/* $NetBSD: npx.c,v 1.63 1998/01/24 13:19:59 mycroft Exp $ */ #if 0 #define IPRINTF(x) printf x #else #define IPRINTF(x) #endif /*- * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * Copyright (c) 1990 William Jolitz. * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)npx.c 7.2 (Berkeley) 5/12/91 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * 387 and 287 Numeric Coprocessor Extension (NPX) Driver. * * We do lazy initialization and switching using the TS bit in cr0 and the * MDP_USEDFPU bit in mdproc. * * DNA exceptions are handled like this: * * 1) If there is no NPX, return and go to the emulator. * 2) If someone else has used the NPX, save its state into that process's PCB. * 3a) If MDP_USEDFPU is not set, set it and initialize the NPX. * 3b) Otherwise, reload the process's previous NPX state. * * When a process is created or exec()s, its saved cr0 image has the TS bit * set and the MDP_USEDFPU bit clear. The MDP_USEDFPU bit is set when the * process first gets a DNA and the NPX is initialized. The TS bit is turned * off when the NPX is used, and turned on again later when the process's NPX * state is saved. */ #define fldcw(addr) __asm("fldcw %0" : : "m" (*addr)) #define fnclex() __asm("fnclex") #define fninit() __asm("fninit") #define fnsave(addr) __asm("fnsave %0" : "=m" (*addr)) #define fnstcw(addr) __asm("fnstcw %0" : "=m" (*addr)) #define fnstsw(addr) __asm("fnstsw %0" : "=m" (*addr)) #define fp_divide_by_0() __asm("fldz; fld1; fdiv %st,%st(1); fwait") #define frstor(addr) __asm("frstor %0" : : "m" (*addr)) #define fwait() __asm("fwait") #define read_eflags() ({register u_long ef; \ __asm("pushfl; popl %0" : "=r" (ef)); \ ef;}) #define write_eflags(x) ({register u_long ef = (x); \ __asm("pushl %0; popfl" : : "r" (ef));}) #define clts() __asm("clts") #define stts() lcr0(rcr0() | CR0_TS) int npxdna __P((struct proc *)); void npxexit __P((void)); int npxintr __P((void *)); static int npxprobe1 __P((struct isa_attach_args *)); static void npxsave1 __P((void)); struct npx_softc { struct device sc_dev; void *sc_ih; }; int npxprobe __P((struct device *, void *, void *)); void npxattach __P((struct device *, struct device *, void *)); struct cfattach npx_ca = { sizeof(struct npx_softc), npxprobe, npxattach }; enum npx_type { NPX_NONE = 0, NPX_INTERRUPT, NPX_EXCEPTION, NPX_BROKEN, }; struct proc *npxproc; static enum npx_type npx_type; static int npx_nointr; static volatile u_int npx_intrs_while_probing; static volatile u_int npx_traps_while_probing; /* * Special interrupt handlers. Someday intr0-intr15 will be used to count * interrupts. We'll still need a special exception 16 handler. The busy * latch stuff in probintr() can be moved to npxprobe(). */ void probeintr __P((void)); asm (" .text _probeintr: ss incl _npx_intrs_while_probing pushl %eax movb $0x20,%al # EOI (asm in strings loses cpp features) outb %al,$0xa0 # IO_ICU2 outb %al,$0x20 # IO_ICU1 movb $0,%al outb %al,$0xf0 # clear BUSY# latch popl %eax iret "); void probetrap __P((void)); asm (" .text _probetrap: ss incl _npx_traps_while_probing fnclex iret "); static inline int npxprobe1(ia) struct isa_attach_args *ia; { int control; int status; ia->ia_iosize = 16; ia->ia_msize = 0; /* * Finish resetting the coprocessor, if any. If there is an error * pending, then we may get a bogus IRQ13, but probeintr() will handle * it OK. Bogus halts have never been observed, but we enabled * IRQ13 and cleared the BUSY# latch early to handle them anyway. */ fninit(); delay(1000); /* wait for any IRQ13 (fwait might hang) */ /* * Check for a status of mostly zero. */ status = 0x5a5a; fnstsw(&status); if ((status & 0xb8ff) == 0) { /* * Good, now check for a proper control word. */ control = 0x5a5a; fnstcw(&control); if ((control & 0x1f3f) == 0x033f) { /* * We have an npx, now divide by 0 to see if exception * 16 works. */ control &= ~(1 << 2); /* enable divide by 0 trap */ fldcw(&control); npx_traps_while_probing = npx_intrs_while_probing = 0; fp_divide_by_0(); if (npx_traps_while_probing != 0) { /* * Good, exception 16 works. */ npx_type = NPX_EXCEPTION; ia->ia_irq = IRQUNK; /* zap the interrupt */ } else if (npx_intrs_while_probing != 0) { /* * Bad, we are stuck with IRQ13. */ npx_type = NPX_INTERRUPT; } else { /* * Worse, even IRQ13 is broken. Use emulator. */ npx_type = NPX_BROKEN; ia->ia_irq = IRQUNK; } return 1; } } /* * Probe failed. There is no usable FPU. */ npx_type = NPX_NONE; return 0; } /* * Probe routine. Initialize cr0 to give correct behaviour for [f]wait * whether the device exists or not (XXX should be elsewhere). Set flags * to tell npxattach() what to do. Modify device struct if npx doesn't * need to use interrupts. Return 1 if device exists. */ int npxprobe(parent, match, aux) struct device *parent; void *match, *aux; { struct isa_attach_args *ia = aux; int irq; int result; u_long save_eflags; unsigned save_imen; struct gate_descriptor save_idt_npxintr; struct gate_descriptor save_idt_npxtrap; /* * This routine is now just a wrapper for npxprobe1(), to install * special npx interrupt and trap handlers, to enable npx interrupts * and to disable other interrupts. Someday isa_configure() will * install suitable handlers and run with interrupts enabled so we * won't need to do so much here. */ irq = NRSVIDT + ia->ia_irq; save_eflags = read_eflags(); disable_intr(); save_idt_npxintr = idt[irq].gd; save_idt_npxtrap = idt[16].gd; setgate(&idt[irq].gd, probeintr, 0, SDT_SYS386IGT, SEL_KPL); setgate(&idt[16].gd, probetrap, 0, SDT_SYS386TGT, SEL_KPL); save_imen = imen; imen = ~((1 << IRQ_SLAVE) | (1 << ia->ia_irq)); SET_ICUS(); /* * Partially reset the coprocessor, if any. Some BIOS's don't reset * it after a warm boot. */ outb(0xf1, 0); /* full reset on some systems, NOP on others */ delay(1000); outb(0xf0, 0); /* clear BUSY# latch */ /* * We set CR0 in locore to trap all ESC and WAIT instructions. * We have to turn off the CR0_EM bit temporarily while probing. */ lcr0(rcr0() & ~(CR0_EM|CR0_TS)); enable_intr(); result = npxprobe1(ia); disable_intr(); lcr0(rcr0() | (CR0_EM|CR0_TS)); imen = save_imen; SET_ICUS(); idt[irq].gd = save_idt_npxintr; idt[16].gd = save_idt_npxtrap; write_eflags(save_eflags); return (result); } int npx586bug1 __P((int, int)); asm (" .text _npx586bug1: fildl 4(%esp) # x fildl 8(%esp) # y fld %st(1) fdiv %st(1),%st # x/y fmulp %st,%st(1) # (x/y)*y fsubrp %st,%st(1) # x-(x/y)*y pushl $0 fistpl (%esp) popl %eax ret "); /* * Attach routine - announce which it is, and wire into system */ void npxattach(parent, self, aux) struct device *parent, *self; void *aux; { struct npx_softc *sc = (void *)self; struct isa_attach_args *ia = aux; switch (npx_type) { case NPX_INTERRUPT: printf("\n"); lcr0(rcr0() & ~CR0_NE); sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE, IPL_NONE, npxintr, 0); break; case NPX_EXCEPTION: printf(": using exception 16\n"); break; case NPX_BROKEN: printf(": error reporting broken; not using\n"); npx_type = NPX_NONE; return; case NPX_NONE: return; } lcr0(rcr0() & ~(CR0_EM|CR0_TS)); fninit(); if (npx586bug1(4195835, 3145727) != 0) printf("WARNING: Pentium FDIV bug detected!\n"); lcr0(rcr0() | (CR0_TS)); } /* * Record the FPU state and reinitialize it all except for the control word. * Then generate a SIGFPE. * * Reinitializing the state allows naive SIGFPE handlers to longjmp without * doing any fixups. * * XXX there is currently no way to pass the full error state to signal * handlers, and if this is a nested interrupt there is no way to pass even * a status code! So there is no way to have a non-naive SIGFPE handler. At * best a handler could do an fninit followed by an fldcw of a static value. * fnclex would be of little use because it would leave junk on the FPU stack. * Returning from the handler would be even less safe than usual because * IRQ13 exception handling makes exceptions even less precise than usual. */ int npxintr(arg) void *arg; { register struct proc *p = npxproc; register struct save87 *addr; struct intrframe *frame = arg; int code; cnt.v_trap++; IPRINTF(("Intr")); if (p == 0 || npx_type == NPX_NONE) { printf("npxintr: p = %p, curproc = %p, npx_type = %d\n", p, curproc, npx_type); panic("npxintr from nowhere"); } /* * Clear the interrupt latch. */ outb(0xf0, 0); /* * If we're saving, ignore the interrupt. The FPU will happily * generate another one when we restore the state later. */ if (npx_nointr != 0) return (1); /* * Find the address of npxproc's savefpu. This is not necessarily * the one in curpcb. */ addr = &p->p_addr->u_pcb.pcb_savefpu; /* * Save state. This does an implied fninit. It had better not halt * the cpu or we'll hang. */ fnsave(addr); fwait(); /* * Restore control word (was clobbered by fnsave). */ fldcw(&addr->sv_env.en_cw); fwait(); /* * Remember the exception status word and tag word. The current * (almost fninit'ed) fpu state is in the fpu and the exception * state just saved will soon be junk. However, the implied fninit * doesn't change the error pointers or register contents, and we * preserved the control word and will copy the status and tag * words, so the complete exception state can be recovered. */ addr->sv_ex_sw = addr->sv_env.en_sw; addr->sv_ex_tw = addr->sv_env.en_tw; /* * Pass exception to process. If it's the current process, try to do * it immediately. */ if (p == curproc && USERMODE(frame->if_cs, frame->if_eflags)) { /* * Interrupt is essentially a trap, so we can afford to call * the SIGFPE handler (if any) as soon as the interrupt * returns. * * XXX little or nothing is gained from this, and plenty is * lost - the interrupt frame has to contain the trap frame * (this is otherwise only necessary for the rescheduling trap * in doreti, and the frame for that could easily be set up * just before it is used). */ p->p_md.md_regs = (struct trapframe *)&frame->if_es; #ifdef notyet /* * Encode the appropriate code for detailed information on * this exception. */ code = XXX_ENCODE(addr->sv_ex_sw); #else code = 0; /* XXX */ #endif trapsignal(p, SIGFPE, code); } else { /* * Nested interrupt. These losers occur when: * o an IRQ13 is bogusly generated at a bogus time, e.g.: * o immediately after an fnsave or frstor of an * error state. * o a couple of 386 instructions after * "fstpl _memvar" causes a stack overflow. * These are especially nasty when combined with a * trace trap. * o an IRQ13 occurs at the same time as another higher- * priority interrupt. * * Treat them like a true async interrupt. */ psignal(p, SIGFPE); } return (1); } /* * Wrapper for fnsave instruction to handle h/w bugs. If there is an error * pending, then fnsave generates a bogus IRQ13 on some systems. Force any * IRQ13 to be handled immediately, and then ignore it. * * This routine is always called at spl0. If it might called with the NPX * interrupt masked, it would be necessary to forcibly unmask the NPX interrupt * so that it could succeed. */ static inline void npxsave1() { register struct pcb *pcb; npx_nointr = 1; pcb = &npxproc->p_addr->u_pcb; fnsave(&pcb->pcb_savefpu); pcb->pcb_cr0 |= CR0_TS; fwait(); npx_nointr = 0; } /* * Implement device not available (DNA) exception * * If the we were the last process to use the FPU, we can simply return. * Otherwise, we save the previous state, if necessary, and restore our last * saved state. */ int npxdna(p) struct proc *p; { u_short cw; if (npx_type == NPX_NONE) { IPRINTF(("Emul")); return (0); } #ifdef DIAGNOSTIC if (cpl != 0 || npx_nointr != 0) panic("npxdna: masked"); #endif p->p_addr->u_pcb.pcb_cr0 &= ~CR0_TS; clts(); if ((p->p_md.md_flags & MDP_USEDFPU) == 0) { IPRINTF(("Init")); cw = p->p_addr->u_pcb.pcb_savefpu.sv_env.en_cw; if (npxproc != 0 && npxproc != p) npxsave1(); else { npx_nointr = 1; fninit(); fwait(); npx_nointr = 0; } npxproc = p; fldcw(&cw); p->p_md.md_flags |= MDP_USEDFPU; } else { if (npxproc != 0) { #ifdef DIAGNOSTIC if (npxproc == p) panic("npxdna: same process"); #endif IPRINTF(("Save")); npxsave1(); } npxproc = p; /* * The following frstor may cause an IRQ13 when the state being * restored has a pending error. The error will appear to have * been triggered by the current (npx) user instruction even * when that instruction is a no-wait instruction that should * not trigger an error (e.g., fnclex). On at least one 486 * system all of the no-wait instructions are broken the same * as frstor, so our treatment does not amplify the breakage. * On at least one 386/Cyrix 387 system, fnclex works correctly * while frstor and fnsave are broken, so our treatment breaks * fnclex if it is the first FPU instruction after a context * switch. */ frstor(&p->p_addr->u_pcb.pcb_savefpu); } return (1); } /* * Drop the current FPU state on the floor. */ void npxdrop() { stts(); npxproc->p_addr->u_pcb.pcb_cr0 |= CR0_TS; npxproc = 0; } /* * Save npxproc's FPU state. * * The FNSAVE instruction clears the FPU state. Rather than reloading the FPU * immediately, we clear npxproc and turn on CR0_TS to force a DNA and a reload * of the FPU state the next time we try to use it. This routine is only * called when forking or core dump, so this algorithm at worst forces us to * trap once per fork(), and at best saves us a reload once per fork(). */ void npxsave() { #ifdef DIAGNOSTIC if (cpl != 0 || npx_nointr != 0) panic("npxsave: masked"); #endif IPRINTF(("Fork")); clts(); npxsave1(); stts(); npxproc = 0; }