/* $NetBSD: footbridge_clock.c,v 1.3 2001/11/23 19:21:47 thorpej Exp $ */ /* * Copyright (c) 1997 Mark Brinicombe. * Copyright (c) 1997 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Include header files */ #include #include #include #include #include #include #include #include #include #include extern struct footbridge_softc *clock_sc; extern u_int dc21285_fclk; #if 0 static int clockmatch __P((struct device *parent, struct cfdata *cf, void *aux)); static void clockattach __P((struct device *parent, struct device *self, void *aux)); struct cfattach footbridge_clock_ca = { sizeof(struct clock_softc), clockmatch, clockattach }; /* * int clockmatch(struct device *parent, void *match, void *aux) * * Just return ok for this if it is device 0 */ static int clockmatch(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { union footbridge_attach_args *fba = aux; if (strcmp(fba->fba_ca.ca_name, "clk") == 0) return(1); return(0); } /* * void clockattach(struct device *parent, struct device *dev, void *aux) * */ static void clockattach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct clock_softc *sc = (struct clock_softc *)self; union footbridge_attach_args *fba = aux; sc->sc_iot = fba->fba_ca.ca_iot; sc->sc_ioh = fba->fba_ca.ca_ioh; clock_sc = sc; /* Cannot do anything until cpu_initclocks() has been called */ printf("\n"); } #endif /* * int clockhandler(struct clockframe *frame) * * Function called by timer 1 interrupts. * This just clears the interrupt condition and calls hardclock(). */ int clockhandler(frame) struct clockframe *frame; { bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh, TIMER_1_CLEAR, 0); hardclock(frame); return(0); /* Pass the interrupt on down the chain */ } /* * int statclockhandler(struct clockframe *frame) * * Function called by timer 2 interrupts. * This just clears the interrupt condition and calls statclock(). */ int statclockhandler(frame) struct clockframe *frame; { bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh, TIMER_2_CLEAR, 0); statclock(frame); return(0); /* Pass the interrupt on down the chain */ } static int load_timer(base, hz) int base; int hz; { unsigned int timer_count; int control; timer_count = dc21285_fclk / hz; if (timer_count > TIMER_MAX * 16) { control = TIMER_FCLK_256; timer_count >>= 8; } else if (timer_count > TIMER_MAX) { control = TIMER_FCLK_16; timer_count >>= 4; } else control = TIMER_FCLK; control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC); bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh, base + TIMER_LOAD, timer_count); bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh, base + TIMER_CONTROL, control); bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh, base + TIMER_CLEAR, 0); return(timer_count); } /* * void setstatclockrate(int hz) * * Set the stat clock rate. The stat clock uses timer2 */ void setstatclockrate(hz) int hz; { clock_sc->sc_statclock_count = load_timer(TIMER_2_BASE, hz); } /* * void cpu_initclocks(void) * * Initialise the clocks. * * Timer 1 is used for the main system clock (hardclock) * Timer 2 is used for the statistics clock (statclock) */ void cpu_initclocks() { /* Report the clock frequencies */ printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz); /* Setup timer 1 and claim interrupt */ clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz); /* * Use ticks per 256us for accuracy since ticks per us is often * fractional e.g. @ 66MHz */ clock_sc->sc_clock_ticks_per_256us = ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000); clock_sc->sc_clockintr = intr_claim(IRQ_TIMER_1, IPL_CLOCK, "tmr1 hard clk", clockhandler, 0); if (clock_sc->sc_clockintr == NULL) panic("%s: Cannot install timer 1 interrupt handler\n", clock_sc->sc_dev.dv_xname); /* If stathz is non-zero then setup the stat clock */ if (stathz) { /* Setup timer 2 and claim interrupt */ setstatclockrate(stathz); clock_sc->sc_statclockintr = intr_claim(IRQ_TIMER_2, IPL_CLOCK, "tmr2 stat clk", statclockhandler, 0); if (clock_sc->sc_statclockintr == NULL) panic("%s: Cannot install timer 2 interrupt handler\n", clock_sc->sc_dev.dv_xname); } } /* * void microtime(struct timeval *tvp) * * Fill in the specified timeval struct with the current time * accurate to the microsecond. */ void microtime(tvp) struct timeval *tvp; { int s; int tm; int deltatm; static struct timeval oldtv; if (clock_sc == NULL || clock_sc->sc_clock_count == 0) return; s = splhigh(); tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh, TIMER_1_VALUE); deltatm = clock_sc->sc_clock_count - tm; #ifdef DIAGNOSTIC if (deltatm < 0) panic("opps deltatm < 0 tm=%d deltatm=%d\n", tm, deltatm); #endif /* Fill in the timeval struct */ *tvp = time; tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us); /* Make sure the micro seconds don't overflow. */ while (tvp->tv_usec >= 1000000) { tvp->tv_usec -= 1000000; ++tvp->tv_sec; } /* Make sure the time has advanced. */ if (tvp->tv_sec == oldtv.tv_sec && tvp->tv_usec <= oldtv.tv_usec) { tvp->tv_usec = oldtv.tv_usec + 1; if (tvp->tv_usec >= 1000000) { tvp->tv_usec -= 1000000; ++tvp->tv_sec; } } oldtv = *tvp; (void)splx(s); } /* * Estimated loop for n microseconds */ /* Need to re-write this to use the timers */ /* One day soon I will actually do this */ int delaycount = 50; void delay(n) u_int n; { u_int i; if (n == 0) return; while (--n > 0) { if (cputype == CPU_ID_SA110) /* XXX - Seriously gross hack */ for (i = delaycount; --i;); else for (i = 8; --i;); } } /* End of footbridge_clock.c */