/* $NetBSD: if_uba.c,v 1.17 2000/03/30 12:45:37 augustss Exp $ */ /* * Copyright (c) 1982, 1986, 1988 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_uba.c 7.16 (Berkeley) 12/16/90 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int if_ubaalloc __P((struct ifubinfo *, struct ifrw *, int)); static void rcv_xmtbuf __P((struct ifxmt *)); static void restor_xmtbuf __P((struct ifxmt *)); /* * Routines supporting UNIBUS network interfaces. * * TODO: * Support interfaces using only one BDP statically. */ /* * Init UNIBUS for interface whose headers of size hlen are to * end on a page boundary. We allocate a UNIBUS map register for the page * with the header, and nmr more UNIBUS map registers for i/o on the adapter, * doing this once for each read and once for each write buffer. We also * allocate page frames in the mbuffer pool for these pages. */ int if_ubaminit(ifu, uh, hlen, nmr, ifr, nr, ifw, nw) struct ifubinfo *ifu; struct uba_softc *uh; int hlen, nmr, nr, nw; struct ifrw *ifr; struct ifxmt *ifw; { caddr_t p; caddr_t cp; int i, nclbytes, off; if (hlen) off = MCLBYTES - hlen; else off = 0; nclbytes = roundup(nmr * VAX_NBPG, MCLBYTES); if (hlen) nclbytes += MCLBYTES; if (ifr[0].ifrw_addr) cp = ifr[0].ifrw_addr - off; else { cp = (caddr_t)malloc((u_long)((nr + nw) * nclbytes), M_DEVBUF, M_NOWAIT); if (cp == 0) return (0); p = cp; for (i = 0; i < nr; i++) { ifr[i].ifrw_addr = p + off; p += nclbytes; } for (i = 0; i < nw; i++) { ifw[i].ifw_base = p; ifw[i].ifw_addr = p + off; p += nclbytes; } ifu->iff_hlen = hlen; ifu->iff_softc = uh; ifu->iff_uba = uh->uh_uba; ifu->iff_ubamr = uh->uh_mr; } for (i = 0; i < nr; i++) if (if_ubaalloc(ifu, &ifr[i], nmr) == 0) { nr = i; nw = 0; goto bad; } for (i = 0; i < nw; i++) if (if_ubaalloc(ifu, &ifw[i].ifrw, nmr) == 0) { nw = i; goto bad; } while (--nw >= 0) { for (i = 0; i < nmr; i++) ifw[nw].ifw_wmap[i] = ifw[nw].ifw_mr[i]; ifw[nw].ifw_xswapd = 0; ifw[nw].ifw_flags = IFRW_W; ifw[nw].ifw_nmr = nmr; } return (1); bad: while (--nw >= 0) ubarelse(ifu->iff_softc, &ifw[nw].ifw_info); while (--nr >= 0) ubarelse(ifu->iff_softc, &ifr[nr].ifrw_info); free(cp, M_DEVBUF); ifr[0].ifrw_addr = 0; return (0); } /* * Setup an ifrw structure by allocating UNIBUS map registers, * possibly a buffered data path, and initializing the fields of * the ifrw structure to minimize run-time overhead. */ static int if_ubaalloc(ifu, ifrw, nmr) struct ifubinfo *ifu; struct ifrw *ifrw; int nmr; { int info; info = uballoc(ifu->iff_softc, ifrw->ifrw_addr, nmr*VAX_NBPG + ifu->iff_hlen, ifu->iff_flags); if (info == 0) return (0); ifrw->ifrw_info = info; ifrw->ifrw_bdp = UBAI_BDP(info); ifrw->ifrw_proto = UBAMR_MRV | (UBAI_BDP(info) << UBAMR_DPSHIFT); ifrw->ifrw_mr = &ifu->iff_ubamr[UBAI_MR(info) + (ifu->iff_hlen? 1 : 0)]; return (1); } /* * Pull read data off a interface. * Totlen is length of data, with local net header stripped. * When full cluster sized units are present * on the interface on cluster boundaries we can get them more * easily by remapping, and take advantage of this here. * Save a pointer to the interface structure and the total length, * so that protocols can determine where incoming packets arrived. * Note: we may be called to receive from a transmit buffer by some * devices. In that case, we must force normal mapping of the buffer, * so that the correct data will appear (only unibus maps are * changed when remapping the transmit buffers). */ struct mbuf * if_ubaget(ifu, ifr, totlen, ifp) struct ifubinfo *ifu; struct ifrw *ifr; int totlen; struct ifnet *ifp; { struct mbuf *top, **mp; struct mbuf *m; caddr_t cp = ifr->ifrw_addr + ifu->iff_hlen, pp; int len; top = 0; mp = ⊤ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0){ return ((struct mbuf *)NULL); } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = totlen; m->m_len = MHLEN; if (ifr->ifrw_flags & IFRW_W){ rcv_xmtbuf((struct ifxmt *)ifr); } while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) { m_freem(top); top = 0; goto out; } m->m_len = MLEN; } len = totlen; if (len >= MINCLSIZE) { struct pte *cpte, *ppte; int x, *ip, i; MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0){ goto nopage; } len = min(len, MCLBYTES); m->m_len = len; if (!claligned(cp)){ goto copy; } /* * Switch pages mapped to UNIBUS with new page pp, * as quick form of copy. Remap UNIBUS and invalidate. */ pp = mtod(m, char *); cpte = (struct pte *)kvtopte(cp); ppte = (struct pte *)kvtopte(pp); x = vax_btop(cp - ifr->ifrw_addr); ip = (int *)&ifr->ifrw_mr[x]; for (i = 0; i < MCLBYTES/VAX_NBPG; i++) { struct pte t; t = *ppte; *ppte++ = *cpte; *cpte = t; *ip++ = cpte++->pg_pfn|ifr->ifrw_proto; mtpr(cp,PR_TBIS); cp += VAX_NBPG; mtpr((caddr_t)pp,PR_TBIS); pp += VAX_NBPG; } goto nocopy; } nopage: if (len < m->m_len) { /* * Place initial small packet/header at end of mbuf. */ if (top == 0 && len + max_linkhdr <= m->m_len) m->m_data += max_linkhdr; m->m_len = len; } else len = m->m_len; copy: bcopy(cp, mtod(m, caddr_t), (unsigned)len); cp += len; nocopy: *mp = m; mp = &m->m_next; totlen -= len; } out: if (ifr->ifrw_flags & IFRW_W){ restor_xmtbuf((struct ifxmt *)ifr); } return (top); } /* * Change the mapping on a transmit buffer so that if_ubaget may * receive from that buffer. Copy data from any pages mapped to Unibus * into the pages mapped to normal kernel virtual memory, so that * they can be accessed and swapped as usual. We take advantage * of the fact that clusters are placed on the xtofree list * in inverse order, finding the last one. */ static void rcv_xmtbuf(ifw) struct ifxmt *ifw; { struct mbuf *m; struct mbuf **mprev; int i; char *cp; while ((i = ffs((long)ifw->ifw_xswapd)) != 0) { cp = ifw->ifw_base + i * MCLBYTES; i--; ifw->ifw_xswapd &= ~(1<ifw_xtofree; for (m = ifw->ifw_xtofree; m && m->m_next; m = m->m_next) mprev = &m->m_next; if (m == NULL) break; bcopy(mtod(m, caddr_t), cp, MCLBYTES); (void) m_free(m); *mprev = NULL; } ifw->ifw_xswapd = 0; for (i = 0; i < ifw->ifw_nmr; i++) ifw->ifw_mr[i] = ifw->ifw_wmap[i]; } /* * Put a transmit buffer back together after doing an if_ubaget on it, * which may have swapped pages. */ static void restor_xmtbuf(ifw) struct ifxmt *ifw; { int i; for (i = 0; i < ifw->ifw_nmr; i++) ifw->ifw_wmap[i] = ifw->ifw_mr[i]; } /* * Map a chain of mbufs onto a network interface * in preparation for an i/o operation. * The argument chain of mbufs includes the local network * header which is copied to be in the mapped, aligned * i/o space. */ int if_ubaput(ifu, ifw, m) struct ifubinfo *ifu; struct ifxmt *ifw; struct mbuf *m; { struct mbuf *mp; caddr_t cp, dp; int i; int xswapd = 0; int x, cc, t; cp = ifw->ifw_addr; while (m) { dp = mtod(m, char *); if (claligned(cp) && claligned(dp) && (m->m_len == MCLBYTES || m->m_next == (struct mbuf *)0)) { struct pte *pte; int *ip; pte = (struct pte *)kvtopte(dp); x = vax_btop(cp - ifw->ifw_addr); ip = (int *)&ifw->ifw_mr[x]; for (i = 0; i < MCLBYTES/VAX_NBPG; i++) *ip++ = ifw->ifw_proto | pte++->pg_pfn; xswapd |= 1 << (x>>(MCLSHIFT-VAX_PGSHIFT)); mp = m->m_next; m->m_next = ifw->ifw_xtofree; ifw->ifw_xtofree = m; cp += m->m_len; } else { bcopy(mtod(m, caddr_t), cp, (unsigned)m->m_len); cp += m->m_len; MFREE(m, mp); } m = mp; } /* * Xswapd is the set of clusters we just mapped out. Ifu->iff_xswapd * is the set of clusters mapped out from before. We compute * the number of clusters involved in this operation in x. * Clusters mapped out before and involved in this operation * should be unmapped so original pages will be accessed by the device. */ cc = cp - ifw->ifw_addr; x = ((cc - ifu->iff_hlen) + MCLBYTES - 1) >> MCLSHIFT; ifw->ifw_xswapd &= ~xswapd; while ((i = ffs((long)ifw->ifw_xswapd)) != 0) { i--; if (i >= x) break; ifw->ifw_xswapd &= ~(1<ifw_mr[i] = ifw->ifw_wmap[i]; i++; } } ifw->ifw_xswapd |= xswapd; return (cc); }