/* $NetBSD: kern_malloc.c,v 1.78 2003/02/14 21:51:36 pk Exp $ */ /* * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * Copyright (c) 1987, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95 */ #include __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.78 2003/02/14 21:51:36 pk Exp $"); #include "opt_lockdebug.h" #include #include #include #include #include #include static struct vm_map kmem_map_store; struct vm_map *kmem_map = NULL; #include "opt_kmempages.h" #ifdef NKMEMCLUSTERS #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size #endif /* * Default number of pages in kmem_map. We attempt to calculate this * at run-time, but allow it to be either patched or set in the kernel * config file. */ #ifndef NKMEMPAGES #define NKMEMPAGES 0 #endif int nkmempages = NKMEMPAGES; /* * Defaults for lower- and upper-bounds for the kmem_map page count. * Can be overridden by kernel config options. */ #ifndef NKMEMPAGES_MIN #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT #endif #ifndef NKMEMPAGES_MAX #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT #endif #include "opt_kmemstats.h" #include "opt_malloclog.h" #include "opt_malloc_debug.h" struct kmembuckets bucket[MINBUCKET + 16]; struct kmemusage *kmemusage; char *kmembase, *kmemlimit; struct malloc_type *kmemstatistics; #ifdef MALLOCLOG #ifndef MALLOCLOGSIZE #define MALLOCLOGSIZE 100000 #endif struct malloclog { void *addr; long size; struct malloc_type *type; int action; const char *file; long line; } malloclog[MALLOCLOGSIZE]; long malloclogptr; static void domlog(void *a, long size, struct malloc_type *type, int action, const char *file, long line) { malloclog[malloclogptr].addr = a; malloclog[malloclogptr].size = size; malloclog[malloclogptr].type = type; malloclog[malloclogptr].action = action; malloclog[malloclogptr].file = file; malloclog[malloclogptr].line = line; malloclogptr++; if (malloclogptr >= MALLOCLOGSIZE) malloclogptr = 0; } static void hitmlog(void *a) { struct malloclog *lp; long l; #define PRT do { \ if (malloclog[l].addr == a && malloclog[l].action) { \ lp = &malloclog[l]; \ printf("malloc log entry %ld:\n", l); \ printf("\taddr = %p\n", lp->addr); \ printf("\tsize = %ld\n", lp->size); \ printf("\ttype = %s\n", lp->type->ks_shortdesc); \ printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \ printf("\tfile = %s\n", lp->file); \ printf("\tline = %ld\n", lp->line); \ } \ } while (/* CONSTCOND */0) for (l = malloclogptr; l < MALLOCLOGSIZE; l++) PRT; for (l = 0; l < malloclogptr; l++) PRT; } #endif /* MALLOCLOG */ #ifdef DIAGNOSTIC /* * This structure provides a set of masks to catch unaligned frees. */ const long addrmask[] = { 0, 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, }; /* * The WEIRD_ADDR is used as known text to copy into free objects so * that modifications after frees can be detected. */ #define WEIRD_ADDR ((uint32_t) 0xdeadbeef) #ifdef DEBUG #define MAX_COPY PAGE_SIZE #else #define MAX_COPY 32 #endif /* * Normally the freelist structure is used only to hold the list pointer * for free objects. However, when running with diagnostics, the first * 8/16 bytes of the structure is unused except for diagnostic information, * and the free list pointer is at offset 8/16 in the structure. Since the * first 8 bytes is the portion of the structure most often modified, this * helps to detect memory reuse problems and avoid free list corruption. */ struct freelist { uint32_t spare0; #ifdef _LP64 uint32_t spare1; /* explicit padding */ #endif struct malloc_type *type; caddr_t next; }; #else /* !DIAGNOSTIC */ struct freelist { caddr_t next; }; #endif /* DIAGNOSTIC */ /* * The following are standard, build-in malloc types are are not * specific to any one subsystem. */ MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); MALLOC_DEFINE(M_DMAMAP, "DMA map", "bus_dma(9) structures"); MALLOC_DEFINE(M_FREE, "free", "should be on free list"); MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); MALLOC_DEFINE(M_SOFTINTR, "softintr", "Softinterrupt structures"); MALLOC_DEFINE(M_TEMP, "temp", "misc. temporary data buffers"); /* XXX These should all be elsewhere. */ MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); MALLOC_DEFINE(M_FTABLE, "fragtbl", "fragment reassembly header"); MALLOC_DEFINE(M_UFSMNT, "UFS mount", "UFS mount structure"); MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure"); MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options"); MALLOC_DEFINE(M_IPMADDR, "in_multi", "internet multicast address"); MALLOC_DEFINE(M_MRTABLE, "mrt", "multicast routing tables"); MALLOC_DEFINE(M_1394DATA, "1394data", "IEEE 1394 data buffers"); struct simplelock malloc_slock = SIMPLELOCK_INITIALIZER; /* * Allocate a block of memory */ #ifdef MALLOCLOG void * _malloc(unsigned long size, struct malloc_type *ksp, int flags, const char *file, long line) #else void * malloc(unsigned long size, struct malloc_type *ksp, int flags) #endif /* MALLOCLOG */ { struct kmembuckets *kbp; struct kmemusage *kup; struct freelist *freep; long indx, npg, allocsize; int s; caddr_t va, cp, savedlist; #ifdef DIAGNOSTIC uint32_t *end, *lp; int copysize; const char *savedtype; #endif #ifdef LOCKDEBUG if ((flags & M_NOWAIT) == 0) simple_lock_only_held(NULL, "malloc"); #endif #ifdef MALLOC_DEBUG if (debug_malloc(size, ksp, flags, (void **) &va)) return ((void *) va); #endif indx = BUCKETINDX(size); kbp = &bucket[indx]; s = splvm(); simple_lock(&malloc_slock); #ifdef KMEMSTATS while (ksp->ks_memuse >= ksp->ks_limit) { if (flags & M_NOWAIT) { simple_unlock(&malloc_slock); splx(s); return ((void *) NULL); } if (ksp->ks_limblocks < 65535) ksp->ks_limblocks++; ltsleep((caddr_t)ksp, PSWP+2, ksp->ks_shortdesc, 0, &malloc_slock); } ksp->ks_size |= 1 << indx; #endif #ifdef DIAGNOSTIC copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; #endif if (kbp->kb_next == NULL) { kbp->kb_last = NULL; if (size > MAXALLOCSAVE) allocsize = round_page(size); else allocsize = 1 << indx; npg = btoc(allocsize); simple_unlock(&malloc_slock); va = (caddr_t) uvm_km_kmemalloc(kmem_map, NULL, (vsize_t)ctob(npg), ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) | ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0)); if (__predict_false(va == NULL)) { /* * Kmem_malloc() can return NULL, even if it can * wait, if there is no map space avaiable, because * it can't fix that problem. Neither can we, * right now. (We should release pages which * are completely free and which are in buckets * with too many free elements.) */ if ((flags & (M_NOWAIT|M_CANFAIL)) == 0) panic("malloc: out of space in kmem_map"); splx(s); return (NULL); } simple_lock(&malloc_slock); #ifdef KMEMSTATS kbp->kb_total += kbp->kb_elmpercl; #endif kup = btokup(va); kup->ku_indx = indx; if (allocsize > MAXALLOCSAVE) { if (npg > 65535) panic("malloc: allocation too large"); kup->ku_pagecnt = npg; #ifdef KMEMSTATS ksp->ks_memuse += allocsize; #endif goto out; } #ifdef KMEMSTATS kup->ku_freecnt = kbp->kb_elmpercl; kbp->kb_totalfree += kbp->kb_elmpercl; #endif /* * Just in case we blocked while allocating memory, * and someone else also allocated memory for this * bucket, don't assume the list is still empty. */ savedlist = kbp->kb_next; kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize; for (;;) { freep = (struct freelist *)cp; #ifdef DIAGNOSTIC /* * Copy in known text to detect modification * after freeing. */ end = (int32_t *)&cp[copysize]; for (lp = (int32_t *)cp; lp < end; lp++) *lp = WEIRD_ADDR; freep->type = M_FREE; #endif /* DIAGNOSTIC */ if (cp <= va) break; cp -= allocsize; freep->next = cp; } freep->next = savedlist; if (kbp->kb_last == NULL) kbp->kb_last = (caddr_t)freep; } va = kbp->kb_next; kbp->kb_next = ((struct freelist *)va)->next; #ifdef DIAGNOSTIC freep = (struct freelist *)va; /* XXX potential to get garbage pointer here. */ savedtype = freep->type->ks_shortdesc; if (kbp->kb_next) { int rv; vaddr_t addr = (vaddr_t)kbp->kb_next; vm_map_lock(kmem_map); rv = uvm_map_checkprot(kmem_map, addr, addr + sizeof(struct freelist), VM_PROT_WRITE); vm_map_unlock(kmem_map); if (__predict_false(rv == 0)) { printf("Data modified on freelist: " "word %ld of object %p size %ld previous type %s " "(invalid addr %p)\n", (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp), va, size, savedtype, kbp->kb_next); #ifdef MALLOCLOG hitmlog(va); #endif kbp->kb_next = NULL; } } /* Fill the fields that we've used with WEIRD_ADDR */ #ifdef _LP64 freep->type = (struct malloc_type *) (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32)); #else freep->type = (struct malloc_type *) WEIRD_ADDR; #endif end = (int32_t *)&freep->next + (sizeof(freep->next) / sizeof(int32_t)); for (lp = (int32_t *)&freep->next; lp < end; lp++) *lp = WEIRD_ADDR; /* and check that the data hasn't been modified. */ end = (uint32_t *)&va[copysize]; for (lp = (int32_t *)va; lp < end; lp++) { if (__predict_true(*lp == WEIRD_ADDR)) continue; printf("Data modified on freelist: " "word %ld of object %p size %ld previous type %s " "(0x%x != 0x%x)\n", (long)(lp - (uint32_t *)va), va, size, savedtype, *lp, WEIRD_ADDR); #ifdef MALLOCLOG hitmlog(va); #endif break; } freep->spare0 = 0; #endif /* DIAGNOSTIC */ #ifdef KMEMSTATS kup = btokup(va); if (kup->ku_indx != indx) panic("malloc: wrong bucket"); if (kup->ku_freecnt == 0) panic("malloc: lost data"); kup->ku_freecnt--; kbp->kb_totalfree--; ksp->ks_memuse += 1 << indx; out: kbp->kb_calls++; ksp->ks_inuse++; ksp->ks_calls++; if (ksp->ks_memuse > ksp->ks_maxused) ksp->ks_maxused = ksp->ks_memuse; #else out: #endif #ifdef MALLOCLOG domlog(va, size, type, 1, file, line); #endif simple_unlock(&malloc_slock); splx(s); if ((flags & M_ZERO) != 0) memset(va, 0, size); return ((void *) va); } /* * Free a block of memory allocated by malloc. */ #ifdef MALLOCLOG void _free(void *addr, struct malloc_type *type, const char *file, long line) #else void free(void *addr, struct malloc_type *ksp) #endif /* MALLOCLOG */ { struct kmembuckets *kbp; struct kmemusage *kup; struct freelist *freep; long size; int s; #ifdef DIAGNOSTIC caddr_t cp; int32_t *end, *lp; long alloc, copysize; #endif #ifdef MALLOC_DEBUG if (debug_free(addr, ksp)) return; #endif #ifdef DIAGNOSTIC /* * Ensure that we're free'ing something that we could * have allocated in the first place. That is, check * to see that the address is within kmem_map. */ if (__predict_false((vaddr_t)addr < kmem_map->header.start || (vaddr_t)addr >= kmem_map->header.end)) panic("free: addr %p not within kmem_map", addr); #endif kup = btokup(addr); size = 1 << kup->ku_indx; kbp = &bucket[kup->ku_indx]; s = splvm(); simple_lock(&malloc_slock); #ifdef MALLOCLOG domlog(addr, 0, type, 2, file, line); #endif #ifdef DIAGNOSTIC /* * Check for returns of data that do not point to the * beginning of the allocation. */ if (size > PAGE_SIZE) alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; else alloc = addrmask[kup->ku_indx]; if (((u_long)addr & alloc) != 0) panic("free: unaligned addr %p, size %ld, type %s, mask %ld", addr, size, ksp->ks_shortdesc, alloc); #endif /* DIAGNOSTIC */ if (size > MAXALLOCSAVE) { uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt)); #ifdef KMEMSTATS size = kup->ku_pagecnt << PGSHIFT; ksp->ks_memuse -= size; kup->ku_indx = 0; kup->ku_pagecnt = 0; if (ksp->ks_memuse + size >= ksp->ks_limit && ksp->ks_memuse < ksp->ks_limit) wakeup((caddr_t)ksp); ksp->ks_inuse--; kbp->kb_total -= 1; #endif simple_unlock(&malloc_slock); splx(s); return; } freep = (struct freelist *)addr; #ifdef DIAGNOSTIC /* * Check for multiple frees. Use a quick check to see if * it looks free before laboriously searching the freelist. */ if (__predict_false(freep->spare0 == WEIRD_ADDR)) { for (cp = kbp->kb_next; cp; cp = ((struct freelist *)cp)->next) { if (addr != cp) continue; printf("multiply freed item %p\n", addr); #ifdef MALLOCLOG hitmlog(addr); #endif panic("free: duplicated free"); } } #ifdef LOCKDEBUG /* * Check if we're freeing a locked simple lock. */ simple_lock_freecheck(addr, (char *)addr + size); #endif /* * Copy in known text to detect modification after freeing * and to make it look free. Also, save the type being freed * so we can list likely culprit if modification is detected * when the object is reallocated. */ copysize = size < MAX_COPY ? size : MAX_COPY; end = (int32_t *)&((caddr_t)addr)[copysize]; for (lp = (int32_t *)addr; lp < end; lp++) *lp = WEIRD_ADDR; freep->type = ksp; #endif /* DIAGNOSTIC */ #ifdef KMEMSTATS kup->ku_freecnt++; if (kup->ku_freecnt >= kbp->kb_elmpercl) { if (kup->ku_freecnt > kbp->kb_elmpercl) panic("free: multiple frees"); else if (kbp->kb_totalfree > kbp->kb_highwat) kbp->kb_couldfree++; } kbp->kb_totalfree++; ksp->ks_memuse -= size; if (ksp->ks_memuse + size >= ksp->ks_limit && ksp->ks_memuse < ksp->ks_limit) wakeup((caddr_t)ksp); ksp->ks_inuse--; #endif if (kbp->kb_next == NULL) kbp->kb_next = addr; else ((struct freelist *)kbp->kb_last)->next = addr; freep->next = NULL; kbp->kb_last = addr; simple_unlock(&malloc_slock); splx(s); } /* * Change the size of a block of memory. */ void * realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp, int flags) { struct kmemusage *kup; unsigned long cursize; void *newaddr; #ifdef DIAGNOSTIC long alloc; #endif /* * realloc() with a NULL pointer is the same as malloc(). */ if (curaddr == NULL) return (malloc(newsize, ksp, flags)); /* * realloc() with zero size is the same as free(). */ if (newsize == 0) { free(curaddr, ksp); return (NULL); } #ifdef LOCKDEBUG if ((flags & M_NOWAIT) == 0) simple_lock_only_held(NULL, "realloc"); #endif /* * Find out how large the old allocation was (and do some * sanity checking). */ kup = btokup(curaddr); cursize = 1 << kup->ku_indx; #ifdef DIAGNOSTIC /* * Check for returns of data that do not point to the * beginning of the allocation. */ if (cursize > PAGE_SIZE) alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; else alloc = addrmask[kup->ku_indx]; if (((u_long)curaddr & alloc) != 0) panic("realloc: " "unaligned addr %p, size %ld, type %s, mask %ld\n", curaddr, cursize, ksp->ks_shortdesc, alloc); #endif /* DIAGNOSTIC */ if (cursize > MAXALLOCSAVE) cursize = ctob(kup->ku_pagecnt); /* * If we already actually have as much as they want, we're done. */ if (newsize <= cursize) return (curaddr); /* * Can't satisfy the allocation with the existing block. * Allocate a new one and copy the data. */ newaddr = malloc(newsize, ksp, flags); if (__predict_false(newaddr == NULL)) { /* * malloc() failed, because flags included M_NOWAIT. * Return NULL to indicate that failure. The old * pointer is still valid. */ return (NULL); } memcpy(newaddr, curaddr, cursize); /* * We were successful: free the old allocation and return * the new one. */ free(curaddr, ksp); return (newaddr); } /* * Roundup size to the actual allocation size. */ unsigned long malloc_roundup(unsigned long size) { if (size > MAXALLOCSAVE) return (roundup(size, PAGE_SIZE)); else return (1 << BUCKETINDX(size)); } /* * Add a malloc type to the system. */ void malloc_type_attach(struct malloc_type *type) { if (nkmempages == 0) panic("malloc_type_attach: nkmempages == 0"); if (type->ks_magic != M_MAGIC) panic("malloc_type_attach: bad magic"); #ifdef DIAGNOSTIC { struct malloc_type *ksp; for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) { if (ksp == type) panic("malloc_type_attach: already on list"); } } #endif #ifdef KMEMSTATS if (type->ks_limit == 0) type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U; #else type->ks_limit = 0; #endif type->ks_next = kmemstatistics; kmemstatistics = type; } /* * Remove a malloc type from the system.. */ void malloc_type_detach(struct malloc_type *type) { struct malloc_type *ksp; #ifdef DIAGNOSTIC if (type->ks_magic != M_MAGIC) panic("malloc_type_detach: bad magic"); #endif if (type == kmemstatistics) kmemstatistics = type->ks_next; else { for (ksp = kmemstatistics; ksp->ks_next != NULL; ksp = ksp->ks_next) { if (ksp->ks_next == type) { ksp->ks_next = type->ks_next; break; } } #ifdef DIAGNOSTIC if (ksp->ks_next == NULL) panic("malloc_type_detach: not on list"); #endif } type->ks_next = NULL; } /* * Set the limit on a malloc type. */ void malloc_type_setlimit(struct malloc_type *type, u_long limit) { #ifdef KMEMSTATS int s; s = splvm(); type->ks_limit = limit; splx(s); #endif } /* * Compute the number of pages that kmem_map will map, that is, * the size of the kernel malloc arena. */ void kmeminit_nkmempages(void) { int npages; if (nkmempages != 0) { /* * It's already been set (by us being here before, or * by patching or kernel config options), bail out now. */ return; } /* * We use the following (simple) formula: * * - Starting point is physical memory / 4. * * - Clamp it down to NKMEMPAGES_MAX. * * - Round it up to NKMEMPAGES_MIN. */ npages = physmem / 4; if (npages > NKMEMPAGES_MAX) npages = NKMEMPAGES_MAX; if (npages < NKMEMPAGES_MIN) npages = NKMEMPAGES_MIN; nkmempages = npages; } /* * Initialize the kernel memory allocator */ void kmeminit(void) { __link_set_decl(malloc_types, struct malloc_type); struct malloc_type * const *ksp; #ifdef KMEMSTATS long indx; #endif #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2 #endif #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) ERROR!_kmeminit:_MAXALLOCSAVE_too_big #endif #if (MAXALLOCSAVE < NBPG) ERROR!_kmeminit:_MAXALLOCSAVE_too_small #endif if (sizeof(struct freelist) > (1 << MINBUCKET)) panic("minbucket too small/struct freelist too big"); /* * Compute the number of kmem_map pages, if we have not * done so already. */ kmeminit_nkmempages(); kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, (vsize_t)(nkmempages * sizeof(struct kmemusage))); kmem_map = uvm_km_suballoc(kernel_map, (void *)&kmembase, (void *)&kmemlimit, (vsize_t)(nkmempages << PAGE_SHIFT), VM_MAP_INTRSAFE, FALSE, &kmem_map_store); #ifdef KMEMSTATS for (indx = 0; indx < MINBUCKET + 16; indx++) { if (1 << indx >= PAGE_SIZE) bucket[indx].kb_elmpercl = 1; else bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; } #endif /* Attach all of the statically-linked malloc types. */ __link_set_foreach(ksp, malloc_types) malloc_type_attach(*ksp); #ifdef MALLOC_DEBUG debug_malloc_init(); #endif } #ifdef DDB #include /* * Dump kmem statistics from ddb. * * usage: call dump_kmemstats */ void dump_kmemstats(void); void dump_kmemstats(void) { #ifdef KMEMSTATS struct malloc_type *ksp; for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) { if (ksp->ks_memuse == 0) continue; db_printf("%s%.*s %ld\n", ksp->ks_shortdesc, (int)(20 - strlen(ksp->ks_shortdesc)), " ", ksp->ks_memuse); } #else db_printf("Kmem stats are not being collected.\n"); #endif /* KMEMSTATS */ } #endif /* DDB */