/* $NetBSD: if_ipw.c,v 1.45 2009/01/09 21:14:36 jmcneill Exp $ */ /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */ /*- * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.45 2009/01/09 21:14:36 jmcneill Exp $"); /*- * Intel(R) PRO/Wireless 2100 MiniPCI driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPW_DEBUG #define DPRINTF(x) if (ipw_debug > 0) printf x #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x int ipw_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* Permit loading the Intel firmware */ static int ipw_accept_eula; static int ipw_dma_alloc(struct ipw_softc *); static void ipw_release(struct ipw_softc *); static int ipw_match(struct device *, struct cfdata *, void *); static void ipw_attach(struct device *, struct device *, void *); static int ipw_detach(struct device *, int); static int ipw_media_change(struct ifnet *); static void ipw_media_status(struct ifnet *, struct ifmediareq *); static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int); static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *); static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); static void ipw_data_intr(struct ipw_softc *, struct ipw_status *, struct ipw_soft_bd *, struct ipw_soft_buf *); static void ipw_rx_intr(struct ipw_softc *); static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); static void ipw_tx_intr(struct ipw_softc *); static int ipw_intr(void *); static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); static int ipw_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *); static void ipw_start(struct ifnet *); static void ipw_watchdog(struct ifnet *); static int ipw_ioctl(struct ifnet *, u_long, void *); static int ipw_get_table1(struct ipw_softc *, uint32_t *); static int ipw_get_radio(struct ipw_softc *, int *); static void ipw_stop_master(struct ipw_softc *); static int ipw_reset(struct ipw_softc *); static int ipw_load_ucode(struct ipw_softc *, u_char *, int); static int ipw_load_firmware(struct ipw_softc *, u_char *, int); static int ipw_cache_firmware(struct ipw_softc *); static void ipw_free_firmware(struct ipw_softc *); static int ipw_config(struct ipw_softc *); static int ipw_init(struct ifnet *); static void ipw_stop(struct ifnet *, int); static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *); static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, bus_size_t); static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, bus_size_t); /* * Supported rates for 802.11b mode (in 500Kbps unit). */ static const struct ieee80211_rateset ipw_rateset_11b = { 4, { 2, 4, 11, 22 } }; static inline uint8_t MEM_READ_1(struct ipw_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA); } static inline uint32_t MEM_READ_4(struct ipw_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA); } CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach, ipw_detach, NULL); static int ipw_match(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100) return 1; return 0; } /* Base Address Register */ #define IPW_PCI_BAR0 0x10 static void ipw_attach(struct device *parent, struct device *self, void *aux) { struct ipw_softc *sc = (struct ipw_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct pci_attach_args *pa = aux; const char *intrstr; char devinfo[256]; bus_space_tag_t memt; bus_space_handle_t memh; bus_addr_t base; pci_intr_handle_t ih; uint32_t data; uint16_t val; int i, revision, error; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); revision = PCI_REVISION(pa->pa_class); aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision); /* enable bus-mastering */ data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG); data |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data); /* map the register window */ error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map memory space\n"); return; } sc->sc_st = memt; sc->sc_sh = memh; sc->sc_dmat = pa->pa_dmat; sc->sc_fwname = "ipw2100-1.2.fw"; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); if (pci_intr_map(pa, &ih) != 0) { aprint_error_dev(&sc->sc_dev, "could not map interrupt\n"); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(&sc->sc_dev, "could not establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr); if (ipw_reset(sc) != 0) { aprint_error_dev(&sc->sc_dev, "could not reset adapter\n"); goto fail; } if (ipw_dma_alloc(sc) != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate DMA resources\n"); goto fail; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ipw_init; ifp->if_stop = ipw_stop; ifp->if_ioctl = ipw_ioctl; ifp->if_start = ipw_start; ifp->if_watchdog = ipw_watchdog; IFQ_SET_READY(&ifp->if_snd); strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_DS; ic->ic_opmode = IEEE80211_M_STA; ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_IBSS /* ibss mode */ | IEEE80211_C_MONITOR /* monitor mode */ ; /* read MAC address from EEPROM */ val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); ic->ic_myaddr[0] = val >> 8; ic->ic_myaddr[1] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); ic->ic_myaddr[2] = val >> 8; ic->ic_myaddr[3] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); ic->ic_myaddr[4] = val >> 8; ic->ic_myaddr[5] = val & 0xff; /* set supported .11b rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b; /* set supported .11b channels (read from EEPROM) */ if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) val = 0x7ff; /* default to channels 1-11 */ val <<= 1; for (i = 1; i < 16; i++) { if (val & (1 << i)) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_B); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B; } } /* check support for radio transmitter switch in EEPROM */ if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); if_attach(ifp); ieee80211_ifattach(ic); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = ipw_newstate; ieee80211_media_init(ic, ipw_media_change, ipw_media_status); #if NBPFILTER > 0 bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT); #endif /* * Add a few sysctl knobs. * XXX: Not yet */ sc->dwelltime = 100; if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "couldn't establish power handler\n"); else pmf_class_network_register(self, ifp); ieee80211_announce(ic); return; fail: ipw_detach(self, 0); } static int ipw_detach(struct device* self, int flags) { struct ipw_softc *sc = (struct ipw_softc *)self; struct ifnet *ifp = &sc->sc_if; if (ifp->if_softc) { ipw_stop(ifp, 1); ipw_free_firmware(sc); #if NBPFILTER > 0 bpfdetach(ifp); #endif ieee80211_ifdetach(&sc->sc_ic); if_detach(ifp); ipw_release(sc); } if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_ih); sc->sc_ih = NULL; } bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); return 0; } static int ipw_dma_alloc(struct ipw_softc *sc) { struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; int error, i, nsegs; /* * Allocate and map tx ring. */ error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, BUS_DMA_NOWAIT, &sc->tbd_map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create tbd dma map\n"); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0, &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate tbd dma memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ, (void **)&sc->tbd_list, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map tbd dma memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list, IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load tbd dma memory\n"); goto fail; } (void)memset(sc->tbd_list, 0, IPW_TBD_SZ); /* * Allocate and map rx ring. */ error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, BUS_DMA_NOWAIT, &sc->rbd_map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create rbd dma map\n"); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0, &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate rbd dma memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ, (void **)&sc->rbd_list, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map rbd dma memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list, IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load rbd dma memory\n"); goto fail; } (void)memset(sc->rbd_list, 0, IPW_RBD_SZ); /* * Allocate and map status ring. */ error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create status dma map\n"); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0, &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate status dma memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs, IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map status dma memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list, IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load status dma memory\n"); goto fail; } (void)memset(sc->status_list, 0, IPW_STATUS_SZ); /* * Allocate command DMA map. */ error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd), 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create cmd dma map\n"); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd), PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate cmd dma memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs, sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd, sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n"); return error; } /* * Allocate and map hdr list. */ error = bus_dmamap_create(sc->sc_dmat, IPW_NDATA * sizeof(struct ipw_hdr), 1, sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT, &sc->hdr_map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create hdr dma map\n"); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate hdr memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs, IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map hdr memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list, IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load hdr memory\n"); goto fail; } (void)memset(sc->hdr_list, 0, IPW_HDR_SZ); /* * Create DMA hdrs tailq. */ TAILQ_INIT(&sc->sc_free_shdr); for (i = 0; i < IPW_NDATA; i++) { shdr = &sc->shdr_list[i]; shdr->hdr = sc->hdr_list + i; shdr->offset = sizeof(struct ipw_hdr) * i; shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset; TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next); } /* * Allocate tx buffers DMA maps. */ TAILQ_INIT(&sc->sc_free_sbuf); for (i = 0; i < IPW_NDATA; i++) { sbuf = &sc->tx_sbuf_list[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create txbuf dma map\n"); goto fail; } TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next); } /* * Initialize tx ring. */ for (i = 0; i < IPW_NTBD; i++) { sbd = &sc->stbd_list[i]; sbd->bd = &sc->tbd_list[i]; sbd->type = IPW_SBD_TYPE_NOASSOC; } /* * Pre-allocate rx buffers and DMA maps */ for (i = 0; i < IPW_NRBD; i++) { sbd = &sc->srbd_list[i]; sbuf = &sc->rx_sbuf_list[i]; sbd->bd = &sc->rbd_list[i]; MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA); if (sbuf->m == NULL) { aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } MCLGET(sbuf->m, M_DONTWAIT); if (!(sbuf->m->m_flags & M_EXT)) { m_freem(sbuf->m); aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n"); error = ENOMEM; goto fail; } sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create rxbuf dma map\n"); m_freem(sbuf->m); goto fail; } error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { bus_dmamap_destroy(sc->sc_dmat, sbuf->map); m_freem(sbuf->m); aprint_error_dev(&sc->sc_dev, "could not map rxbuf dma memory\n"); goto fail; } sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr); sbd->bd->len = htole32(MCLBYTES); bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD); } bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ, BUS_DMASYNC_PREREAD); return 0; fail: ipw_release(sc); return error; } static void ipw_release(struct ipw_softc *sc) { struct ipw_soft_buf *sbuf; int i; if (sc->tbd_map != NULL) { if (sc->tbd_list != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->tbd_map); bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list, IPW_TBD_SZ); bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map); } if (sc->rbd_map != NULL) { if (sc->rbd_list != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rbd_map); bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list, IPW_RBD_SZ); bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map); } if (sc->status_map != NULL) { if (sc->status_list != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->status_map); bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list, IPW_RBD_SZ); bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->status_map); } for (i = 0; i < IPW_NTBD; i++) ipw_release_sbd(sc, &sc->stbd_list[i]); if (sc->cmd_map != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map); if (sc->hdr_list != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->hdr_map); bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list, IPW_NDATA * sizeof(struct ipw_hdr)); } if (sc->hdr_map != NULL) { bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1); bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map); } for (i = 0; i < IPW_NDATA; i++) bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map); for (i = 0; i < IPW_NRBD; i++) { sbuf = &sc->rx_sbuf_list[i]; if (sbuf->map != NULL) { if (sbuf->m != NULL) { bus_dmamap_unload(sc->sc_dmat, sbuf->map); m_freem(sbuf->m); } bus_dmamap_destroy(sc->sc_dmat, sbuf->map); } } } static int ipw_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ipw_init(ifp); return 0; } /* * The firmware automatically adapts the transmit speed. We report the current * transmit speed here. */ static void ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) { #define N(a) (sizeof (a) / sizeof (a[0])) struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; static const struct { uint32_t val; int rate; } rates[] = { { IPW_RATE_DS1, 2 }, { IPW_RATE_DS2, 4 }, { IPW_RATE_DS5, 11 }, { IPW_RATE_DS11, 22 }, }; uint32_t val; int rate, i; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf; /* convert ipw rate to 802.11 rate */ for (i = 0; i < N(rates) && rates[i].val != val; i++); rate = (i < N(rates)) ? rates[i].rate : 0; imr->ifm_active |= IFM_IEEE80211_11B; imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: /* should not get there */ break; } #undef N } static int ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct ipw_softc *sc = ifp->if_softc; struct ieee80211_node *ni; uint8_t macaddr[IEEE80211_ADDR_LEN]; uint32_t len; struct ipw_rx_radiotap_header *wr = &sc->sc_rxtap; struct ipw_tx_radiotap_header *wt = &sc->sc_txtap; switch (nstate) { case IEEE80211_S_INIT: break; default: KASSERT(ic->ic_curchan != IEEE80211_CHAN_ANYC); KASSERT(ic->ic_curchan != NULL); wt->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); wt->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); wr->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); wr->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); break; } switch (nstate) { case IEEE80211_S_RUN: DELAY(200); /* firmware needs a short delay here */ len = IEEE80211_ADDR_LEN; ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len); ni = ieee80211_find_node(&ic->ic_scan, macaddr); if (ni == NULL) break; ieee80211_ref_node(ni); ieee80211_sta_join(ic, ni); ieee80211_node_authorize(ni); if (ic->ic_opmode == IEEE80211_M_STA) ieee80211_notify_node_join(ic, ni, 1); break; case IEEE80211_S_INIT: case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: break; } ic->ic_state = nstate; return 0; } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* write start bit (1) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); /* write READ opcode (10) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); } IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; } IPW_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_C); return le16toh(val); } static void ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { struct ipw_cmd *cmd; bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd), BUS_DMASYNC_POSTREAD); cmd = mtod(sbuf->m, struct ipw_cmd *); DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type), le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), le32toh(cmd->status))); wakeup(&sc->cmd); } static void ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ic.ic_ifp; uint32_t state; bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state, BUS_DMASYNC_POSTREAD); state = le32toh(*mtod(sbuf->m, uint32_t *)); DPRINTFN(2, ("entering state %u\n", state)); switch (state) { case IPW_STATE_ASSOCIATED: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IPW_STATE_SCANNING: /* don't leave run state on background scan */ if (ic->ic_state != IEEE80211_S_RUN) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); ic->ic_flags |= IEEE80211_F_SCAN; break; case IPW_STATE_SCAN_COMPLETE: ieee80211_notify_scan_done(ic); ic->ic_flags &= ~IEEE80211_F_SCAN; break; case IPW_STATE_ASSOCIATION_LOST: ieee80211_new_state(ic, IEEE80211_S_INIT, -1); break; case IPW_STATE_RADIO_DISABLED: ic->ic_ifp->if_flags &= ~IFF_UP; ipw_stop(ifp, 1); break; } } /* * XXX: Hack to set the current channel to the value advertised in beacons or * probe responses. Only used during AP detection. */ static void ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m) { struct ieee80211_frame *wh; uint8_t subtype; uint8_t *frm, *efrm; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) return; frm = (uint8_t *)(wh + 1); efrm = mtod(m, uint8_t *) + m->m_len; frm += 12; /* skip tstamp, bintval and capinfo fields */ while (frm < efrm) { if (*frm == IEEE80211_ELEMID_DSPARMS) #if IEEE80211_CHAN_MAX < 255 if (frm[2] <= IEEE80211_CHAN_MAX) #endif ic->ic_curchan = &ic->ic_channels[frm[2]]; frm += frm[1] + 2; } } static void ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status, struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct mbuf *mnew, *m; struct ieee80211_frame *wh; struct ieee80211_node *ni; int error; DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), status->rssi)); if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || le32toh(status->len) > MCLBYTES) return; /* * Try to allocate a new mbuf for this ring element and load it before * processing the current mbuf. If the ring element cannot be loaded, * drop the received packet and reuse the old mbuf. In the unlikely * case that the old mbuf can't be reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n"); ifp->if_ierrors++; return; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n"); m_freem(mnew); ifp->if_ierrors++; return; } mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size; bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len), BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, sbuf->map); error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map\n"); m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: unable to remap rx buf", device_xname(&sc->sc_dev)); } ifp->if_ierrors++; return; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = sbuf->m; sbuf->m = mnew; sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = le32toh(status->len); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_antsignal = status->rssi; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } #endif if (ic->ic_state == IEEE80211_S_SCAN) ipw_fix_channel(ic, m); wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); /* send the frame to the 802.11 layer */ ieee80211_input(ic, m, ni, status->rssi, 0); /* node is no longer needed */ ieee80211_free_node(ni); bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD); } static void ipw_rx_intr(struct ipw_softc *sc) { struct ipw_status *status; struct ipw_soft_bd *sbd; struct ipw_soft_buf *sbuf; uint32_t r, i; if (!(sc->flags & IPW_FLAG_FW_INITED)) return; r = CSR_READ_4(sc, IPW_CSR_RX_READ); for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { /* firmware was killed, stop processing received frames */ if (!(sc->flags & IPW_FLAG_FW_INITED)) return; bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, i * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->sc_dmat, sc->status_map, i * sizeof (struct ipw_status), sizeof (struct ipw_status), BUS_DMASYNC_POSTREAD); status = &sc->status_list[i]; sbd = &sc->srbd_list[i]; sbuf = sbd->priv; switch (le16toh(status->code) & 0xf) { case IPW_STATUS_CODE_COMMAND: ipw_command_intr(sc, sbuf); break; case IPW_STATUS_CODE_NEWSTATE: ipw_newstate_intr(sc, sbuf); break; case IPW_STATUS_CODE_DATA_802_3: case IPW_STATUS_CODE_DATA_802_11: ipw_data_intr(sc, status, sbd, sbuf); break; case IPW_STATUS_CODE_NOTIFICATION: DPRINTFN(2, ("received notification\n")); break; default: aprint_error_dev(&sc->sc_dev, "unknown status code %u\n", le16toh(status->code)); } sbd->bd->flags = 0; bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, i * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->sc_dmat, sc->status_map, i * sizeof (struct ipw_status), sizeof (struct ipw_status), BUS_DMASYNC_PREREAD); } /* Tell the firmware what we have processed */ sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); } static void ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) { struct ieee80211com *ic; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; switch (sbd->type) { case IPW_SBD_TYPE_COMMAND: bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE); /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */ break; case IPW_SBD_TYPE_HEADER: shdr = sbd->priv; bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE); TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next); break; case IPW_SBD_TYPE_DATA: ic = &sc->sc_ic; sbuf = sbd->priv; bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, sbuf->map); m_freem(sbuf->m); if (sbuf->ni != NULL) ieee80211_free_node(sbuf->ni); /* kill watchdog timer */ sc->sc_tx_timer = 0; TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next); break; } sbd->type = IPW_SBD_TYPE_NOASSOC; } static void ipw_tx_intr(struct ipw_softc *sc) { struct ifnet *ifp = &sc->sc_if; struct ipw_soft_bd *sbd; uint32_t r, i; if (!(sc->flags & IPW_FLAG_FW_INITED)) return; r = CSR_READ_4(sc, IPW_CSR_TX_READ); for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { sbd = &sc->stbd_list[i]; if (sbd->type == IPW_SBD_TYPE_DATA) ifp->if_opackets++; ipw_release_sbd(sc, sbd); sc->txfree++; } /* remember what the firmware has processed */ sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; /* Call start() since some buffer descriptors have been released */ ifp->if_flags &= ~IFF_OACTIVE; (*ifp->if_start)(ifp); } static int ipw_intr(void *arg) { struct ipw_softc *sc = arg; uint32_t r; r = CSR_READ_4(sc, IPW_CSR_INTR); if (r == 0 || r == 0xffffffff) return 0; /* Disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { aprint_error_dev(&sc->sc_dev, "fatal error\n"); sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; ipw_stop(&sc->sc_if, 1); } if (r & IPW_INTR_FW_INIT_DONE) { if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IPW_INTR_RX_TRANSFER) ipw_rx_intr(sc); if (r & IPW_INTR_TX_TRANSFER) ipw_tx_intr(sc); /* Acknowledge all interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR, r); /* Re-enable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); return 0; } /* * Send a command to the firmware and wait for the acknowledgement. */ static int ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) { struct ipw_soft_bd *sbd; sbd = &sc->stbd_list[sc->txcur]; sc->cmd.type = htole32(type); sc->cmd.subtype = 0; sc->cmd.len = htole32(len); sc->cmd.seq = 0; (void)memcpy(sc->cmd.data, data, len); sbd->type = IPW_SBD_TYPE_COMMAND; sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr); sbd->bd->len = htole32(sizeof (struct ipw_cmd)); sbd->bd->nfrag = 1; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | IPW_BD_FLAG_TX_LAST_FRAGMENT; bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len)); /* kick firmware */ sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); /* Wait at most one second for command to complete */ return tsleep(&sc->cmd, 0, "ipwcmd", hz); } static int ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; struct ieee80211_key *k; struct mbuf *mnew; int error, i; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } #endif shdr = TAILQ_FIRST(&sc->sc_free_shdr); sbuf = TAILQ_FIRST(&sc->sc_free_sbuf); KASSERT(shdr != NULL && sbuf != NULL); shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND); shdr->hdr->subtype = 0; shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0; shdr->hdr->encrypt = 0; shdr->hdr->keyidx = 0; shdr->hdr->keysz = 0; shdr->hdr->fragmentsz = 0; IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2); if (ic->ic_opmode == IEEE80211_M_STA) IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3); else IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1); /* trim IEEE802.11 header */ m_adj(m0, sizeof (struct ieee80211_frame)); error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m0); return ENOMEM; } M_COPY_PKTHDR(mnew, m0); /* If the data won't fit in the header, get a cluster */ if (m0->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m0); m_freem(mnew); return ENOMEM; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); m_freem(m0); mnew->m_len = mnew->m_pkthdr.len; m0 = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } } TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next); TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next); sbd = &sc->stbd_list[sc->txcur]; sbd->type = IPW_SBD_TYPE_HEADER; sbd->priv = shdr; sbd->bd->physaddr = htole32(shdr->addr); sbd->bd->len = htole32(sizeof (struct ipw_hdr)); sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n", shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted, shdr->hdr->encrypt)); DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr))); DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr))); bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; sbuf->m = m0; sbuf->ni = ni; for (i = 0; i < sbuf->map->dm_nsegs; i++) { sbd = &sc->stbd_list[sc->txcur]; sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr); sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len); sbd->bd->nfrag = 0; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; if (i == sbuf->map->dm_nsegs - 1) { sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; } else { sbd->type = IPW_SBD_TYPE_NOASSOC; sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; } DPRINTFN(5, ("sending fragment (%d, %d)\n", i, (int)sbuf->map->dm_segs[i].ds_len)); bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; } bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset, sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES, BUS_DMASYNC_PREWRITE); /* Inform firmware about this new packet */ CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); return 0; } static void ipw_start(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ether_header *eh; struct ieee80211_node *ni; if (ic->ic_state != IEEE80211_S_RUN) return; for (;;) { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->txfree < 1 + IPW_MAX_NSEG) { IF_PREPEND(&ifp->if_snd, m0); ifp->if_flags |= IFF_OACTIVE; break; } if (m0->m_len < sizeof (struct ether_header) && (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) continue; eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0); #endif m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ieee80211_free_node(ni); continue; } #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); #endif if (ipw_tx_start(ifp, m0, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } /* start watchdog timer */ sc->sc_tx_timer = 5; ifp->if_timer = 1; } } static void ipw_watchdog(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { aprint_error_dev(&sc->sc_dev, "device timeout\n"); ifp->if_oerrors++; ifp->if_flags &= ~IFF_UP; ipw_stop(ifp, 1); return; } ifp->if_timer = 1; } ieee80211_watchdog(&sc->sc_ic); } static int ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl) { uint32_t addr, size, i; if (!(sc->flags & IPW_FLAG_FW_INITED)) return ENOTTY; CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA); if (suword(tbl, size) != 0) return EFAULT; for (i = 1, ++tbl; i < size; i++, tbl++) { addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA); if (suword(tbl, MEM_READ_4(sc, addr)) != 0) return EFAULT; } return 0; } static int ipw_get_radio(struct ipw_softc *sc, int *ret) { uint32_t addr; if (!(sc->flags & IPW_FLAG_FW_INITED)) return ENOTTY; addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS); if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) { suword(ret, -1); return 0; } if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED) suword(ret, 0); else suword(ret, 1); return 0; } static int ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data) { #define IS_RUNNING(ifp) \ ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) ipw_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) ipw_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: /* XXX no h/w multicast filter? --dyoung */ if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { /* setup multicast filter, etc */ error = 0; } break; case SIOCGTABLE1: error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data); break; case SIOCGRADIO: error = ipw_get_radio(sc, (int *)ifr->ifr_data); break; case SIOCSIFMEDIA: if (ifr->ifr_media & IFM_IEEE80211_ADHOC) sc->sc_fwname = "ipw2100-1.2-i.fw"; else if (ifr->ifr_media & IFM_IEEE80211_MONITOR) sc->sc_fwname = "ipw2100-1.2-p.fw"; else sc->sc_fwname = "ipw2100-1.2.fw"; ipw_free_firmware(sc); /* FALLTRHOUGH */ default: error = ieee80211_ioctl(&sc->sc_ic, cmd, data); if (error != ENETRESET) break; if (error == ENETRESET) { if (IS_RUNNING(ifp) && (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) ipw_init(ifp); error = 0; } } splx(s); return error; #undef IS_RUNNING } static uint32_t ipw_read_table1(struct ipw_softc *sc, uint32_t off) { return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); } static void ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) { MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); } static int ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) { uint32_t addr, info; uint16_t count, size; uint32_t total; /* addr[4] + count[2] + size[2] */ addr = MEM_READ_4(sc, sc->table2_base + off); info = MEM_READ_4(sc, sc->table2_base + off + 4); count = info >> 16; size = info & 0xffff; total = count * size; if (total > *len) { *len = total; return EINVAL; } *len = total; ipw_read_mem_1(sc, addr, buf, total); return 0; } static void ipw_stop_master(struct ipw_softc *sc) { int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); for (ntries = 0; ntries < 50; ntries++) { if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 50) aprint_error_dev(&sc->sc_dev, "timeout waiting for master\n"); CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | IPW_RST_PRINCETON_RESET); sc->flags &= ~IPW_FLAG_FW_INITED; } static int ipw_reset(struct ipw_softc *sc) { int ntries; ipw_stop_master(sc); /* move adapter to D0 state */ CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_INIT); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) return EIO; CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | IPW_RST_SW_RESET); DELAY(10); CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_INIT); return 0; } /* * Upload the microcode to the device. */ static int ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size) { int ntries; MEM_WRITE_4(sc, 0x3000e0, 0x80000000); CSR_WRITE_4(sc, IPW_CSR_RST, 0); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); for (ntries = 0; ntries < 10; ntries++) { if (MEM_READ_1(sc, 0x210000) & 1) break; DELAY(10); } if (ntries == 10) { aprint_error_dev(&sc->sc_dev, "timeout waiting for ucode to initialize\n"); return EIO; } MEM_WRITE_4(sc, 0x3000e0, 0); return 0; } /* set of macros to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) #define GETLE16(p) ((p)[0] | (p)[1] << 8) static int ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size) { u_char *p, *end; uint32_t dst; uint16_t len; int error; p = fw; end = fw + size; while (p < end) { dst = GETLE32(p); p += 4; len = GETLE16(p); p += 2; ipw_write_mem_1(sc, dst, p, len); p += len; } CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | IPW_IO_LED_OFF); /* enable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); /* kick the firmware */ CSR_WRITE_4(sc, IPW_CSR_RST, 0); CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) { aprint_error_dev(&sc->sc_dev, "timeout waiting for firmware initialization " "to complete\n"); return error; } CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) | IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK); return 0; } /* * Store firmware into kernel memory so we can download it when we need to, * e.g when the adapter wakes up from suspend mode. */ static int ipw_cache_firmware(struct ipw_softc *sc) { struct ipw_firmware *fw = &sc->fw; struct ipw_firmware_hdr hdr; firmware_handle_t fwh; off_t fwsz, p; int error; ipw_free_firmware(sc); if (ipw_accept_eula == 0) { aprint_error_dev(&sc->sc_dev, "EULA not accepted; please see the ipw(4) man page.\n"); return EPERM; } if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0) goto fail0; fwsz = firmware_get_size(fwh); if (fwsz < sizeof(hdr)) goto fail2; if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0) goto fail2; fw->main_size = le32toh(hdr.main_size); fw->ucode_size = le32toh(hdr.ucode_size); fw->main = firmware_malloc(fw->main_size); if (fw->main == NULL) { error = ENOMEM; goto fail1; } fw->ucode = firmware_malloc(fw->ucode_size); if (fw->ucode == NULL) { error = ENOMEM; goto fail2; } p = sizeof(hdr); if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0) goto fail3; p += fw->main_size; if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0) goto fail3; DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size, fw->ucode_size)); sc->flags |= IPW_FLAG_FW_CACHED; firmware_close(fwh); return 0; fail3: firmware_free(fw->ucode, 0); fail2: firmware_free(fw->main, 0); fail1: firmware_close(fwh); fail0: return error; } static void ipw_free_firmware(struct ipw_softc *sc) { if (!(sc->flags & IPW_FLAG_FW_CACHED)) return; firmware_free(sc->fw.main, 0); firmware_free(sc->fw.ucode, 0); sc->flags &= ~IPW_FLAG_FW_CACHED; } static int ipw_config(struct ipw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct ipw_security security; struct ieee80211_key *k; struct ipw_wep_key wepkey; struct ipw_scan_options options; struct ipw_configuration config; uint32_t data; int error, i; switch (ic->ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_HOSTAP: data = htole32(IPW_MODE_BSS); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: data = htole32(IPW_MODE_IBSS); break; case IEEE80211_M_MONITOR: data = htole32(IPW_MODE_MONITOR); break; } DPRINTF(("Setting mode to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_MONITOR) { data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); DPRINTF(("Setting channel to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); if (error != 0) return error; } if (ic->ic_opmode == IEEE80211_M_MONITOR) { DPRINTF(("Enabling adapter\n")); return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); } DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr))); error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); if (ic->ic_opmode == IEEE80211_M_IBSS) config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); if (ifp->if_flags & IFF_PROMISC) config.flags |= htole32(IPW_CFG_PROMISCUOUS); config.bss_chan = htole32(0x3fff); /* channels 1-14 */ config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags)); error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); if (error != 0) return error; data = htole32(0x3); /* 1, 2 */ DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); if (error != 0) return error; data = htole32(0xf); /* 1, 2, 5.5, 11 */ DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); if (error != 0) return error; data = htole32(IPW_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { data = htole32(32); /* default value */ DPRINTF(("Setting tx power index to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, sizeof data); if (error != 0) return error; } data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); if (error != 0) return error; data = htole32(ic->ic_fragthreshold); DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); if (error != 0) return error; #ifdef IPW_DEBUG if (ipw_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen); printf("\n"); } #endif error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid, ic->ic_des_esslen); if (error != 0) return error; /* no mandatory BSSID */ DPRINTF(("Setting mandatory BSSID to null\n")); error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_DESBSSID) { DPRINTF(("Setting desired BSSID to %s\n", ether_sprintf(ic->ic_des_bssid))); error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID, ic->ic_des_bssid, IEEE80211_ADDR_LEN); if (error != 0) return error; } (void)memset(&security, 0, sizeof(security)); security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ? IPW_AUTH_SHARED : IPW_AUTH_OPEN; security.ciphers = htole32(IPW_CIPHER_NONE); DPRINTF(("Setting authmode to %u\n", security.authmode)); error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security, sizeof security); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_PRIVACY) { k = ic->ic_crypto.cs_nw_keys; for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) { if (k->wk_keylen == 0) continue; wepkey.idx = i; wepkey.len = k->wk_keylen; memset(wepkey.key, 0, sizeof(wepkey.key)); memcpy(wepkey.key, k->wk_key, k->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey); if (error != 0) return error; } data = htole32(ic->ic_crypto.cs_def_txkey); DPRINTF(("Setting tx key index to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, sizeof data); if (error != 0) return error; } data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); if (error != 0) return error; #if 0 struct ipw_wpa_ie ie; memset(&ie, 0 sizeof(ie)); ie.len = htole32(sizeof (struct ieee80211_ie_wpa)); DPRINTF(("Setting wpa ie\n")); error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie); if (error != 0) return error; #endif if (ic->ic_opmode == IEEE80211_M_IBSS) { data = htole32(ic->ic_bintval); DPRINTF(("Setting beacon interval to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data, sizeof data); if (error != 0) return error; } options.flags = 0; options.channels = htole32(0x3fff); /* scan channels 1-14 */ DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags))); error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options); if (error != 0) return error; /* finally, enable adapter (start scanning for an access point) */ DPRINTF(("Enabling adapter\n")); return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); } static int ipw_init(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; struct ipw_firmware *fw = &sc->fw; if (!(sc->flags & IPW_FLAG_FW_CACHED)) { if (ipw_cache_firmware(sc) != 0) { aprint_error_dev(&sc->sc_dev, "could not cache the firmware (%s)\n", sc->sc_fwname); goto fail; } } ipw_stop(ifp, 0); if (ipw_reset(sc) != 0) { aprint_error_dev(&sc->sc_dev, "could not reset adapter\n"); goto fail; } if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) { aprint_error_dev(&sc->sc_dev, "could not load microcode\n"); goto fail; } ipw_stop_master(sc); /* * Setup tx, rx and status rings. */ sc->txold = IPW_NTBD - 1; sc->txcur = 0; sc->txfree = IPW_NTBD - 2; sc->rxcur = IPW_NRBD - 1; CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr); if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) { aprint_error_dev(&sc->sc_dev, "could not load firmware\n"); goto fail; } sc->flags |= IPW_FLAG_FW_INITED; /* retrieve information tables base addresses */ sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); ipw_write_table1(sc, IPW_INFO_LOCK, 0); if (ipw_config(sc) != 0) { aprint_error_dev(&sc->sc_dev, "device configuration failed\n"); goto fail; } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; return 0; fail: ifp->if_flags &= ~IFF_UP; ipw_stop(ifp, 0); return EIO; } static void ipw_stop(struct ifnet *ifp, int disable) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int i; ipw_stop_master(sc); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); /* * Release tx buffers. */ for (i = 0; i < IPW_NTBD; i++) ipw_release_sbd(sc, &sc->stbd_list[i]); sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } static void ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); } } static void ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); } } SYSCTL_SETUP(sysctl_hw_ipw_accept_eula_setup, "sysctl hw.ipw.accept_eula") { const struct sysctlnode *rnode; const struct sysctlnode *cnode; sysctl_createv(NULL, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL); sysctl_createv(NULL, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ipw", NULL, NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(NULL, 0, &rnode, &cnode, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "accept_eula", SYSCTL_DESCR("Accept Intel EULA and permit use of ipw(4) firmware"), NULL, 0, &ipw_accept_eula, sizeof(ipw_accept_eula), CTL_CREATE, CTL_EOL); }