/* * Copyright (c) 1982, 1986, 1990 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)dca.c 7.12 (Berkeley) 6/27/91 * $Id: dca.c,v 1.6 1993/06/06 23:04:42 cgd Exp $ */ #include "dca.h" #if NDCA > 0 /* * 98626/98644/internal serial interface * uses National Semiconductor INS8250/NS16550AF UART */ #include "sys/param.h" #include "sys/systm.h" #include "sys/ioctl.h" #include "sys/tty.h" #include "sys/proc.h" #include "sys/conf.h" #include "sys/file.h" #include "sys/malloc.h" #include "sys/uio.h" #include "sys/kernel.h" #include "sys/syslog.h" #include "device.h" #include "dcareg.h" #include "machine/cpu.h" #include "../hp300/isr.h" int dcaprobe(); struct driver dcadriver = { dcaprobe, "dca", }; int dcastart(), dcaparam(), dcaintr(); int dcasoftCAR; int dca_active; int dca_hasfifo; int ndca = NDCA; #ifdef DCACONSOLE int dcaconsole = DCACONSOLE; #else int dcaconsole = -1; #endif int dcaconsinit; int dcadefaultrate = TTYDEF_SPEED; int dcamajor; struct dcadevice *dca_addr[NDCA]; struct tty *dca_tty[NDCA]; struct isr dcaisr[NDCA]; struct speedtab dcaspeedtab[] = { 0, 0, 50, DCABRD(50), 75, DCABRD(75), 110, DCABRD(110), 134, DCABRD(134), 150, DCABRD(150), 200, DCABRD(200), 300, DCABRD(300), 600, DCABRD(600), 1200, DCABRD(1200), 1800, DCABRD(1800), 2400, DCABRD(2400), 4800, DCABRD(4800), 9600, DCABRD(9600), 19200, DCABRD(19200), 38400, DCABRD(38400), -1, -1 }; extern struct tty *constty; #ifdef KGDB #include "machine/remote-sl.h" extern dev_t kgdb_dev; extern int kgdb_rate; extern int kgdb_debug_init; #endif #define UNIT(x) minor(x) #ifdef DEBUG long fifoin[17]; long fifoout[17]; long dcaintrcount[16]; long dcamintcount[16]; #endif dcaprobe(hd) register struct hp_device *hd; { register struct dcadevice *dca; register int unit; dca = (struct dcadevice *)hd->hp_addr; if (dca->dca_irid != DCAID0 && dca->dca_irid != DCAREMID0 && dca->dca_irid != DCAID1 && dca->dca_irid != DCAREMID1) return (0); unit = hd->hp_unit; if (unit == dcaconsole) DELAY(100000); dca->dca_irid = 0xFF; DELAY(100); /* look for a NS 16550AF UART with FIFOs */ dca->dca_fifo = FIFO_ENABLE|FIFO_RCV_RST|FIFO_XMT_RST|FIFO_TRIGGER_14; DELAY(100); if ((dca->dca_iir & IIR_FIFO_MASK) == IIR_FIFO_MASK) dca_hasfifo |= 1 << unit; hd->hp_ipl = DCAIPL(dca->dca_ic); dcaisr[unit].isr_ipl = hd->hp_ipl; dcaisr[unit].isr_arg = unit; dcaisr[unit].isr_intr = dcaintr; dca_addr[unit] = dca; dca_active |= 1 << unit; dcasoftCAR = hd->hp_flags; isrlink(&dcaisr[unit]); #ifdef KGDB if (kgdb_dev == makedev(dcamajor, unit)) { if (dcaconsole == unit) kgdb_dev = NODEV; /* can't debug over console port */ else { (void) dcainit(unit, kgdb_rate); dcaconsinit = 1; /* don't re-init in dcaputc */ if (kgdb_debug_init) { /* * Print prefix of device name, * let kgdb_connect print the rest. */ printf("dca%d: ", unit); kgdb_connect(1); } else printf("dca%d: kgdb enabled\n", unit); } } #endif dca->dca_ic = IC_IE; /* * Need to reset baud rate, etc. of next print so reset dcaconsinit. * Also make sure console is always "hardwired." */ if (unit == dcaconsole) { dcaconsinit = 0; dcasoftCAR |= (1 << unit); } return (1); } /* ARGSUSED */ #ifdef __STDC__ dcaopen(dev_t dev, int flag, int mode, struct proc *p) #else dcaopen(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; #endif { register struct tty *tp; register int unit; int error = 0; unit = UNIT(dev); if (unit >= NDCA || (dca_active & (1 << unit)) == 0) return (ENXIO); if(!dca_tty[unit]) { MALLOC(tp, struct tty *, sizeof(struct tty), M_TTYS, M_WAITOK); bzero(tp, sizeof(struct tty)); dca_tty[unit] = tp; } else tp = dca_tty[unit]; tp->t_oproc = dcastart; tp->t_param = dcaparam; tp->t_dev = dev; if ((tp->t_state & TS_ISOPEN) == 0) { tp->t_state |= TS_WOPEN; ttychars(tp); if (tp->t_ispeed == 0) { tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = dcadefaultrate; } dcaparam(tp, &tp->t_termios); ttsetwater(tp); } else if (tp->t_state&TS_XCLUDE && p->p_ucred->cr_uid != 0) return (EBUSY); (void) dcamctl(dev, MCR_DTR | MCR_RTS, DMSET); if ((dcasoftCAR & (1 << unit)) || (dcamctl(dev, 0, DMGET) & MSR_DCD)) tp->t_state |= TS_CARR_ON; (void) spltty(); while ((flag&O_NONBLOCK) == 0 && (tp->t_cflag&CLOCAL) == 0 && (tp->t_state & TS_CARR_ON) == 0) { tp->t_state |= TS_WOPEN; if (error = ttysleep(tp, (caddr_t)&tp->t_raw, TTIPRI | PCATCH, ttopen, 0)) break; } (void) spl0(); if (error == 0) error = (*linesw[tp->t_line].l_open)(dev, tp); return (error); } /*ARGSUSED*/ dcaclose(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { register struct tty *tp; register struct dcadevice *dca; register int unit; unit = UNIT(dev); dca = dca_addr[unit]; tp = dca_tty[unit]; (*linesw[tp->t_line].l_close)(tp, flag); dca->dca_cfcr &= ~CFCR_SBREAK; #ifdef KGDB /* do not disable interrupts if debugging */ if (dev != kgdb_dev) #endif dca->dca_ier = 0; if (tp->t_cflag&HUPCL || tp->t_state&TS_WOPEN || (tp->t_state&TS_ISOPEN) == 0) (void) dcamctl(dev, 0, DMSET); ttyclose(tp); FREE(tp, M_TTYS); dca_tty[unit] = (struct tty *)NULL; return (0); } dcaread(dev, uio, flag) dev_t dev; struct uio *uio; { register struct tty *tp = dca_tty[UNIT(dev)]; return ((*linesw[tp->t_line].l_read)(tp, uio, flag)); } dcawrite(dev, uio, flag) dev_t dev; struct uio *uio; { int unit = UNIT(dev); register struct tty *tp = dca_tty[unit]; /* * (XXX) We disallow virtual consoles if the physical console is * a serial port. This is in case there is a display attached that * is not the console. In that situation we don't need/want the X * server taking over the console. */ if (constty && unit == dcaconsole) constty = NULL; return ((*linesw[tp->t_line].l_write)(tp, uio, flag)); } dcaintr(unit) register int unit; { register struct dcadevice *dca; register u_char code; register struct tty *tp; dca = dca_addr[unit]; if ((dca->dca_ic & IC_IR) == 0) return (0); while (1) { code = dca->dca_iir; #ifdef DEBUG dcaintrcount[code & IIR_IMASK]++; #endif switch (code & IIR_IMASK) { case IIR_NOPEND: return (1); case IIR_RXTOUT: case IIR_RXRDY: /* do time-critical read in-line */ tp = dca_tty[unit]; /* * Process a received byte. Inline for speed... */ #ifdef KGDB #define RCVBYTE() \ code = dca->dca_data; \ if ((tp->t_state & TS_ISOPEN) == 0) { \ if (code == FRAME_END && \ kgdb_dev == makedev(dcamajor, unit)) \ kgdb_connect(0); /* trap into kgdb */ \ } else \ (*linesw[tp->t_line].l_rint)(code, tp) #else #define RCVBYTE() \ code = dca->dca_data; \ if ((tp->t_state & TS_ISOPEN) != 0) \ (*linesw[tp->t_line].l_rint)(code, tp) #endif RCVBYTE(); if (dca_hasfifo & (1 << unit)) { #ifdef DEBUG register int fifocnt = 1; #endif while ((code = dca->dca_lsr) & LSR_RCV_MASK) { if (code == LSR_RXRDY) { RCVBYTE(); } else dcaeint(unit, code, dca); #ifdef DEBUG fifocnt++; #endif } #ifdef DEBUG if (fifocnt > 16) fifoin[0]++; else fifoin[fifocnt]++; #endif } break; case IIR_TXRDY: tp = dca_tty[unit]; tp->t_state &=~ (TS_BUSY|TS_FLUSH); if (tp->t_line) (*linesw[tp->t_line].l_start)(tp); else dcastart(tp); break; case IIR_RLS: dcaeint(unit, dca->dca_lsr, dca); break; default: if (code & IIR_NOPEND) return (1); log(LOG_WARNING, "dca%d: weird interrupt: 0x%x\n", unit, code); /* fall through */ case IIR_MLSC: dcamint(unit, dca); break; } } } dcaeint(unit, stat, dca) register int unit, stat; register struct dcadevice *dca; { register struct tty *tp; register int c; tp = dca_tty[unit]; c = dca->dca_data; if ((tp->t_state & TS_ISOPEN) == 0) { #ifdef KGDB /* we don't care about parity errors */ if (((stat & (LSR_BI|LSR_FE|LSR_PE)) == LSR_PE) && kgdb_dev == makedev(dcamajor, unit) && c == FRAME_END) kgdb_connect(0); /* trap into kgdb */ #endif return; } if (stat & (LSR_BI | LSR_FE)) c |= TTY_FE; else if (stat & LSR_PE) c |= TTY_PE; else if (stat & LSR_OE) log(LOG_WARNING, "dca%d: silo overflow\n", unit); (*linesw[tp->t_line].l_rint)(c, tp); } dcamint(unit, dca) register int unit; register struct dcadevice *dca; { register struct tty *tp; register int stat; tp = dca_tty[unit]; stat = dca->dca_msr; #ifdef DEBUG dcamintcount[stat & 0xf]++; #endif if ((stat & MSR_DDCD) && (dcasoftCAR & (1 << unit)) == 0) { if (stat & MSR_DCD) (void)(*linesw[tp->t_line].l_modem)(tp, 1); else if ((*linesw[tp->t_line].l_modem)(tp, 0) == 0) dca->dca_mcr &= ~(MCR_DTR | MCR_RTS); } else if ((stat & MSR_DCTS) && (tp->t_state & TS_ISOPEN) && (tp->t_flags & CRTSCTS)) { /* the line is up and we want to do rts/cts flow control */ if (stat & MSR_CTS) { tp->t_state &=~ TS_TTSTOP; ttstart(tp); } else tp->t_state |= TS_TTSTOP; } } dcaioctl(dev, cmd, data, flag) dev_t dev; caddr_t data; { register struct tty *tp; register int unit = UNIT(dev); register struct dcadevice *dca; register int error; tp = dca_tty[unit]; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag); if (error >= 0) return (error); dca = dca_addr[unit]; switch (cmd) { case TIOCSBRK: dca->dca_cfcr |= CFCR_SBREAK; break; case TIOCCBRK: dca->dca_cfcr &= ~CFCR_SBREAK; break; case TIOCSDTR: (void) dcamctl(dev, MCR_DTR | MCR_RTS, DMBIS); break; case TIOCCDTR: (void) dcamctl(dev, MCR_DTR | MCR_RTS, DMBIC); break; case TIOCMSET: (void) dcamctl(dev, *(int *)data, DMSET); break; case TIOCMBIS: (void) dcamctl(dev, *(int *)data, DMBIS); break; case TIOCMBIC: (void) dcamctl(dev, *(int *)data, DMBIC); break; case TIOCMGET: *(int *)data = dcamctl(dev, 0, DMGET); break; default: return (ENOTTY); } return (0); } dcaparam(tp, t) register struct tty *tp; register struct termios *t; { register struct dcadevice *dca; register int cfcr, cflag = t->c_cflag; int unit = UNIT(tp->t_dev); int ospeed = ttspeedtab(t->c_ospeed, dcaspeedtab); /* check requested parameters */ if (ospeed < 0 || (t->c_ispeed && t->c_ispeed != t->c_ospeed)) return (EINVAL); /* and copy to tty */ tp->t_ispeed = t->c_ispeed; tp->t_ospeed = t->c_ospeed; tp->t_cflag = cflag; dca = dca_addr[unit]; dca->dca_ier = IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC; if (ospeed == 0) { (void) dcamctl(unit, 0, DMSET); /* hang up line */ return (0); } dca->dca_cfcr |= CFCR_DLAB; dca->dca_data = ospeed & 0xFF; dca->dca_ier = ospeed >> 8; switch (cflag&CSIZE) { case CS5: cfcr = CFCR_5BITS; break; case CS6: cfcr = CFCR_6BITS; break; case CS7: cfcr = CFCR_7BITS; break; case CS8: cfcr = CFCR_8BITS; break; } if (cflag&PARENB) { cfcr |= CFCR_PENAB; if ((cflag&PARODD) == 0) cfcr |= CFCR_PEVEN; } if (cflag&CSTOPB) cfcr |= CFCR_STOPB; dca->dca_cfcr = cfcr; if (dca_hasfifo & (1 << unit)) dca->dca_fifo = FIFO_ENABLE | FIFO_TRIGGER_14; return (0); } dcastart(tp) register struct tty *tp; { register struct dcadevice *dca; int s, unit, c; unit = UNIT(tp->t_dev); dca = dca_addr[unit]; s = spltty(); if (tp->t_state & (TS_TIMEOUT|TS_TTSTOP)) goto out; if (RB_LEN(&tp->t_out) <= tp->t_lowat) { if (tp->t_state&TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)&tp->t_out); } selwakeup(&tp->t_wsel); } if (RB_LEN(&tp->t_out) == 0) goto out; if (dca->dca_lsr & LSR_TXRDY) { c = rbgetc(&tp->t_out); tp->t_state |= TS_BUSY; dca->dca_data = c; if (dca_hasfifo & (1 << unit)) { for (c = 1; c < 16 && RB_LEN(&tp->t_out); ++c) dca->dca_data = rbgetc(&tp->t_out); #ifdef DEBUG if (c > 16) fifoout[0]++; else fifoout[c]++; #endif } } out: splx(s); } /* * Stop output on a line. */ /*ARGSUSED*/ dcastop(tp, flag) register struct tty *tp; { register int s; s = spltty(); if (tp->t_state & TS_BUSY) { if ((tp->t_state&TS_TTSTOP)==0) tp->t_state |= TS_FLUSH; } splx(s); } dcamctl(dev, bits, how) dev_t dev; int bits, how; { register struct dcadevice *dca; register int unit; int s; unit = UNIT(dev); dca = dca_addr[unit]; s = spltty(); switch (how) { case DMSET: dca->dca_mcr = bits; break; case DMBIS: dca->dca_mcr |= bits; break; case DMBIC: dca->dca_mcr &= ~bits; break; case DMGET: bits = dca->dca_msr; break; } (void) splx(s); return (bits); } /* * Following are all routines needed for DCA to act as console */ #include "../hp300/cons.h" dcacnprobe(cp) struct consdev *cp; { int unit; /* locate the major number */ for (dcamajor = 0; dcamajor < nchrdev; dcamajor++) if (cdevsw[dcamajor].d_open == dcaopen) break; /* XXX: ick */ unit = CONUNIT; dca_addr[CONUNIT] = (struct dcadevice *) sctova(CONSCODE); /* make sure hardware exists */ if (badaddr((short *)dca_addr[unit])) { cp->cn_pri = CN_DEAD; return; } /* initialize required fields */ cp->cn_dev = makedev(dcamajor, unit); cp->cn_tp = dca_tty[unit]; switch (dca_addr[unit]->dca_irid) { case DCAID0: case DCAID1: cp->cn_pri = CN_NORMAL; break; case DCAREMID0: case DCAREMID1: cp->cn_pri = CN_REMOTE; break; default: cp->cn_pri = CN_DEAD; break; } /* * If dcaconsole is initialized, raise our priority. */ if (dcaconsole == unit) cp->cn_pri = CN_REMOTE; #ifdef KGDB if (major(kgdb_dev) == 1) /* XXX */ kgdb_dev = makedev(dcamajor, minor(kgdb_dev)); #endif } dcacninit(cp) struct consdev *cp; { int unit = UNIT(cp->cn_dev); dcainit(unit, dcadefaultrate); dcaconsole = unit; dcaconsinit = 1; } dcainit(unit, rate) int unit, rate; { register struct dcadevice *dca; int s; short stat; #ifdef lint stat = unit; if (stat) return; #endif dca = dca_addr[unit]; s = splhigh(); dca->dca_irid = 0xFF; DELAY(100); dca->dca_ic = IC_IE; dca->dca_cfcr = CFCR_DLAB; rate = ttspeedtab(rate, dcaspeedtab); dca->dca_data = rate & 0xFF; dca->dca_ier = rate >> 8; dca->dca_cfcr = CFCR_8BITS; dca->dca_ier = IER_ERXRDY | IER_ETXRDY; dca->dca_fifo = FIFO_ENABLE|FIFO_RCV_RST|FIFO_XMT_RST|FIFO_TRIGGER_14; stat = dca->dca_iir; splx(s); } dcacngetc(dev) { register struct dcadevice *dca = dca_addr[UNIT(dev)]; short stat; int c, s; #ifdef lint stat = dev; if (stat) return (0); #endif s = splhigh(); while (((stat = dca->dca_lsr) & LSR_RXRDY) == 0) ; c = dca->dca_data; stat = dca->dca_iir; splx(s); return (c); } /* * Console kernel output character routine. */ dcacnputc(dev, c) dev_t dev; register int c; { register struct dcadevice *dca = dca_addr[UNIT(dev)]; register int timo; short stat; int s = splhigh(); #ifdef lint stat = dev; if (stat) return; #endif if (dcaconsinit == 0) { (void) dcainit(UNIT(dev), dcadefaultrate); dcaconsinit = 1; } /* wait for any pending transmission to finish */ timo = 50000; while (((stat = dca->dca_lsr) & LSR_TXRDY) == 0 && --timo) ; dca->dca_data = c; /* wait for this transmission to complete */ timo = 1500000; while (((stat = dca->dca_lsr) & LSR_TXRDY) == 0 && --timo) ; /* clear any interrupts generated by this transmission */ stat = dca->dca_iir; splx(s); } #endif