/* $NetBSD: nbperf-bdz.c,v 1.2 2009/08/17 14:15:07 joerg Exp $ */ /*- * Copyright (c) 2009 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Joerg Sonnenberger. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __RCSID("$NetBSD: nbperf-bdz.c,v 1.2 2009/08/17 14:15:07 joerg Exp $"); #include #include #include #include #include #include "nbperf.h" /* * A full description of the algorithm can be found in: * "Simple and Space-Efficient Minimal Perfect Hash Functions" * by Botelho, Pagh and Ziviani, proceeedings of WADS 2007. */ /* * The algorithm is based on random, acyclic 3-graphs. * * Each edge in the represents a key. The vertices are the reminder of * the hash function mod n. n = cm with c > 1.23. This ensures that * can be found with a very high probality. * * An acyclic graph has an edge order, where at least one vertex of * each edge hasn't been seen before. It is declares the first unvisited * vertex as authoritive for the edge and assigns a 2bit value to unvisited * vertices, so that the sum of all vertices of the edge modulo 4 is * the index of the authoritive vertex. */ #include "graph3.h" struct state { struct graph3 graph; uint32_t *visited; uint32_t *holes64k; uint16_t *holes256; uint8_t *holes256_64; uint8_t *holes256_128; uint8_t *holes256_192; uint8_t *g; uint32_t *result_map; }; static void assign_nodes(struct state *state) { struct edge3 *e; size_t i, j; uint32_t t, r, holes; for (i = 0; i < state->graph.v; ++i) state->g[i] = 3; for (i = 0; i < state->graph.e; ++i) { j = state->graph.output_order[i]; e = &state->graph.edges[j]; if (!state->visited[e->left]) { r = 0; t = e->left; } else if (!state->visited[e->middle]) { r = 1; t = e->middle; } else { if (state->visited[e->right]) abort(); r = 2; t = e->right; } state->visited[t] = 2 + j; if (state->visited[e->left] == 0) state->visited[e->left] = 1; if (state->visited[e->middle] == 0) state->visited[e->middle] = 1; if (state->visited[e->right] == 0) state->visited[e->right] = 1; state->g[t] = (9 + r - state->g[e->left] - state->g[e->middle] - state->g[e->right]) % 3; } holes = 0; for (i = 0; i < state->graph.v; ++i) { if (i % 65536 == 0) state->holes64k[i >> 16] = holes; if (i % 256 == 0) state->holes256[i >> 8] = holes - state->holes64k[i >> 16]; if (i % 256 == 64) state->holes256_64[i >> 8] = holes - state->holes256[i >> 8] - state->holes64k[i >> 16]; if (i % 256 == 128) state->holes256_128[i >> 8] = holes - state->holes256[i >> 8] - state->holes64k[i >> 16]; if (i % 256 == 192) state->holes256_192[i >> 8] = holes - state->holes256[i >> 8] - state->holes64k[i >> 16]; if (state->visited[i] > 1) { j = state->visited[i] - 2; state->result_map[j] = i - holes; } if (state->g[i] == 3) ++holes; } if (i % 65536 != 0) state->holes64k[(i >> 16) + 1] = holes; if (i % 256 != 0) state->holes256[(i >> 8) + 1] = holes - state->holes64k[((i >> 8) + 1) >> 8]; if (i % 256 != 64) state->holes256_64[(i >> 8) + 1] = holes - state->holes256[(i >> 8) + 1] - state->holes64k[((i >> 8) + 1) >> 8]; if (i % 256 != 128) state->holes256_128[(i >> 8) + 1] = holes - state->holes256[(i >> 8) + 1] - state->holes64k[((i >> 8) + 1) >> 8]; if (i % 256 != 192) state->holes256_192[(i >> 8) + 1] = holes - state->holes256[(i >> 8) + 1] - state->holes64k[((i >> 8) + 1) >> 8]; } static void print_hash(struct nbperf *nbperf, struct state *state) { size_t i, j; uint32_t sum; fprintf(nbperf->output, "#include \n"); fprintf(nbperf->output, "#include \n\n"); fprintf(nbperf->output, "%suint32_t\n", nbperf->static_hash ? "static " : ""); fprintf(nbperf->output, "%s(const void * __restrict key, size_t keylen)\n", nbperf->hash_name); fprintf(nbperf->output, "{\n"); fprintf(nbperf->output, "\tstatic const uint32_t g[%" PRId32 "] = {\n", (state->graph.v + 15) / 16); for (i = 0; i < state->graph.v; i += 16) { for (j = 0, sum = 0; j < 16; ++j) sum |= (uint32_t)state->g[i + j] << (2 * j); fprintf(nbperf->output, "%s0x%08" PRIx32 "ULL,%s", (i / 16 % 4 == 0 ? "\t " : " "), sum, (i / 16 % 4 == 3 ? "\n" : "")); } fprintf(nbperf->output, "%s\t};\n", (i / 16 % 4 ? "\n" : "")); fprintf(nbperf->output, "\tstatic const uint32_t holes64k[%" PRId32 "] = {\n", (state->graph.v + 65535) / 65536); for (i = 0; i < state->graph.v; i += 65536) fprintf(nbperf->output, "%s0x%08" PRIx32 ",%s", (i / 65536 % 4 == 0 ? "\t " : " "), state->holes64k[i >> 16], (i / 65536 % 4 == 3 ? "\n" : "")); fprintf(nbperf->output, "%s\t};\n", (i / 65536 % 4 ? "\n" : "")); fprintf(nbperf->output, "\tstatic const uint16_t holes256[%" PRId32 "] = {\n", (state->graph.v + 255) / 256); for (i = 0; i < state->graph.v; i += 256) fprintf(nbperf->output, "%s0x%04" PRIx32 ",%s", (i / 256 % 4 == 0 ? "\t " : " "), state->holes256[i >> 8], (i / 256 % 4 == 3 ? "\n" : "")); fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : "")); fprintf(nbperf->output, "\tstatic const uint8_t holes256_64[%" PRId32 "] = {\n", (state->graph.v + 255) / 256); for (i = 64; i < state->graph.v; i += 256) fprintf(nbperf->output, "%s0x%02" PRIx32 ",%s", (i / 256 % 4 == 0 ? "\t " : " "), state->holes256_64[i >> 8], (i / 256 % 4 == 3 ? "\n" : "")); fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : "")); fprintf(nbperf->output, "\tstatic const uint8_t holes256_128[%" PRId32 "] = {\n", (state->graph.v + 255) / 256); for (i = 128; i < state->graph.v; i += 256) fprintf(nbperf->output, "%s0x%02" PRIx32 ",%s", (i / 256 % 4 == 0 ? "\t " : " "), state->holes256_128[i >> 8], (i / 256 % 4 == 3 ? "\n" : "")); fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : "")); fprintf(nbperf->output, "\tstatic const uint8_t holes256_192[%" PRId32 "] = {\n", (state->graph.v + 255) / 256); for (i = 192; i < state->graph.v; i += 256) fprintf(nbperf->output, "%s0x%02" PRIx32 ",%s", (i / 256 % 4 == 0 ? "\t " : " "), state->holes256_192[i >> 8], (i / 256 % 4 == 3 ? "\n" : "")); fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : "")); fprintf(nbperf->output, "\tuint32_t h[%zu];\n\n", nbperf->hash_size); fprintf(nbperf->output, "\tuint32_t m;\n"); fprintf(nbperf->output, "\tuint32_t a1, a2, b1, b2, c1, c2, idx, idx2;\n\n"); (*nbperf->print_hash)(nbperf, "\t", "key", "keylen", "h"); fprintf(nbperf->output, "\n\th[0] = h[0] %% %" PRIu32 ";\n", state->graph.v); fprintf(nbperf->output, "\th[1] = h[1] %% %" PRIu32 ";\n", state->graph.v); fprintf(nbperf->output, "\th[2] = h[2] %% %" PRIu32 ";\n", state->graph.v); fprintf(nbperf->output, "\n\ta1 = h[0] >> 4;\n"); fprintf(nbperf->output, "\ta2 = 2 * (h[0] & 15);\n"); fprintf(nbperf->output, "\tb1 = h[1] >> 4;\n"); fprintf(nbperf->output, "\tb2 = 2 * (h[1] & 15);\n"); fprintf(nbperf->output, "\tc1 = h[2] >> 4;\n"); fprintf(nbperf->output, "\tc2 = 2 * (h[2] & 15);\n"); fprintf(nbperf->output, "\tidx = h[(((g[a1] >> a2) & 3) + ((g[b1] >> b2) & 3) +\n" "\t ((g[c1] >> c2) & 3)) %% 3];\n\n"); fprintf(nbperf->output, "\tswitch ((idx >> 5) & 7) {\n" "\tcase 0:\n" "\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8];\n" "\t\tbreak;\n" "\tcase 1: case 2:\n" "\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8]\n" "\t\t - holes256_64[idx >> 8];\n" "\t\tbreak;\n" "\tcase 3: case 4:\n" "\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8]\n" "\t\t - holes256_128[idx >> 8];\n" "\t\tbreak;\n" "\tcase 5: case 6:\n" "\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8]\n" "\t\t - holes256_192[idx >> 8];\n" "\t\tbreak;\n" "\tcase 7:\n" "\t\tidx2 = idx - holes64k[(idx + 32) >> 16] -\n" "\t\t holes256[(idx + 32) >> 8];\n" "\t\tbreak;\n" "\tdefault:\n" "\t\tabort();\n" "\t}\n" "\tswitch ((idx >> 4) & 3) {\n" "\tcase 1:\n" "\t\tm = (g[(idx >> 4) - 1] & (g[(idx >> 4) - 1] >> 1) & 0x55555555U);\n" "\t\tidx2 -= popcount32(m);\n" "\tcase 0:\n" "\t\tm = (g[idx >> 4] & (g[idx >> 4] >> 1) & 0x55555555U);\n" "\t\tm &= ((2U << (2 * (idx & 15))) - 1);\n" "\t\tidx2 -= popcount32(m);\n" "\t\tbreak;\n" "\tcase 2:\n" "\t\tm = (g[(idx >> 4) + 1] & (g[(idx >> 4) + 1] >> 1) & 0x55555555U);\n" "\t\tidx2 += popcount32(m);\n" "\tcase 3:\n" "\t\tm = (g[idx >> 4] & (g[idx >> 4] >> 1) & 0x55555555U);\n" "\t\tm &= ~((2U << (2 * (idx & 15))) - 1);\n" "\t\tidx2 += popcount32(m);\n" "\t\tbreak;\n" "\t}\n\n"); fprintf(nbperf->output, "\treturn idx2;\n"); fprintf(nbperf->output, "}\n"); if (nbperf->map_output != NULL) { for (i = 0; i < state->graph.e; ++i) fprintf(nbperf->map_output, "%" PRIu32 "\n", state->result_map[i]); } } int bdz_compute(struct nbperf *nbperf) { struct state state; int retval = -1; uint32_t v, e; if (nbperf->c == 0) nbperf->c = 1.24; if (nbperf->c < 1.24) errx(1, "The argument for option -c must be at least 1.24"); if (nbperf->hash_size < 3) errx(1, "The hash function must generate at least 3 values"); (*nbperf->seed_hash)(nbperf); e = nbperf->n; v = nbperf->c * nbperf->n; if (1.24 * nbperf->n > v) ++v; if (v < 10) v = 10; graph3_setup(&state.graph, v, e); state.holes64k = calloc(sizeof(uint32_t), (v + 65535) / 65536 + 1); state.holes256 = calloc(sizeof(uint16_t), (v + 255) / 256 + 1); state.holes256_64 = calloc(sizeof(uint8_t), (v + 255) / 256 + 1); state.holes256_128 = calloc(sizeof(uint8_t), (v + 255) / 256 + 1); state.holes256_192 = calloc(sizeof(uint8_t), (v + 255) / 256 + 1); state.g = calloc(sizeof(uint32_t), v); state.visited = calloc(sizeof(uint32_t), v); state.result_map = calloc(sizeof(uint32_t), e); if (state.holes64k == NULL || state.holes256 == NULL || state.holes256_64 == NULL || state.holes256_128 == NULL || state.holes256_192 == NULL || state.g == NULL || state.visited == NULL || state.result_map == NULL) err(1, "malloc failed"); if (graph3_hash(nbperf, &state.graph)) goto failed; if (graph3_output_order(&state.graph)) goto failed; assign_nodes(&state); print_hash(nbperf, &state); retval = 0; failed: graph3_free(&state.graph); free(state.visited); free(state.g); free(state.holes64k); free(state.holes256); free(state.holes256_64); free(state.holes256_128); free(state.holes256_192); free(state.result_map); return retval; }