * (high memory) * Saved PC * Saved MMHI, MMLO, FPC_CSR * Saved R31 * Saved R28 * ... * Saved R1 * Saved D18 (i.e. F19, F18) * ... * Saved D0 (i.e. F1, F0) * CALL_DUMMY (subroutine stub; see tm-mips.h) * Parameter build area (not yet implemented) * (low memory) */ PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK; switch (mips_fpu) { case MIPS_FPU_DOUBLE: PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK; break; case MIPS_FPU_SINGLE: PROC_FREG_MASK(proc_desc) = FLOAT_SINGLE_REG_SAVE_MASK; break; case MIPS_FPU_NONE: PROC_FREG_MASK(proc_desc) = 0; break; } PROC_REG_OFFSET(proc_desc) = /* offset of (Saved R31) from FP */ -sizeof(long) - 4 * SPECIAL_REG_SAVE_COUNT; PROC_FREG_OFFSET(proc_desc) = /* offset of (Saved D18) from FP */ -sizeof(double) - 4 * (SPECIAL_REG_SAVE_COUNT + GEN_REG_SAVE_COUNT); /* save general registers */ save_address = sp + PROC_REG_OFFSET(proc_desc); for (ireg = 32; --ireg >= 0; ) if (PROC_REG_MASK(proc_desc) & (1 << ireg)) { read_register_gen (ireg, buffer); /* Need to fix the save_address decrement below, and also make sure that we don't run into problems with the size of the dummy frame or any of the offsets within it. */ if (REGISTER_RAW_SIZE (ireg) > 4) error ("Cannot call functions on mips64"); write_memory (save_address, buffer, REGISTER_RAW_SIZE (ireg)); save_address -= 4; } /* save floating-points registers starting with high order word */ save_address = sp + PROC_FREG_OFFSET(proc_desc) + 4; for (ireg = 32; --ireg >= 0; ) if (PROC_FREG_MASK(proc_desc) & (1 << ireg)) { read_register_gen (ireg + FP0_REGNUM, buffer); if (REGISTER_RAW_SIZE (ireg + FP0_REGNUM) > 4) error ("Cannot call functions on mips64"); write_memory (save_address, buffer, REGISTER_RAW_SIZE (ireg + FP0_REGNUM)); save_address -= 4; } write_register (PUSH_FP_REGNUM, sp); PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM; PROC_FRAME_OFFSET(proc_desc) = 0; read_register_gen (PC_REGNUM, buffer); write_memory (sp - 4, buffer, REGISTER_RAW_SIZE (PC_REGNUM)); read_register_gen (HI_REGNUM, buffer); write_memory (sp - 8, buffer, REGISTER_RAW_SIZE (HI_REGNUM)); read_register_gen (LO_REGNUM, buffer); write_memory (sp - 12, buffer, REGISTER_RAW_SIZE (LO_REGNUM)); if (mips_fpu != MIPS_FPU_NONE) read_register_gen (FCRCS_REGNUM, buffer); else memset (buffer, 0, REGISTER_RAW_SIZE (FCRCS_REGNUM)); write_memory (sp - 16, buffer, REGISTER_RAW_SIZE (FCRCS_REGNUM)); sp -= 4 * (GEN_REG_SAVE_COUNT + SPECIAL_REG_SAVE_COUNT); if (mips_fpu == MIPS_FPU_DOUBLE) sp -= 4 * FLOAT_REG_SAVE_COUNT; else if (mips_fpu == MIPS_FPU_SINGLE) sp -= 4 * FLOAT_SINGLE_REG_SAVE_COUNT; write_register (SP_REGNUM, sp); PROC_LOW_ADDR(proc_desc) = sp - CALL_DUMMY_SIZE + CALL_DUMMY_START_OFFSET; PROC_HIGH_ADDR(proc_desc) = sp; SET_PROC_DESC_IS_DUMMY(proc_desc); PROC_PC_REG(proc_desc) = RA_REGNUM; } void mips_pop_frame() { register int regnum; struct frame_info *frame = get_current_frame (); CORE_ADDR new_sp = FRAME_FP (frame); mips_extra_func_info_t proc_desc = frame->proc_desc; write_register (PC_REGNUM, FRAME_SAVED_PC(frame)); if (frame->saved_regs == NULL) mips_find_saved_regs (frame); if (proc_desc) { for (regnum = 32; --regnum >= 0; ) if (PROC_REG_MASK(proc_desc) & (1 << regnum)) write_register (regnum, read_memory_integer (frame->saved_regs->regs[regnum], 4)); for (regnum = 32; --regnum >= 0; ) if (PROC_FREG_MASK(proc_desc) & (1 << regnum)) write_register (regnum + FP0_REGNUM, read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], 4)); } write_register (SP_REGNUM, new_sp); flush_cached_frames (); if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) { struct linked_proc_info *pi_ptr, *prev_ptr; for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; pi_ptr != NULL; prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) { if (&pi_ptr->info == proc_desc) break; } if (pi_ptr == NULL) error ("Can't locate dummy extra frame info\n"); if (prev_ptr != NULL) prev_ptr->next = pi_ptr->next; else linked_proc_desc_table = pi_ptr->next; free (pi_ptr); write_register (HI_REGNUM, read_memory_integer(new_sp - 8, 4)); write_register (LO_REGNUM, read_memory_integer(new_sp - 12, 4)); if (mips_fpu != MIPS_FPU_NONE) write_register (FCRCS_REGNUM, read_memory_integer(new_sp - 16, 4)); } } static void mips_print_register (regnum, all) int regnum, all; { char raw_buffer[MAX_REGISTER_RAW_SIZE]; /* Get the data in raw format. */ if (read_relative_register_raw_bytes (regnum, raw_buffer)) { printf_filtered ("%s: [Invalid]", reg_names[regnum]); return; } /* If an even floating pointer register, also print as double. */ if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+32 && !((regnum-FP0_REGNUM) & 1)) { char dbuffer[MAX_REGISTER_RAW_SIZE]; read_relative_register_raw_bytes (regnum, dbuffer); read_relative_register_raw_bytes (regnum+1, dbuffer+4); #ifdef REGISTER_CONVERT_TO_TYPE REGISTER_CONVERT_TO_TYPE(regnum, builtin_type_double, dbuffer); #endif printf_filtered ("(d%d: ", regnum-FP0_REGNUM); val_print (builtin_type_double, dbuffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); printf_filtered ("); "); } fputs_filtered (reg_names[regnum], gdb_stdout); /* The problem with printing numeric register names (r26, etc.) is that the user can't use them on input. Probably the best solution is to fix it so that either the numeric or the funky (a2, etc.) names are accepted on input. */ if (regnum < 32) printf_filtered ("(r%d): ", regnum); else printf_filtered (": "); /* If virtual format is floating, print it that way. */ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); /* Else print as integer in hex. */ else print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), 'x', 0, gdb_stdout); } /* Replacement for generic do_registers_info. */ void mips_do_registers_info (regnum, fpregs) int regnum; int fpregs; { if (regnum != -1) { if (*(reg_names[regnum]) == '\0') error ("Not a valid register for the current processor type"); mips_print_register (regnum, 0); printf_filtered ("\n"); } else { int did_newline = 0; for (regnum = 0; regnum < NUM_REGS; ) { if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM) || *(reg_names[regnum]) == '\0') { regnum++; continue; } mips_print_register (regnum, 1); regnum++; printf_filtered ("; "); did_newline = 0; if ((regnum & 3) == 0) { printf_filtered ("\n"); did_newline = 1; } } if (!did_newline) printf_filtered ("\n"); } } /* Return number of args passed to a frame. described by FIP. Can return -1, meaning no way to tell. */ int mips_frame_num_args (frame) struct frame_info *frame; { #if 0 /* FIXME Use or lose this! */ struct chain_info_t *p; p = mips_find_cached_frame (FRAME_FP (frame)); if (p->valid) return p->the_info.numargs; #endif return -1; } /* Is this a branch with a delay slot? */ static int is_delayed PARAMS ((unsigned long)); static int is_delayed (insn) unsigned long insn; { int i; for (i = 0; i < NUMOPCODES; ++i) if (mips_opcodes[i].pinfo != INSN_MACRO && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) break; return (i < NUMOPCODES && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | INSN_COND_BRANCH_DELAY | INSN_COND_BRANCH_LIKELY))); } int mips_step_skips_delay (pc) CORE_ADDR pc; { char buf[4]; if (target_read_memory (pc, buf, 4) != 0) /* If error reading memory, guess that it is not a delayed branch. */ return 0; return is_delayed (extract_unsigned_integer (buf, 4)); } /* To skip prologues, I use this predicate. Returns either PC itself if the code at PC does not look like a function prologue; otherwise returns an address that (if we're lucky) follows the prologue. If LENIENT, then we must skip everything which is involved in setting up the frame (it's OK to skip more, just so long as we don't skip anything which might clobber the registers which are being saved. We must skip more in the case where part of the prologue is in the delay slot of a non-prologue instruction). */ CORE_ADDR mips_skip_prologue (pc, lenient) CORE_ADDR pc; int lenient; { unsigned long inst; int offset; int seen_sp_adjust = 0; int load_immediate_bytes = 0; CORE_ADDR post_prologue_pc; /* See if we can determine the end of the prologue via the symbol table. If so, then return either PC, or the PC after the prologue, whichever is greater. */ post_prologue_pc = after_prologue (pc, NULL); if (post_prologue_pc != 0) return max (pc, post_prologue_pc); /* Can't determine prologue from the symbol table, need to examine instructions. */ /* Skip the typical prologue instructions. These are the stack adjustment instruction and the instructions that save registers on the stack or in the gcc frame. */ for (offset = 0; offset < 100; offset += 4) { char buf[4]; int status; status = read_memory_nobpt (pc + offset, buf, 4); if (status) memory_error (status, pc + offset); inst = extract_unsigned_integer (buf, 4); #if 0 if (lenient && is_delayed (inst)) continue; #endif if ((inst & 0xffff0000) == 0x27bd0000) /* addiu $sp,$sp,offset */ seen_sp_adjust = 1; else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ seen_sp_adjust = 1; else if ((inst & 0xFFE00000) == 0xAFA00000 && (inst & 0x001F0000)) continue; /* sw reg,n($sp) */ /* reg != $zero */ else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ continue; else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) /* sx reg,n($s8) */ continue; /* reg != $zero */ /* move $s8,$sp. With different versions of gas this will be either `addu $s8,$sp,$zero' or `or $s8,$sp,$zero'. Accept either. */ else if (inst == 0x03A0F021 || inst == 0x03a0f025) continue; else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ continue; else if ((inst & 0xffff0000) == 0x3c1c0000) /* lui $gp,n */ continue; else if ((inst & 0xffff0000) == 0x279c0000) /* addiu $gp,$gp,n */ continue; else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ || inst == 0x033ce021) /* addu $gp,$t9,$gp */ continue; /* The following instructions load $at or $t0 with an immediate value in preparation for a stack adjustment via subu $sp,$sp,[$at,$t0]. These instructions could also initialize a local variable, so we accept them only before a stack adjustment instruction was seen. */ else if (!seen_sp_adjust) { if ((inst & 0xffff0000) == 0x3c010000 || /* lui $at,n */ (inst & 0xffff0000) == 0x3c080000) /* lui $t0,n */ { load_immediate_bytes += 4; continue; } else if ((inst & 0xffff0000) == 0x34210000 || /* ori $at,$at,n */ (inst & 0xffff0000) == 0x35080000 || /* ori $t0,$t0,n */ (inst & 0xffff0000) == 0x34010000 || /* ori $at,$zero,n */ (inst & 0xffff0000) == 0x34080000) /* ori $t0,$zero,n */ { load_immediate_bytes += 4; continue; } else break; } else break; } /* In a frameless function, we might have incorrectly skipped some load immediate instructions. Undo the skipping if the load immediate was not followed by a stack adjustment. */ if (load_immediate_bytes && !seen_sp_adjust) offset -= load_immediate_bytes; return pc + offset; } #if 0 /* The lenient prologue stuff should be superceded by the code in init_extra_frame_info which looks to see whether the stores mentioned in the proc_desc have actually taken place. */ /* Is address PC in the prologue (loosely defined) for function at STARTADDR? */ static int mips_in_lenient_prologue (startaddr, pc) CORE_ADDR startaddr; CORE_ADDR pc; { CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); return pc >= startaddr && pc < end_prologue; } #endif /* Given a return value in `regbuf' with a type `valtype', extract and copy its value into `valbuf'. */ void mips_extract_return_value (valtype, regbuf, valbuf) struct type *valtype; char regbuf[REGISTER_BYTES]; char *valbuf; { int regnum; int offset = 0; regnum = 2; if (TYPE_CODE (valtype) == TYPE_CODE_FLT && (mips_fpu == MIPS_FPU_DOUBLE || (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4))) regnum = FP0_REGNUM; if (TARGET_BYTE_ORDER == BIG_ENDIAN && TYPE_CODE (valtype) != TYPE_CODE_FLT && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (regnum)) offset = REGISTER_RAW_SIZE (regnum) - TYPE_LENGTH (valtype); memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, TYPE_LENGTH (valtype)); #ifdef REGISTER_CONVERT_TO_TYPE REGISTER_CONVERT_TO_TYPE(regnum, valtype, valbuf); #endif } /* Given a return value in `regbuf' with a type `valtype', write it's value into the appropriate register. */ void mips_store_return_value (valtype, valbuf) struct type *valtype; char *valbuf; { int regnum; char raw_buffer[MAX_REGISTER_RAW_SIZE]; regnum = 2; if (TYPE_CODE (valtype) == TYPE_CODE_FLT && (mips_fpu == MIPS_FPU_DOUBLE || (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4))) regnum = FP0_REGNUM; memcpy(raw_buffer, valbuf, TYPE_LENGTH (valtype)); #ifdef REGISTER_CONVERT_FROM_TYPE REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer); #endif write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, TYPE_LENGTH (valtype)); } /* These exist in mdebugread.c. */ extern CORE_ADDR sigtramp_address, sigtramp_end; extern void fixup_sigtramp PARAMS ((void)); /* Exported procedure: Is PC in the signal trampoline code */ int in_sigtramp (pc, ignore) CORE_ADDR pc; char *ignore; /* function name */ { if (sigtramp_address == 0) fixup_sigtramp (); return (pc >= sigtramp_address && pc < sigtramp_end); } /* Command to set FPU type. mips_fpu_string will have been set to the user's argument. Set mips_fpu based on mips_fpu_string, and then canonicalize mips_fpu_string. */ /*ARGSUSED*/ static void mips_set_fpu_command (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { char *err = NULL; if (mips_fpu_string == NULL || *mips_fpu_string == '\0') mips_fpu = MIPS_FPU_DOUBLE; else if (strcasecmp (mips_fpu_string, "double") == 0 || strcasecmp (mips_fpu_string, "on") == 0 || strcasecmp (mips_fpu_string, "1") == 0 || strcasecmp (mips_fpu_string, "yes") == 0) mips_fpu = MIPS_FPU_DOUBLE; else if (strcasecmp (mips_fpu_string, "none") == 0 || strcasecmp (mips_fpu_string, "off") == 0 || strcasecmp (mips_fpu_string, "0") == 0 || strcasecmp (mips_fpu_string, "no") == 0) mips_fpu = MIPS_FPU_NONE; else if (strcasecmp (mips_fpu_string, "single") == 0) mips_fpu = MIPS_FPU_SINGLE; else err = strsave (mips_fpu_string); if (mips_fpu_string != NULL) free (mips_fpu_string); switch (mips_fpu) { case MIPS_FPU_DOUBLE: mips_fpu_string = strsave ("double"); break; case MIPS_FPU_SINGLE: mips_fpu_string = strsave ("single"); break; case MIPS_FPU_NONE: mips_fpu_string = strsave ("none"); break; } if (err != NULL) { struct cleanup *cleanups = make_cleanup (free, err); error ("Unknown FPU type `%s'. Use `double', `none', or `single'.", err); do_cleanups (cleanups); } } static void mips_show_fpu_command (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { } /* Command to set the processor type. */ void mips_set_processor_type_command (args, from_tty) char *args; int from_tty; { int i; if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') { printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); for (i = 0; mips_processor_type_table[i].name != NULL; ++i) printf_unfiltered ("%s\n", mips_processor_type_table[i].name); /* Restore the value. */ tmp_mips_processor_type = strsave (mips_processor_type); return; } if (!mips_set_processor_type (tmp_mips_processor_type)) { error ("Unknown processor type `%s'.", tmp_mips_processor_type); /* Restore its value. */ tmp_mips_processor_type = strsave (mips_processor_type); } } static void mips_show_processor_type_command (args, from_tty) char *args; int from_tty; { } /* Modify the actual processor type. */ int mips_set_processor_type (str) char *str; { int i, j; if (str == NULL) return 0; for (i = 0; mips_processor_type_table[i].name != NULL; ++i) { if (strcasecmp (str, mips_processor_type_table[i].name) == 0) { mips_processor_type = str; for (j = 0; j < NUM_REGS; ++j) reg_names[j] = mips_processor_type_table[i].regnames[j]; return 1; /* FIXME tweak fpu flag too */ } } return 0; } /* Attempt to identify the particular processor model by reading the processor id. */ char * mips_read_processor_type () { int prid; prid = read_register (PRID_REGNUM); if (prid & ~0xf == 0x700) return savestring ("r3041", strlen("r3041")); return NULL; } /* Just like reinit_frame_cache, but with the right arguments to be callable as an sfunc. */ static void reinit_frame_cache_sfunc (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { reinit_frame_cache (); } int gdb_print_insn_mips (memaddr, info) bfd_vma memaddr; disassemble_info *info; { if (TARGET_BYTE_ORDER == BIG_ENDIAN) return print_insn_big_mips (memaddr, info); else return print_insn_little_mips (memaddr, info); } void _initialize_mips_tdep () { struct cmd_list_element *c; tm_print_insn = gdb_print_insn_mips; /* Let the user turn off floating point and set the fence post for heuristic_proc_start. */ c = add_set_cmd ("mipsfpu", class_support, var_string_noescape, (char *) &mips_fpu_string, "Set use of floating point coprocessor.\n\ Set to `none' to avoid using floating point instructions when calling\n\ functions or dealing with return values. Set to `single' to use only\n\ single precision floating point as on the R4650. Set to `double' for\n\ normal floating point support.", &setlist); c->function.sfunc = mips_set_fpu_command; c = add_show_from_set (c, &showlist); c->function.sfunc = mips_show_fpu_command; mips_fpu = MIPS_FPU_DOUBLE; mips_fpu_string = strsave ("double"); c = add_set_cmd ("processor", class_support, var_string_noescape, (char *) &tmp_mips_processor_type, "Set the type of MIPS processor in use.\n\ Set this to be able to access processor-type-specific registers.\n\ ", &setlist); c->function.cfunc = mips_set_processor_type_command; c = add_show_from_set (c, &showlist); c->function.cfunc = mips_show_processor_type_command; tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); /* We really would like to have both "0" and "unlimited" work, but command.c doesn't deal with that. So make it a var_zinteger because the user can always use "999999" or some such for unlimited. */ c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, (char *) &heuristic_fence_post, "\ Set the distance searched for the start of a function.\n\ If you are debugging a stripped executable, GDB needs to search through the\n\ program for the start of a function. This command sets the distance of the\n\ search. The only need to set it is when debugging a stripped executable.", &setlist); /* We need to throw away the frame cache when we set this, since it might change our ability to get backtraces. */ c->function.sfunc = reinit_frame_cache_sfunc; add_show_from_set (c, &showlist); } #ifdef NO_SINGLE_STEP /* Non-zero if we just simulated a single-step ptrace call. This is needed because we cannot remove the breakpoints in the inferior process until after the `wait' in `wait_for_inferior'. Used for 4.4bsd for mips, where the kernel does not emulate single-step. */ int one_stepped; CORE_ADDR target_addr; /* Branch target offset, if we have a breakpoint there... */ CORE_ADDR step_addr; /* Offset of instruction after instruction to be stepped, if we have a breakpoint there. */ long step_cache [3]; /* Cache for instructions wiped out by step breakpoint(s)... */ /* single_step() is called just before we want to resume the inferior, if we want to single-step it but there is no hardware or kernel single-step support (as on 4.4bsd for pmax). We find all the possible targets of the coming instruction and breakpoint them. single_step is also called just after the inferior stops. If we had set up a simulated single-step, we undo our damage. */ /* thoughts: For the current instruction, check to see if we're in a delay slot. If we are, the next instruction executed will either be the target of the branch or jump instruction preceding the current instruction, or it will be the instruction following the current instruction. If we are not, then the next instruction executed will either be the instruction following the current instruction, or the instruction following that (if the current instruction is a branch likely instruction and the branch is not taken). So, if we are in a delay slot then we set a breakpoint for the target of the preceding instruction. Unless the preceding instruction was a jump instruction (only jumps are unconditional), we also set a break- point at the instruction following the current one and the instruction following that. Setting two breakpoints after the current instruction is cheaper and easier than figuring out whether the current instruction is a branch likely instruction. */ void single_step (ignore) int ignore; /* pid, but we don't need it */ { CORE_ADDR pc; CORE_ADDR epc; CORE_ADDR next; unsigned long cause; unsigned long delay_instruction; if (!one_stepped) { epc = read_register (PC_REGNUM); cause = read_register (CAUSE_REGNUM); pc = epc; #define CAUSE_BD 0x80000000UL if (cause & CAUSE_BD) pc += 4; next = pc + 4; target_addr = 0; step_addr = next; if (cause & CAUSE_BD) { delay_instruction = read_memory_integer (epc, sizeof(delay_instruction)); /* Main instruction opcode mask - top six bits... */ #define MI_IMASK 0xfc000000UL /* Opcode for ``special'' instructions.... */ #define MI_SPECIAL 0x0 /* Opcode for ``regimm'' instructions... */ #define MI_REGIMM 0x04000000 /* Mask for special instruction opcodes... */ #if 0 # define MS_IMASK 0x37 /* XXX Mellon's original, broken? */ #else # define MS_IMASK 0x3f /* XXX jrs attempt at fix */ #endif /* JALR and JR are special instructions... */ #define MS_JALR 9 #define MS_JR 8 /* Target register for jump... */ #define MS_JR_REG(x) (((x) & 0x03e00000) >> 21) /* J and JAL are regular instructions... */ #define MI_J 0x08000000 #define MI_JAL 0x0c000000 /* All the bits following the opcode are used in J and JAL instructions... */ #define MI_JMASK (~MI_IMASK) #define MI_JSIGN 0x20000000 /* Coprocessor instructions use the bottom two bits of the opcode as a coprocessor id, so we only test the top four bits to see if this is a COPz instruction... */ #define MC_MASK 0xf0000000UL #define MC_COPz 0x40000000 /* The coprocessor subopcode is in the five bits following the regular instruction opcode... */ #define MCB_MASK 0x03e00000 /* All coprocessor branches have the following subopcode... */ #define MCB_BC 0x01000000 /* Offsets for coprocessor branches are contained in the bottom 16 bis. */ #define MCB_OFFSET 0xffff /* The following are all the branch instructions with regular opcodes: */ #define MI_BEQ 0x10000000 #define MI_BEQL 0x50000000 #define MI_BGTZ 0x1c000000 #define MI_BGTZL 0x5c000000 #define MI_BLEZ 0x18000000 #define MI_BLEZL 0x58000000 #define MI_BNE 0x14000000 #define MI_BNEL 0x54000000 /* They also use the lower sixteen bits for their target offset... */ #define BRANCH_OFFSET 0xffff /* REGIMM instructions have a second opcode in bits 20 through 16... */ #define REGIMM_MASK 0x001f0000 /* The following are all the ``regimm'' branch instructions: */ #define MRI_BGEZ 0x00010000 #define MRI_BGEZAL 0x00110000 #define MRI_BGEZALL 0x00130000 #define MRI_BGEZL 0x00030000 #define MRI_BLTZ 0x00000000 #define MRI_BLTZAL 0x00100000 #define MRI_BLTZALL 0x00120000 #define MRI_BLTZL 0x00020000 /* Decode the instruction sufficiently to determine the branch target... */ switch (delay_instruction & MI_IMASK) { case MI_J: case MI_JAL: target_addr = delay_instruction & MI_JMASK; /* Sign extend... */ if (target_addr & MI_JSIGN) target_addr |= ~(CORE_ADDR)MI_JMASK; target_addr += (pc >> 2) & ~MI_JMASK; target_addr <<= 2; step_addr = 0; break; case MI_SPECIAL: switch (delay_instruction & MS_IMASK) { case MS_JALR: case MS_JR: target_addr += read_register (MS_JR_REG (delay_instruction)); step_addr = 0; break; default: bad_delay: error ("In delay slot of non-branch instruction: %x\n", delay_instruction); break; } break; case MI_REGIMM: switch (delay_instruction & REGIMM_MASK) { case MRI_BGEZ: case MRI_BGEZAL: case MRI_BGEZALL: case MRI_BGEZL: case MRI_BLTZ: case MRI_BLTZAL: case MRI_BLTZALL: case MRI_BLTZL: /* Compiler should sign extend this... */ target_addr = (short)delay_instruction; target_addr <<= 2; target_addr += pc; break; default: error ("In delay slot, register-immediate insn: %x\n", delay_instruction); goto bad_delay; } break; case MI_BEQ: case MI_BEQL: case MI_BGTZ: case MI_BGTZL: case MI_BLEZ: case MI_BLEZL: case MI_BNE: case MI_BNEL: target_addr = (short)delay_instruction; target_addr <<= 2; target_addr += pc; break; default: error ("In delay slot, unrecognised instruction: %x\n", delay_instruction); goto bad_delay; } } /* Don't try to put down two breakpoints in the same spot... */ if (step_addr == target_addr) target_addr = 0; if (step_addr) { target_insert_breakpoint (step_addr, (char *)&step_cache [0]); if (step_addr + 4 != target_addr) target_insert_breakpoint (step_addr + 4, (char *)&step_cache [1]); } if (target_addr) { target_insert_breakpoint (target_addr, (char *)&step_cache [2]); } /* If the breakpoint occurred in a branch instruction, re-run the branch (the breakpoint instruction should be gone by now)... */ if (epc != pc) { write_register (PC_REGNUM, epc); } one_stepped = 1; return; } else { epc = read_register (PC_REGNUM); cause = read_register (CAUSE_REGNUM); pc = epc; #define CAUSE_BD 0x80000000UL if (cause & CAUSE_BD) pc += 4; /* Remove step breakpoints */ if (step_addr) { target_remove_breakpoint (step_addr, (char *)&step_cache [0]); if (step_addr + 4 != target_addr) target_remove_breakpoint (step_addr + 4, (char *)&step_cache [1]); } if (target_addr) { target_remove_breakpoint (target_addr, (char *)&step_cache [2]); target_addr = 0; } one_stepped = 0; } } #endif /* NO_SINGLE_STEP */