/* $NetBSD: zs.c,v 1.4 1998/07/13 19:37:28 tsubai Exp $ */ /* * Copyright (c) 1996 Bill Studenmund * Copyright (c) 1995 Gordon W. Ross * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * 4. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Gordon Ross * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. * Other ports use their own mice & keyboard slaves. * * Credits & history: * * With NetBSD 1.1, port-mac68k started using a port of the port-sparc * (port-sun3?) zs.c driver (which was in turn based on code in the * Berkeley 4.4 Lite release). Bill Studenmund did the port, with * help from Allen Briggs and Gordon Ross . Noud de * Brouwer field-tested the driver at a local ISP. * * Bill Studenmund and Gordon Ross then ported the machine-independant * z8530 driver to work with port-mac68k. NetBSD 1.2 contained an * intermediate version (mac68k using a local, patched version of * the m.i. drivers), with NetBSD 1.3 containing a full version. */ #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Are these in a header file anywhere? */ /* Booter flags interface */ #define ZSMAC_RAW 0x01 #define ZSMAC_LOCALTALK 0x02 #define ZS_STD_BRG (57600*4) #include "zsc.h" /* get the # of zs chips defined */ /* * Some warts needed by z8530tty.c - */ int zs_def_cflag = (CREAD | CS8 | HUPCL); int zs_major = 12; /* * abort detection on console will now timeout after iterating on a loop * the following # of times. Cheep hack. Also, abort detection is turned * off after a timeout (i.e. maybe there's not a terminal hooked up). */ #define ZSABORT_DELAY 3000000 /* The layout of this is hardware-dependent (padding, order). */ struct zschan { volatile u_char zc_csr; /* ctrl,status, and indirect access */ u_char zc_xxx0[15]; volatile u_char zc_data; /* data */ u_char zc_xxx1[15]; }; struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* Saved PROM mappings */ static struct zsdevice *zsaddr[2]; /* Flags from cninit() */ static int zs_hwflags[NZSC][2]; /* Default speed for each channel */ static int zs_defspeed[NZSC][2] = { { 38400, /* tty00 */ 38400 }, /* tty01 */ }; /* console stuff */ void *zs_conschan = 0; int zs_consunit; #ifdef ZS_CONSOLE_ABORT int zs_cons_canabort = 1; #else int zs_cons_canabort = 0; #endif /* ZS_CONSOLE_ABORT*/ /* device to which the console is attached--if serial. */ /* Mac stuff */ static struct zschan *zs_get_chan_addr __P((int zsc_unit, int channel)); void zs_init __P((void)); int zs_cn_check_speed __P((int bps)); /* * Even though zsparam will set up the clock multiples, etc., we * still set them here as: 1) mice & keyboards don't use zsparam, * and 2) the console stuff uses these defaults before device * attach. */ static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ 0, /* IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 1, /*12: BAUDLO (default=38400) */ 0, /*13: BAUDHI (default=38400) */ ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE | ZSWR15_DCD_IE, }; struct zschan * zs_get_chan_addr(zs_unit, channel) int zs_unit, channel; { struct zsdevice *addr; struct zschan *zc; if (zs_unit >= 1) return NULL; addr = zsaddr[zs_unit]; if (addr == NULL) return NULL; if (channel == 0) { zc = &addr->zs_chan_a; } else { zc = &addr->zs_chan_b; } return (zc); } /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zsc_match __P((struct device *, struct cfdata *, void *)); static void zsc_attach __P((struct device *, struct device *, void *)); static int zsc_print __P((void *, const char *name)); struct cfattach zsc_ca = { sizeof(struct zsc_softc), zsc_match, zsc_attach }; extern struct cfdriver zsc_cd; int zshard __P((void *)); int zssoft __P((void *)); #ifdef ZS_TXDMA static int zs_txdma_int __P((void *)); #endif void zscnprobe __P((struct consdev *)); void zscninit __P((struct consdev *)); int zscngetc __P((dev_t)); void zscnputc __P((dev_t, int)); void zscnpollc __P((dev_t, int)); /* * Is the zs chip present? */ static int zsc_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct confargs *ca = aux; int unit = cf->cf_unit; if (strcmp(ca->ca_name, "escc") != 0) return 0; if (unit > 1) return 0; return 1; } /* * Attach a found zs. * * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ static void zsc_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct zsc_softc *zsc = (void *)self; struct confargs *ca = aux; struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct xzs_chanstate *xcs; struct zs_chanstate *cs; int zsc_unit, channel; int s, chip, theflags; int node, intr[2][3]; u_int regs[6]; zsc_unit = zsc->zsc_dev.dv_unit; node = ca->ca_node; node = OF_child(node); /* ch-a */ for (channel = 0; channel < 2; channel++) { OF_getprop(node, "AAPL,interrupts", intr[channel], sizeof(intr[channel])); OF_getprop(node, "reg", regs, sizeof(regs)); regs[0] += ca->ca_baseaddr; regs[2] += ca->ca_baseaddr; regs[4] += ca->ca_baseaddr; #ifdef ZS_TXDMA zsc->zsc_txdmareg[channel] = mapiodev(regs[2], regs[3]); zsc->zsc_txdmacmd[channel] = dbdma_alloc(sizeof(dbdma_command_t) * 3); bzero(zsc->zsc_txdmacmd[channel], sizeof(dbdma_command_t) * 3); dbdma_reset(zsc->zsc_txdmareg[channel]); #endif node = OF_peer(node); /* ch-b */ } zsaddr[0] = mapiodev(regs[0], regs[1]); printf(": irq %d,%d\n", intr[0][0], intr[1][0]); /* Make sure everything's inited ok. */ if (zsaddr[zsc_unit] == NULL) panic("zs_attach: zs%d not mapped\n", zsc_unit); if ((zs_hwflags[zsc_unit][0] | zs_hwflags[zsc_unit][1]) & ZS_HWFLAG_CONSOLE) { zs_conschan = zs_get_chan_addr(zsc_unit, minor(cn_tab->cn_dev)); } /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zsc_unit][channel]; xcs = &zsc->xzsc_xcs_store[channel]; cs = &xcs->xzs_cs; zsc->zsc_cs[channel] = cs; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; zc = zs_get_chan_addr(zsc_unit, channel); cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; bcopy(zs_init_reg, cs->cs_creg, 16); bcopy(zs_init_reg, cs->cs_preg, 16); /* Current BAUD rate generator clock. */ cs->cs_brg_clk = ZS_STD_BRG; /* RTxC is 230400*16, so use 230400 */ cs->cs_defspeed = zs_defspeed[zsc_unit][channel]; cs->cs_defcflag = zs_def_cflag; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = 0; #ifdef __notyet__ cs->cs_slave_type = ZS_SLAVE_NONE; #endif /* Define BAUD rate stuff. */ xcs->cs_clocks[0].clk = ZS_STD_BRG * 16; xcs->cs_clocks[0].flags = ZSC_RTXBRG; xcs->cs_clocks[1].flags = ZSC_RTXBRG | ZSC_RTXDIV | ZSC_VARIABLE | ZSC_EXTERN; xcs->cs_clocks[2].flags = ZSC_TRXDIV | ZSC_VARIABLE; xcs->cs_clock_count = 3; if (channel == 0) { theflags = 0; /*mac68k_machine.modem_flags;*/ /*xcs->cs_clocks[1].clk = mac68k_machine.modem_dcd_clk;*/ /*xcs->cs_clocks[2].clk = mac68k_machine.modem_cts_clk;*/ xcs->cs_clocks[1].clk = 0; xcs->cs_clocks[2].clk = 0; } else { theflags = 0; /*mac68k_machine.print_flags;*/ xcs->cs_clocks[1].flags = ZSC_VARIABLE; /* * Yes, we aren't defining ANY clock source enables for the * printer's DCD clock in. The hardware won't let us * use it. But a clock will freak out the chip, so we * let you set it, telling us to bar interrupts on the line. */ /*xcs->cs_clocks[1].clk = mac68k_machine.print_dcd_clk;*/ /*xcs->cs_clocks[2].clk = mac68k_machine.print_cts_clk;*/ xcs->cs_clocks[1].clk = 0; xcs->cs_clocks[2].clk = 0; } if (xcs->cs_clocks[1].clk) zsc_args.hwflags |= ZS_HWFLAG_NO_DCD; if (xcs->cs_clocks[2].clk) zsc_args.hwflags |= ZS_HWFLAG_NO_CTS; /* Set defaults in our "extended" chanstate. */ xcs->cs_csource = 0; xcs->cs_psource = 0; xcs->cs_cclk_flag = 0; /* Nothing fancy by default */ xcs->cs_pclk_flag = 0; if (theflags & ZSMAC_RAW) { zsc_args.hwflags |= ZS_HWFLAG_RAW; printf(" (raw defaults)"); } /* * XXX - This might be better done with a "stub" driver * (to replace zstty) that ignores LocalTalk for now. */ if (theflags & ZSMAC_LOCALTALK) { printf(" shielding from LocalTalk"); cs->cs_defspeed = 1; cs->cs_creg[ZSRR_BAUDLO] = cs->cs_preg[ZSRR_BAUDLO] = 0xff; cs->cs_creg[ZSRR_BAUDHI] = cs->cs_preg[ZSRR_BAUDHI] = 0xff; zs_write_reg(cs, ZSRR_BAUDLO, 0xff); zs_write_reg(cs, ZSRR_BAUDHI, 0xff); /* * If we might have LocalTalk, then make sure we have the * Baud rate low-enough to not do any damage. */ } /* * We used to disable chip interrupts here, but we now * do that in zscnprobe, just in case MacOS left the chip on. */ xcs->cs_chip = chip; /* Stash away a copy of the final H/W flags. */ xcs->cs_hwflags = zsc_args.hwflags; /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(self, (void *)&zsc_args, zsc_print)) { /* No sub-driver. Just reset it. */ u_char reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } /* XXX - Now safe to install interrupt handlers. */ intr_establish(intr[0][0], IST_LEVEL, IPL_TTY, zshard, NULL); intr_establish(intr[1][0], IST_LEVEL, IPL_TTY, zshard, NULL); #ifdef ZS_TXDMA intr_establish(intr[0][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)0); intr_establish(intr[1][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)1); #endif /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splzs(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); } static int zsc_print(aux, name) void *aux; const char *name; { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s: ", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } int zsmdioctl(cs, cmd, data) struct zs_chanstate *cs; u_long cmd; caddr_t data; { switch (cmd) { default: return (-1); } return (0); } void zsmd_setclock(cs) struct zs_chanstate *cs; { struct xzs_chanstate *xcs = (void *)cs; if (cs->cs_channel != 0) return; /* * If the new clock has the external bit set, then select the * external source. */ /*via_set_modem((xcs->cs_pclk_flag & ZSC_EXTERN) ? 1 : 0);*/ } static int zssoftpending; /* * Our ZS chips all share a common, autovectored interrupt, * so we have to look at all of them on each interrupt. */ int zshard(arg) void *arg; { register struct zsc_softc *zsc; register int unit, rval; rval = 0; for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; rval |= zsc_intr_hard(zsc); if ((zsc->zsc_cs[0]->cs_softreq) || (zsc->zsc_cs[1]->cs_softreq)) { /* zsc_req_softint(zsc); */ /* We are at splzs here, so no need to lock. */ if (zssoftpending == 0) { zssoftpending = 1; setsoftserial(); } } } return (rval); } /* * Similar scheme as for zshard (look at all of them) */ int zssoft(arg) void *arg; { register struct zsc_softc *zsc; register int unit; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return (0); /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. */ zssoftpending = 0; for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; (void) zsc_intr_soft(zsc); } return (1); } #ifdef ZS_TXDMA int zs_txdma_int(arg) void *arg; { int ch = (int)arg; struct zsc_softc *zsc; struct zs_chanstate *cs; int unit = 0; /* XXX */ extern int zstty_txdma_int(); zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) panic("zs_txdma_int"); cs = zsc->zsc_cs[ch]; zstty_txdma_int(cs); if (cs->cs_softreq) { if (zssoftpending == 0) { zssoftpending = 1; setsoftserial(); } } return 1; } void zs_dma_setup(cs, pa, len) struct zs_chanstate *cs; caddr_t pa; int len; { struct zsc_softc *zsc; dbdma_command_t *cmdp; int ch = cs->cs_channel; zsc = zsc_cd.cd_devs[ch]; cmdp = zsc->zsc_txdmacmd[ch]; DBDMA_BUILD(cmdp, DBDMA_CMD_OUT_LAST, 0, len, kvtop(pa), DBDMA_INT_ALWAYS, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); cmdp++; DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0, DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); __asm __volatile("eieio"); dbdma_start(zsc->zsc_txdmareg[ch], zsc->zsc_txdmacmd[ch]); } #endif #ifndef ZS_TOLERANCE #define ZS_TOLERANCE 51 /* 5% in tenths of a %, plus 1 so that exactly 5% will be ok. */ #endif /* * check out a rate for acceptability from the internal clock * source. Used in console config to validate a requested * default speed. Placed here so that all the speed checking code is * in one place. * * != 0 means ok. */ int zs_cn_check_speed(bps) int bps; /* target rate */ { int tc, rate; tc = BPS_TO_TCONST(ZS_STD_BRG, bps); if (tc < 0) return 0; rate = TCONST_TO_BPS(ZS_STD_BRG, tc); if (ZS_TOLERANCE > abs(((rate - bps)*1000)/bps)) return 1; else return 0; } /* * Search through the signal sources in the channel, and * pick the best one for the baud rate requested. Return * a -1 if not achievable in tolerance. Otherwise return 0 * and fill in the values. * * This routine draws inspiration from the Atari port's zs.c * driver in NetBSD 1.1 which did the same type of source switching. * Tolerance code inspired by comspeed routine in isa/com.c. * * By Bill Studenmund, 1996-05-12 */ int zs_set_speed(cs, bps) struct zs_chanstate *cs; int bps; /* bits per second */ { struct xzs_chanstate *xcs = (void *) cs; int i, tc, tc0 = 0, tc1, s, sf = 0; int src, rate0, rate1, err, tol; if (bps == 0) return (0); src = -1; /* no valid source yet */ tol = ZS_TOLERANCE; /* * Step through all the sources and see which one matches * the best. A source has to match BETTER than tol to be chosen. * Thus if two sources give the same error, the first one will be * chosen. Also, allow for the possability that one source might run * both the BRG and the direct divider (i.e. RTxC). */ for (i = 0; i < xcs->cs_clock_count; i++) { if (xcs->cs_clocks[i].clk <= 0) continue; /* skip non-existant or bad clocks */ if (xcs->cs_clocks[i].flags & ZSC_BRG) { /* check out BRG at /16 */ tc1 = BPS_TO_TCONST(xcs->cs_clocks[i].clk >> 4, bps); if (tc1 >= 0) { rate1 = TCONST_TO_BPS(xcs->cs_clocks[i].clk >> 4, tc1); err = abs(((rate1 - bps)*1000)/bps); if (err < tol) { tol = err; src = i; sf = xcs->cs_clocks[i].flags & ~ZSC_DIV; tc0 = tc1; rate0 = rate1; } } } if (xcs->cs_clocks[i].flags & ZSC_DIV) { /* * Check out either /1, /16, /32, or /64 * Note: for /1, you'd better be using a synchronized * clock! */ int b0 = xcs->cs_clocks[i].clk, e0 = abs(b0-bps); int b1 = b0 >> 4, e1 = abs(b1-bps); int b2 = b1 >> 1, e2 = abs(b2-bps); int b3 = b2 >> 1, e3 = abs(b3-bps); if (e0 < e1 && e0 < e2 && e0 < e3) { err = e0; rate1 = b0; tc1 = ZSWR4_CLK_X1; } else if (e0 > e1 && e1 < e2 && e1 < e3) { err = e1; rate1 = b1; tc1 = ZSWR4_CLK_X16; } else if (e0 > e2 && e1 > e2 && e2 < e3) { err = e2; rate1 = b2; tc1 = ZSWR4_CLK_X32; } else { err = e3; rate1 = b3; tc1 = ZSWR4_CLK_X64; } err = (err * 1000)/bps; if (err < tol) { tol = err; src = i; sf = xcs->cs_clocks[i].flags & ~ZSC_BRG; tc0 = tc1; rate0 = rate1; } } } #ifdef ZSMACDEBUG zsprintf("Checking for rate %d. Found source #%d.\n",bps, src); #endif if (src == -1) return (EINVAL); /* no can do */ /* * The M.I. layer likes to keep cs_brg_clk current, even though * we are the only ones who should be touching the BRG's rate. * * Note: we are assuming that any ZSC_EXTERN signal source comes in * on the RTxC pin. Correct for the mac68k obio zsc. */ if (sf & ZSC_EXTERN) cs->cs_brg_clk = xcs->cs_clocks[i].clk >> 4; else cs->cs_brg_clk = ZS_STD_BRG; /* * Now we have a source, so set it up. */ s = splzs(); xcs->cs_psource = src; xcs->cs_pclk_flag = sf; bps = rate0; if (sf & ZSC_BRG) { cs->cs_preg[4] = ZSWR4_CLK_X16; cs->cs_preg[11]= ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD; if (sf & ZSC_PCLK) { cs->cs_preg[14] = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK; } else { cs->cs_preg[14] = ZSWR14_BAUD_ENA; } tc = tc0; } else { cs->cs_preg[4] = tc0; if (sf & ZSC_RTXDIV) { cs->cs_preg[11] = ZSWR11_RXCLK_RTXC | ZSWR11_TXCLK_RTXC; } else { cs->cs_preg[11] = ZSWR11_RXCLK_TRXC | ZSWR11_TXCLK_TRXC; } cs->cs_preg[14]= 0; tc = 0xffff; } /* Set the BAUD rate divisor. */ cs->cs_preg[12] = tc; cs->cs_preg[13] = tc >> 8; splx(s); #ifdef ZSMACDEBUG zsprintf("Rate is %7d, tc is %7d, source no. %2d, flags %4x\n", \ bps, tc, src, sf); zsprintf("Registers are: 4 %x, 11 %x, 14 %x\n\n", cs->cs_preg[4], cs->cs_preg[11], cs->cs_preg[14]); #endif cs->cs_preg[5] |= ZSWR5_RTS; /* Make sure the drivers are on! */ /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(cs, cflag) struct zs_chanstate *cs; int cflag; /* bits per second */ { struct xzs_chanstate *xcs = (void*)cs; int s; /* * Make sure we don't enable hfc on a signal line we're ignoring. * As we enable CTS interrupts only if we have CRTSCTS or CDTRCTS, * this code also effectivly turns off ZSWR15_CTS_IE. * * Also, disable DCD interrupts if we've been told to ignore * the DCD pin. Happens on mac68k because the input line for * DCD can also be used as a clock input. (Just set CLOCAL.) * * If someone tries to turn an invalid flow mode on, Just Say No * (Suggested by gwr) */ if ((cflag & CDTRCTS) && (cflag & (CRTSCTS | MDMBUF))) return (EINVAL); if (xcs->cs_hwflags & ZS_HWFLAG_NO_DCD) { if (cflag & MDMBUF) return (EINVAL); cflag |= CLOCAL; } if ((xcs->cs_hwflags & ZS_HWFLAG_NO_CTS) && (cflag & (CRTSCTS | CDTRCTS))) return (EINVAL); /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); if ((cflag & (CLOCAL | MDMBUF)) != 0) cs->cs_rr0_dcd = 0; else cs->cs_rr0_dcd = ZSRR0_DCD; /* * The mac hardware only has one output, DTR (HSKo in Mac * parlance). In HFC mode, we use it for the functions * typically served by RTS and DTR on other ports, so we * have to fake the upper layer out some. * * CRTSCTS we use CTS as an input which tells us when to shut up. * We make no effort to shut up the other side of the connection. * DTR is used to hang up the modem. * * In CDTRCTS, we use CTS to tell us to stop, but we use DTR to * shut up the other side. */ if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & CDTRCTS) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. * MacII hardware has the delay built in. * No need for extra delay. :-) However, some clock-chirped * macs, or zsc's on serial add-on boards might need it. */ #define ZS_DELAY() u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; out8(cs->cs_reg_csr, reg); ZS_DELAY(); val = in8(cs->cs_reg_csr); ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { out8(cs->cs_reg_csr, reg); ZS_DELAY(); out8(cs->cs_reg_csr, val); ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { register u_char val; val = in8(cs->cs_reg_csr); ZS_DELAY(); /* make up for the fact CTS is wired backwards */ val ^= ZSRR0_CTS; return val; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { /* Note, the csr does not write CTS... */ out8(cs->cs_reg_csr, val); ZS_DELAY(); } u_char zs_read_data(cs) struct zs_chanstate *cs; { register u_char val; val = in8(cs->cs_reg_data); ZS_DELAY(); return val; } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { out8(cs->cs_reg_data, val); ZS_DELAY(); } /**************************************************************** * Console support functions (powermac specific!) * Note: this code is allowed to know about the layout of * the chip registers, and uses that to keep things simple. * XXX - I think I like the mvme167 code better. -gwr * XXX - Well :-P :-) -wrs ****************************************************************/ #define zscnpollc nullcnpollc cons_decl(zs); static void zs_putc __P((register volatile struct zschan *, int)); static int zs_getc __P((register volatile struct zschan *)); extern int zsopen __P(( dev_t dev, int flags, int mode, struct proc *p)); static int stdin, stdout; /* * Console functions. */ /* * zscnprobe is the routine which gets called as the kernel is trying to * figure out where the console should be. Each io driver which might * be the console (as defined in mac68k/conf.c) gets probed. The probe * fills in the consdev structure. Important parts are the device #, * and the console priority. Values are CN_DEAD (don't touch me), * CN_NORMAL (I'm here, but elsewhere might be better), CN_INTERNAL * (the video, better than CN_NORMAL), and CN_REMOTE (pick me!) * * As the mac's a bit different, we do extra work here. We mainly check * to see if we have serial echo going on. Also chould check for default * speeds. */ /* * Polled input char. */ int zs_getc(zc) register volatile struct zschan *zc; { register int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = in8(&zc->zc_csr); ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = in8(&zc->zc_data); ZS_DELAY(); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled output char. */ void zs_putc(zc, c) register volatile struct zschan *zc; int c; { register int s, rr0; register long wait = 0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = in8(&zc->zc_csr); ZS_DELAY(); } while (((rr0 & ZSRR0_TX_READY) == 0) && (wait++ < 1000000)); if ((rr0 & ZSRR0_TX_READY) != 0) { out8(&zc->zc_data, c); ZS_DELAY(); } splx(s); } /* * Polled console input putchar. */ int zscngetc(dev) dev_t dev; { register volatile struct zschan *zc = zs_conschan; register int c; if (zc) { c = zs_getc(zc); } else { char ch = 0; OF_read(stdin, &ch, 1); c = ch; } return c; } /* * Polled console output putchar. */ void zscnputc(dev, c) dev_t dev; int c; { register volatile struct zschan *zc = zs_conschan; if (zc) { zs_putc(zc, c); } else { char ch = c; OF_write(stdout, &ch, 1); } } /* * Handle user request to enter kernel debugger. */ void zs_abort(cs) struct zs_chanstate *cs; { volatile struct zschan *zc = zs_conschan; int rr0; register long wait = 0; if (zs_cons_canabort == 0) return; /* Wait for end of break to avoid PROM abort. */ do { rr0 = in8(&zc->zc_csr); ZS_DELAY(); } while ((rr0 & ZSRR0_BREAK) && (wait++ < ZSABORT_DELAY)); if (wait > ZSABORT_DELAY) { zs_cons_canabort = 0; /* If we time out, turn off the abort ability! */ } #ifdef DDB Debugger(); #endif } extern int ofccngetc __P((dev_t)); extern void ofccnputc __P((dev_t, int)); struct consdev consdev_zs = { zscnprobe, zscninit, zscngetc, zscnputc, zscnpollc, }; void zscnprobe(cp) struct consdev *cp; { int chosen, pkg; int unit = 0; char name[16]; if ((chosen = OF_finddevice("/chosen")) == -1) return; if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1) return; if (OF_getprop(chosen, "stdout", &stdout, sizeof(stdout)) == -1) return; if ((pkg = OF_instance_to_package(stdin)) == -1) return; bzero(name, sizeof(name)); if (OF_getprop(pkg, "device_type", name, sizeof(name)) == -1) return; if (strcmp(name, "serial") != 0) return; bzero(name, sizeof(name)); if (OF_getprop(pkg, "name", name, sizeof(name)) == -1) return; if (strcmp(name, "ch-b") == 0) unit = 1; cp->cn_dev = makedev(zs_major, unit); cp->cn_pri = CN_REMOTE; } void zscninit(cp) struct consdev *cp; { int pkg; int unit = 0; char name[16]; if ((pkg = OF_instance_to_package(stdin)) == -1) return; bzero(name, sizeof(name)); if (OF_getprop(pkg, "name", name, sizeof(name)) == -1) return; if (strcmp(name, "ch-b") == 0) unit = 1; zs_hwflags[0][unit] = ZS_HWFLAG_CONSOLE; }