/* $NetBSD: zs.c,v 1.6 1996/08/26 06:39:03 thorpej Exp $ */ /* * Copyright (c) 1995 Gordon W. Ross * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * 4. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Gordon Ross * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. * * Modified for NetBSD/mvme68k by Jason R. Thorpe */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static u_long zs_sir; /* software interrupt cookie */ /* Flags from zscnprobe() */ static int zs_hwflags[NZS][2]; /* Default speed for each channel */ static int zs_defspeed[NZS][2] = { { 9600, /* port 1 */ 9600 }, /* port 2 */ { 9600, /* port 3 */ 9600 }, /* port 4 */ }; static struct zs_chanstate zs_conschan_store; static struct zs_chanstate *zs_conschan; u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE, 0x18 + ZSHARD_PRI, /* IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 14, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE | ZSWR15_DCD_IE, }; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zsc_print __P((void *, char *name)); struct cfdriver zsc_cd = { NULL, "zsc", DV_DULL }; /* * Configure children of an SCC. */ void zs_config(zsc, chan_addr) struct zsc_softc *zsc; struct zschan *(*chan_addr) __P((int, int)); { struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct zs_chanstate *cs; int zsc_unit, channel, s; u_char reset; zsc_unit = zsc->zsc_dev.dv_unit; printf(": Zilog 8530 SCC\n"); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { cs = &zsc->zsc_cs[channel]; /* * If we're the console, copy the channel state, and * adjust the console channel pointer. */ if (zs_hwflags[zsc_unit][channel] & ZS_HWFLAG_CONSOLE) { bcopy(zs_conschan, cs, sizeof(struct zs_chanstate)); zs_conschan = cs; } else { zc = (*chan_addr)(zsc_unit, channel); cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; /* Define BAUD rate clock for the MI code. */ cs->cs_brg_clk = PCLK / 16; cs->cs_defspeed = zs_defspeed[zsc_unit][channel]; bcopy(zs_init_reg, cs->cs_creg, 16); bcopy(zs_init_reg, cs->cs_preg, 16); } cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zsc_unit][channel]; if (config_found(&zsc->zsc_dev, (void *)&zsc_args, zsc_print) == NULL) { /* No sub-driver. Just reset it. */ reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } /* * Allocate a software interrupt cookie. Note that the argument * "zsc" is never actually used in the software interrupt * handler. */ if (zs_sir == 0) zs_sir = allocate_sir(zssoft, zsc); } static int zsc_print(aux, name) void *aux; char *name; { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s: ", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } int zshard(arg) void *arg; { struct zsc_softc *zsc; int unit, rval; rval = 0; for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) { zsc = zsc_cd.cd_devs[unit]; if (zsc != NULL) { rval |= zsc_intr_hard(zsc); } } return (rval); } int zssoftpending; void zsc_req_softint(zsc) struct zsc_softc *zsc; { if (zssoftpending == 0) { /* We are at splzs here, so no need to lock. */ zssoftpending = 1; setsoftint(zs_sir); } } int zssoft(arg) void *arg; { struct zsc_softc *zsc; int unit; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return (0); /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. */ zssoftpending = 0; for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) { zsc = zsc_cd.cd_devs[unit]; if (zsc != NULL) { (void) zsc_intr_soft(zsc); } } return (1); } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { register u_char v; v = *cs->cs_reg_csr; ZS_DELAY(); return v; } u_char zs_read_data(cs) struct zs_chanstate *cs; { register u_char v; v = *cs->cs_reg_data; ZS_DELAY(); return v; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_csr = val; ZS_DELAY(); } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_data = val; ZS_DELAY(); } /**************************************************************** * Console support functions (MVME specific!) ****************************************************************/ /* * Polled input char. */ int zs_getc(arg) void *arg; { register struct zs_chanstate *cs = arg; register int s, c, rr0, stat; s = splhigh(); top: /* Wait for a character to arrive. */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); /* Read error register. */ stat = zs_read_reg(cs, 1) & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE); if (stat) { zs_write_csr(cs, ZSM_RESET_ERR); goto top; } /* Read character. */ c = *cs->cs_reg_data; ZS_DELAY(); splx(s); return (c); } /* * Polled output char. */ void zs_putc(arg, c) void *arg; int c; { register struct zs_chanstate *cs = arg; register int s, rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); *cs->cs_reg_data = c; ZS_DELAY(); splx(s); } /* * Common parts of console init. */ void zs_cnconfig(zsc_unit, channel, zcp) int zsc_unit, channel; struct zschan *zcp; { volatile struct zschan *zc = (volatile struct zschan *)zcp; struct zs_chanstate *cs; /* * Pointer to channel state. Later, the console channel * state is copied into the softc, and the console channel * pointer adjusted to point to the new copy. */ zs_conschan = cs = &zs_conschan_store; zs_hwflags[zsc_unit][channel] = ZS_HWFLAG_CONSOLE; cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; /* Define BAUD rate clock for the MI code. */ cs->cs_brg_clk = PCLK / 16; cs->cs_defspeed = zs_defspeed[zsc_unit][channel]; bcopy(zs_init_reg, cs->cs_creg, 16); bcopy(zs_init_reg, cs->cs_preg, 16); /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* Reset the SCC chip. */ zs_write_reg(cs, 9, ZSWR9_HARD_RESET); /* Initialize a few important registers. */ zs_write_reg(cs, 10, cs->cs_creg[10]); zs_write_reg(cs, 11, cs->cs_creg[11]); zs_write_reg(cs, 14, cs->cs_creg[14]); /* Assert DTR and RTS. */ cs->cs_creg[5] |= (ZSWR5_DTR | ZSWR5_RTS); cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS); zs_write_reg(cs, 5, cs->cs_creg[5]); } /* * Polled console input putchar. */ int zscngetc(dev) dev_t dev; { register volatile struct zs_chanstate *cs = zs_conschan; register int c; c = zs_getc(cs); return (c); } /* * Polled console output putchar. */ void zscnputc(dev, c) dev_t dev; int c; { register volatile struct zs_chanstate *cs = zs_conschan; zs_putc(cs, c); } /* * Handle user request to enter kernel debugger. */ void zs_abort() { register volatile struct zs_chanstate *cs = zs_conschan; int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); mvme68k_abort("SERIAL LINE ABORT"); }