/* $NetBSD: if_tl.c,v 1.32 2000/03/23 07:01:39 thorpej Exp $ */ /* * Copyright (c) 1997 Manuel Bouyer. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Manuel Bouyer. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Texas Instruments ThunderLAN ethernet controller * ThunderLAN Programmer's Guide (TI Literature Number SPWU013A) * available from www.ti.com */ #undef TLDEBUG #define TL_PRIV_STATS #undef TLDEBUG_RX #undef TLDEBUG_TX #undef TLDEBUG_ADDR #include "opt_inet.h" #include "opt_ns.h" #include #include #include #include #include #include #include #include #include #include /* only for declaration of wakeup() used by vm.h */ #include #include #if defined(SIOCSIFMEDIA) #include #endif #include #include #include #include #include "bpfilter.h" #if NBPFILTER > 0 #include #include #endif #ifdef INET #include #include #include #include #endif #ifdef NS #include #include #endif #include #include #include #if defined(__NetBSD__) #include #if defined(INET) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __NetBSD__ */ #if defined(__NetBSD__) && defined(__alpha__) /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vaddr_t)(va)) #endif /* number of transmit/receive buffers */ #ifndef TL_NBUF #define TL_NBUF 10 #endif /* number of seconds the link can be idle */ #ifndef TL_IDLETIME #define TL_IDLETIME 10 #endif static int tl_pci_match __P((struct device *, struct cfdata *, void *)); static void tl_pci_attach __P((struct device *, struct device *, void *)); static int tl_intr __P((void *)); static int tl_ifioctl __P((struct ifnet *, ioctl_cmd_t, caddr_t)); static int tl_mediachange __P((struct ifnet *)); static void tl_mediastatus __P((struct ifnet *, struct ifmediareq *)); static void tl_ifwatchdog __P((struct ifnet *)); static void tl_shutdown __P((void*)); static void tl_ifstart __P((struct ifnet *)); static void tl_reset __P((tl_softc_t*)); static int tl_init __P((tl_softc_t*)); static void tl_restart __P((void *)); static int tl_add_RxBuff __P((struct Rx_list*, struct mbuf*)); static void tl_read_stats __P((tl_softc_t*)); static void tl_ticks __P((void*)); static int tl_multicast_hash __P((u_int8_t*)); static void tl_addr_filter __P((tl_softc_t*)); static u_int32_t tl_intreg_read __P((tl_softc_t*, u_int32_t)); static void tl_intreg_write __P((tl_softc_t*, u_int32_t, u_int32_t)); static u_int8_t tl_intreg_read_byte __P((tl_softc_t*, u_int32_t)); static void tl_intreg_write_byte __P((tl_softc_t*, u_int32_t, u_int8_t)); void tl_mii_sync __P((struct tl_softc *)); void tl_mii_sendbits __P((struct tl_softc *, u_int32_t, int)); #if defined(TLDEBUG_RX) static void ether_printheader __P((struct ether_header*)); #endif int tl_mii_read __P((struct device *, int, int)); void tl_mii_write __P((struct device *, int, int, int)); void tl_statchg __P((struct device *)); void tl_i2c_set __P((void*, u_int8_t)); void tl_i2c_clr __P((void*, u_int8_t)); int tl_i2c_read __P((void*, u_int8_t)); static __inline void netsio_clr __P((tl_softc_t*, u_int8_t)); static __inline void netsio_set __P((tl_softc_t*, u_int8_t)); static __inline u_int8_t netsio_read __P((tl_softc_t*, u_int8_t)); static __inline void netsio_clr(sc, bits) tl_softc_t* sc; u_int8_t bits; { tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & (~bits)); } static __inline void netsio_set(sc, bits) tl_softc_t* sc; u_int8_t bits; { tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) | bits); } static __inline u_int8_t netsio_read(sc, bits) tl_softc_t* sc; u_int8_t bits; { return (tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & bits); } struct cfattach tl_ca = { sizeof(tl_softc_t), tl_pci_match, tl_pci_attach }; const struct tl_product_desc tl_compaq_products[] = { { PCI_PRODUCT_COMPAQ_N100TX, TLPHY_MEDIA_NO_10_T, "Compaq Netelligent 10/100 TX" }, { PCI_PRODUCT_COMPAQ_N10T, TLPHY_MEDIA_10_5, "Compaq Netelligent 10 T" }, { PCI_PRODUCT_COMPAQ_IntNF3P, TLPHY_MEDIA_10_2, "Compaq Integrated NetFlex 3/P" }, { PCI_PRODUCT_COMPAQ_IntPL100TX, TLPHY_MEDIA_10_2|TLPHY_MEDIA_NO_10_T, "Compaq ProLiant Integrated Netelligent 10/100 TX" }, { PCI_PRODUCT_COMPAQ_DPNet100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T, "Compaq Dual Port Netelligent 10/100 TX" }, { PCI_PRODUCT_COMPAQ_DP4000, TLPHY_MEDIA_10_5, "Compaq Deskpro 4000 5233MMX" }, { PCI_PRODUCT_COMPAQ_NF3P_BNC, TLPHY_MEDIA_10_2, "Compaq NetFlex 3/P w/ BNC" }, { PCI_PRODUCT_COMPAQ_NF3P, TLPHY_MEDIA_10_5, "Compaq NetFlex 3/P" }, { 0, 0, NULL }, }; const struct tl_product_desc tl_ti_products[] = { /* * Built-in Ethernet on the TI TravelMate 5000 * docking station; better product description? */ { PCI_PRODUCT_TI_TLAN, 0, "Texas Instruments ThunderLAN" }, { 0, 0, NULL }, }; struct tl_vendor_desc { u_int32_t tv_vendor; const struct tl_product_desc *tv_products; }; const struct tl_vendor_desc tl_vendors[] = { { PCI_VENDOR_COMPAQ, tl_compaq_products }, { PCI_VENDOR_TI, tl_ti_products }, { 0, NULL }, }; const struct tl_product_desc *tl_lookup_product __P((u_int32_t)); const struct tl_product_desc * tl_lookup_product(id) u_int32_t id; { const struct tl_product_desc *tp; const struct tl_vendor_desc *tv; for (tv = tl_vendors; tv->tv_products != NULL; tv++) if (PCI_VENDOR(id) == tv->tv_vendor) break; if ((tp = tv->tv_products) == NULL) return (NULL); for (; tp->tp_desc != NULL; tp++) if (PCI_PRODUCT(id) == tp->tp_product) break; if (tp->tp_desc == NULL) return (NULL); return (tp); } static char *nullbuf = NULL; static int tl_pci_match(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; if (tl_lookup_product(pa->pa_id) != NULL) return (1); return (0); } static void tl_pci_attach(parent, self, aux) struct device * parent; struct device * self; void * aux; { tl_softc_t *sc = (tl_softc_t *)self; struct pci_attach_args * const pa = (struct pci_attach_args *) aux; const struct tl_product_desc *tp; struct ifnet * const ifp = &sc->tl_if; bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; pci_intr_handle_t intrhandle; const char *intrstr; int i, tmp, ioh_valid, memh_valid; int reg_io, reg_mem; pcireg_t reg10, reg14; pcireg_t csr; printf("\n"); callout_init(&sc->tl_tick_ch); callout_init(&sc->tl_restart_ch); tp = tl_lookup_product(pa->pa_id); if (tp == NULL) panic("tl_pci_attach: impossible"); sc->tl_product = tp; /* * Map the card space. Fisrt we have to find the I/O and MEM * registers. I/O is supposed to be at 0x10, MEM at 0x14, * but some boards (Compaq Netflex 3/P PCI) seem to have it reversed. * The ThunderLAN manual is not consistent about this either (there * are both cases in code examples). */ reg10 = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x10); reg14 = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x14); if (PCI_MAPREG_TYPE(reg10) == PCI_MAPREG_TYPE_IO) reg_io = 0x10; else if (PCI_MAPREG_TYPE(reg14) == PCI_MAPREG_TYPE_IO) reg_io = 0x14; else reg_io = 0; if (PCI_MAPREG_TYPE(reg10) == PCI_MAPREG_TYPE_MEM) reg_mem = 0x10; else if (PCI_MAPREG_TYPE(reg14) == PCI_MAPREG_TYPE_MEM) reg_mem = 0x14; else reg_mem = 0; if (reg_io != 0) ioh_valid = (pci_mapreg_map(pa, reg_io, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); else ioh_valid = 0; if (reg_mem != 0) memh_valid = (pci_mapreg_map(pa, PCI_CBMA, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); else memh_valid = 0; if (ioh_valid) { sc->tl_bustag = iot; sc->tl_bushandle = ioh; } else if (memh_valid) { sc->tl_bustag = memt; sc->tl_bushandle = memh; } else { printf("%s: unable to map device registers\n", sc->sc_dev.dv_xname); return; } /* Enable the device. */ csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MASTER_ENABLE); printf("%s: %s\n", sc->sc_dev.dv_xname, tp->tp_desc); tl_reset(sc); /* fill in the i2c struct */ sc->i2cbus.adapter_softc = sc; sc->i2cbus.set_bit = tl_i2c_set; sc->i2cbus.clr_bit = tl_i2c_clr; sc->i2cbus.read_bit = tl_i2c_read; #ifdef TLDEBUG printf("default values of INTreg: 0x%x\n", tl_intreg_read(sc, TL_INT_Defaults)); #endif /* read mac addr */ for (i=0; ii2cbus, 0x83 + i); if (tmp < 0) { printf("%s: error reading Ethernet adress\n", sc->sc_dev.dv_xname); return; } else { sc->tl_enaddr[i] = tmp; } } printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, ether_sprintf(sc->tl_enaddr)); /* Map and establish interrupts */ if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &intrhandle)) { printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pa->pa_pc, intrhandle); sc->tl_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET, tl_intr, sc); if (sc->tl_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); /* * Add shutdown hook so that DMA is disabled prior to reboot. Not * doing do could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ (void) shutdownhook_establish(tl_shutdown, sc); /* * Initialize our media structures and probe the MII. * * Note that we don't care about the media instance. We * are expecting to have multiple PHYs on the 10/100 cards, * and on those cards we exclude the internal PHY from providing * 10baseT. By ignoring the instance, it allows us to not have * to specify it on the command line when switching media. */ sc->tl_mii.mii_ifp = ifp; sc->tl_mii.mii_readreg = tl_mii_read; sc->tl_mii.mii_writereg = tl_mii_write; sc->tl_mii.mii_statchg = tl_statchg; ifmedia_init(&sc->tl_mii.mii_media, IFM_IMASK, tl_mediachange, tl_mediastatus); mii_attach(self, &sc->tl_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->tl_mii.mii_phys) == NULL) { ifmedia_add(&sc->tl_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->tl_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->tl_mii.mii_media, IFM_ETHER|IFM_AUTO); bcopy(sc->sc_dev.dv_xname, sc->tl_if.if_xname, IFNAMSIZ); sc->tl_if.if_softc = sc; ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST; ifp->if_ioctl = tl_ifioctl; ifp->if_start = tl_ifstart; ifp->if_watchdog = tl_ifwatchdog; ifp->if_timer = 0; if_attach(ifp); ether_ifattach(&(sc)->tl_if, (sc)->tl_enaddr); #if NBPFILTER > 0 bpfattach(&sc->tl_bpf, &sc->tl_if, DLT_EN10MB, sizeof(struct ether_header)); #endif } static void tl_reset(sc) tl_softc_t *sc; { int i; /* read stats */ if (sc->tl_if.if_flags & IFF_RUNNING) { callout_stop(&sc->tl_tick_ch); tl_read_stats(sc); } /* Reset adapter */ TL_HR_WRITE(sc, TL_HOST_CMD, TL_HR_READ(sc, TL_HOST_CMD) | HOST_CMD_Ad_Rst); DELAY(100000); /* Disable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff); /* setup aregs & hash */ for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4) tl_intreg_write(sc, i, 0); #ifdef TLDEBUG_ADDR printf("Areg & hash registers: \n"); for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4) printf(" reg %x: %x\n", i, tl_intreg_read(sc, i)); #endif /* Setup NetConfig */ tl_intreg_write(sc, TL_INT_NetConfig, TL_NETCONFIG_1F | TL_NETCONFIG_1chn | TL_NETCONFIG_PHY_EN); /* Bsize: accept default */ /* TX commit in Acommit: accept default */ /* Load Ld_tmr and Ld_thr */ /* Ld_tmr = 3 */ TL_HR_WRITE(sc, TL_HOST_CMD, 0x3 | HOST_CMD_LdTmr); /* Ld_thr = 0 */ TL_HR_WRITE(sc, TL_HOST_CMD, 0x0 | HOST_CMD_LdThr); /* Unreset MII */ netsio_set(sc, TL_NETSIO_NMRST); DELAY(100000); sc->tl_mii.mii_media_status &= ~IFM_ACTIVE; sc->tl_flags = 0; sc->opkt = 0; sc->stats_exesscoll = 0; } static void tl_shutdown(v) void *v; { tl_softc_t *sc = v; struct Tx_list *Tx; int i; if ((sc->tl_if.if_flags & IFF_RUNNING) == 0) return; /* disable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff); /* stop TX and RX channels */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_STOP | HOST_CMD_RT | HOST_CMD_Nes); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_STOP); DELAY(100000); /* stop statistics reading loop, read stats */ callout_stop(&sc->tl_tick_ch); tl_read_stats(sc); /* Down the MII. */ mii_down(&sc->tl_mii); /* deallocate memory allocations */ for (i=0; i< TL_NBUF; i++) { if (sc->Rx_list[i].m) m_freem(sc->Rx_list[i].m); sc->Rx_list[i].m = NULL; } free(sc->Rx_list, M_DEVBUF); sc->Rx_list = NULL; while ((Tx = sc->active_Tx) != NULL) { Tx->hw_list.stat = 0; m_freem(Tx->m); sc->active_Tx = Tx->next; Tx->next = sc->Free_Tx; sc->Free_Tx = Tx; } sc->last_Tx = NULL; free(sc->Tx_list, M_DEVBUF); sc->Tx_list = NULL; sc->tl_if.if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); sc->tl_mii.mii_media_status &= ~IFM_ACTIVE; sc->tl_flags = 0; } static void tl_restart(v) void *v; { tl_init(v); } static int tl_init(sc) tl_softc_t *sc; { struct ifnet *ifp = &sc->tl_if; int i, s; s = splnet(); /* cancel any pending IO */ tl_shutdown(sc); tl_reset(sc); if ((sc->tl_if.if_flags & IFF_UP) == 0) { splx(s); return 0; } /* Set various register to reasonable value */ /* setup NetCmd in promisc mode if needed */ i = (ifp->if_flags & IFF_PROMISC) ? TL_NETCOMMAND_CAF : 0; tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, TL_NETCOMMAND_NRESET | TL_NETCOMMAND_NWRAP | i); /* Max receive size : MCLBYTES */ tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxL, MCLBYTES & 0xff); tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxH, (MCLBYTES >> 8) & 0xff); /* init MAC addr */ for (i = 0; i < ETHER_ADDR_LEN; i++) tl_intreg_write_byte(sc, TL_INT_Areg0 + i , sc->tl_enaddr[i]); /* add multicast filters */ tl_addr_filter(sc); #ifdef TLDEBUG_ADDR printf("Wrote Mac addr, Areg & hash registers are now: \n"); for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4) printf(" reg %x: %x\n", i, tl_intreg_read(sc, i)); #endif /* Pre-allocate receivers mbuf, make the lists */ sc->Rx_list = malloc(sizeof(struct Rx_list) * TL_NBUF, M_DEVBUF, M_NOWAIT); sc->Tx_list = malloc(sizeof(struct Tx_list) * TL_NBUF, M_DEVBUF, M_NOWAIT); if (sc->Rx_list == NULL || sc->Tx_list == NULL) { printf("%s: out of memory for lists\n", sc->sc_dev.dv_xname); sc->tl_if.if_flags &= ~IFF_UP; splx(s); return ENOMEM; } for (i=0; i< TL_NBUF; i++) { if (tl_add_RxBuff(&sc->Rx_list[i], NULL) == 0) { printf("%s: out of mbuf for receive list\n", sc->sc_dev.dv_xname); sc->tl_if.if_flags &= ~IFF_UP; splx(s); return ENOMEM; } if (i > 0) { /* chain the list */ sc->Rx_list[i-1].next = &sc->Rx_list[i]; sc->Rx_list[i-1].hw_list.fwd = vtophys(&sc->Rx_list[i].hw_list); #ifdef DIAGNOSTIC if (sc->Rx_list[i-1].hw_list.fwd & 0x7) printf("%s: physical addr 0x%x of list not " "properly aligned\n", sc->sc_dev.dv_xname, sc->Rx_list[i-1].hw_list.fwd); #endif sc->Tx_list[i-1].next = &sc->Tx_list[i]; } } sc->Rx_list[TL_NBUF-1].next = NULL; sc->Rx_list[TL_NBUF-1].hw_list.fwd = 0; sc->Tx_list[TL_NBUF-1].next = NULL; sc->active_Rx = &sc->Rx_list[0]; sc->last_Rx = &sc->Rx_list[TL_NBUF-1]; sc->active_Tx = sc->last_Tx = NULL; sc->Free_Tx = &sc->Tx_list[0]; if (nullbuf == NULL) nullbuf = malloc(ETHER_MIN_TX, M_DEVBUF, M_NOWAIT); if (nullbuf == NULL) { printf("%s: can't allocate space for pad buffer\n", sc->sc_dev.dv_xname); sc->tl_if.if_flags &= ~IFF_UP; splx(s); return ENOMEM; } bzero(nullbuf, ETHER_MIN_TX); /* set media */ mii_mediachg(&sc->tl_mii); /* start ticks calls */ callout_reset(&sc->tl_tick_ch, hz, tl_ticks, sc); /* write adress of Rx list and enable interrupts */ TL_HR_WRITE(sc, TL_HOST_CH_PARM, vtophys(&sc->Rx_list[0].hw_list)); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | HOST_CMD_IntOn); sc->tl_if.if_flags |= IFF_RUNNING; sc->tl_if.if_flags &= ~IFF_OACTIVE; return 0; } static u_int32_t tl_intreg_read(sc, reg) tl_softc_t *sc; u_int32_t reg; { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK); return TL_HR_READ(sc, TL_HOST_DIO_DATA); } static u_int8_t tl_intreg_read_byte(sc, reg) tl_softc_t *sc; u_int32_t reg; { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, (reg & (~0x07)) & TL_HOST_DIOADR_MASK); return TL_HR_READ_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x07)); } static void tl_intreg_write(sc, reg, val) tl_softc_t *sc; u_int32_t reg; u_int32_t val; { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK); TL_HR_WRITE(sc, TL_HOST_DIO_DATA, val); } static void tl_intreg_write_byte(sc, reg, val) tl_softc_t *sc; u_int32_t reg; u_int8_t val; { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, (reg & (~0x03)) & TL_HOST_DIOADR_MASK); TL_HR_WRITE_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x03), val); } void tl_mii_sync(sc) struct tl_softc *sc; { int i; netsio_clr(sc, TL_NETSIO_MTXEN); for (i = 0; i < 32; i++) { netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); } } void tl_mii_sendbits(sc, data, nbits) struct tl_softc *sc; u_int32_t data; int nbits; { int i; netsio_set(sc, TL_NETSIO_MTXEN); for (i = 1 << (nbits - 1); i; i = i >> 1) { netsio_clr(sc, TL_NETSIO_MCLK); netsio_read(sc, TL_NETSIO_MCLK); if (data & i) netsio_set(sc, TL_NETSIO_MDATA); else netsio_clr(sc, TL_NETSIO_MDATA); netsio_set(sc, TL_NETSIO_MCLK); netsio_read(sc, TL_NETSIO_MCLK); } } int tl_mii_read(self, phy, reg) struct device *self; int phy, reg; { struct tl_softc *sc = (struct tl_softc *)self; int val = 0, i, err; /* * Read the PHY register by manually driving the MII control lines. */ tl_mii_sync(sc); tl_mii_sendbits(sc, MII_COMMAND_START, 2); tl_mii_sendbits(sc, MII_COMMAND_READ, 2); tl_mii_sendbits(sc, phy, 5); tl_mii_sendbits(sc, reg, 5); netsio_clr(sc, TL_NETSIO_MTXEN); netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); netsio_clr(sc, TL_NETSIO_MCLK); err = netsio_read(sc, TL_NETSIO_MDATA); netsio_set(sc, TL_NETSIO_MCLK); /* Even if an error occurs, must still clock out the cycle. */ for (i = 0; i < 16; i++) { val <<= 1; netsio_clr(sc, TL_NETSIO_MCLK); if (err == 0 && netsio_read(sc, TL_NETSIO_MDATA)) val |= 1; netsio_set(sc, TL_NETSIO_MCLK); } netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); return (err ? 0 : val); } void tl_mii_write(self, phy, reg, val) struct device *self; int phy, reg, val; { struct tl_softc *sc = (struct tl_softc *)self; /* * Write the PHY register by manually driving the MII control lines. */ tl_mii_sync(sc); tl_mii_sendbits(sc, MII_COMMAND_START, 2); tl_mii_sendbits(sc, MII_COMMAND_WRITE, 2); tl_mii_sendbits(sc, phy, 5); tl_mii_sendbits(sc, reg, 5); tl_mii_sendbits(sc, MII_COMMAND_ACK, 2); tl_mii_sendbits(sc, val, 16); netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); } void tl_statchg(self) struct device *self; { tl_softc_t *sc = (struct tl_softc *)self; u_int32_t reg; #ifdef TLDEBUG printf("tl_statchg, media %x\n", sc->tl_ifmedia.ifm_media); #endif /* * We must keep the ThunderLAN and the PHY in sync as * to the status of full-duplex! */ reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetCmd); if (sc->tl_mii.mii_media_active & IFM_FDX) reg |= TL_NETCOMMAND_DUPLEX; else reg &= ~TL_NETCOMMAND_DUPLEX; tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, reg); } void tl_i2c_set(v, bit) void *v; u_int8_t bit; { tl_softc_t *sc = v; switch (bit) { case I2C_DATA: netsio_set(sc, TL_NETSIO_EDATA); break; case I2C_CLOCK: netsio_set(sc, TL_NETSIO_ECLOCK); break; case I2C_TXEN: netsio_set(sc, TL_NETSIO_ETXEN); break; default: printf("tl_i2c_set: unknown bit %d\n", bit); } return; } void tl_i2c_clr(v, bit) void *v; u_int8_t bit; { tl_softc_t *sc = v; switch (bit) { case I2C_DATA: netsio_clr(sc, TL_NETSIO_EDATA); break; case I2C_CLOCK: netsio_clr(sc, TL_NETSIO_ECLOCK); break; case I2C_TXEN: netsio_clr(sc, TL_NETSIO_ETXEN); break; default: printf("tl_i2c_clr: unknown bit %d\n", bit); } return; } int tl_i2c_read(v, bit) void *v; u_int8_t bit; { tl_softc_t *sc = v; switch (bit) { case I2C_DATA: return netsio_read(sc, TL_NETSIO_EDATA); break; case I2C_CLOCK: return netsio_read(sc, TL_NETSIO_ECLOCK); break; case I2C_TXEN: return netsio_read(sc, TL_NETSIO_ETXEN); break; default: printf("tl_i2c_read: unknown bit %d\n", bit); return -1; } } static int tl_intr(v) void *v; { tl_softc_t *sc = v; struct ifnet *ifp = &sc->tl_if; struct Rx_list *Rx; struct Tx_list *Tx; struct mbuf *m; u_int32_t int_type, int_reg; int ack = 0; int size; int_reg = TL_HR_READ(sc, TL_HOST_INTR_DIOADR); int_type = int_reg & TL_INTR_MASK; if (int_type == 0) return 0; #if defined(TLDEBUG_RX) || defined(TLDEBUG_TX) printf("%s: interrupt type %x, intr_reg %x\n", sc->sc_dev.dv_xname, int_type, int_reg); #endif /* disable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff); switch(int_type & TL_INTR_MASK) { case TL_INTR_RxEOF: while(sc->active_Rx->hw_list.stat & TL_RX_CSTAT_CPLT) { /* dequeue and requeue at end of list */ ack++; Rx = sc->active_Rx; sc->active_Rx = Rx->next; m = Rx->m; size = Rx->hw_list.stat >> 16; #ifdef TLDEBUG_RX printf("tl_intr: RX list complete, Rx %p, size=%d\n", Rx, size); #endif if (tl_add_RxBuff(Rx, m ) == 0) { /* * No new mbuf, reuse the same. This means * that this packet * is lost */ m = NULL; #ifdef TL_PRIV_STATS sc->ierr_nomem++; #endif #ifdef TLDEBUG printf("%s: out of mbuf, lost input packet\n", sc->sc_dev.dv_xname); #endif } Rx->next = NULL; Rx->hw_list.fwd = 0; sc->last_Rx->hw_list.fwd = vtophys(&Rx->hw_list); #ifdef DIAGNOSTIC if (sc->last_Rx->hw_list.fwd & 0x7) printf("%s: physical addr 0x%x of list not " "properly aligned\n", sc->sc_dev.dv_xname, sc->last_Rx->hw_list.fwd); #endif sc->last_Rx->next = Rx; sc->last_Rx = Rx; /* deliver packet */ if (m) { struct ether_header *eh; if (size < sizeof(struct ether_header)) { m_freem(m); continue; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = size; eh = mtod(m, struct ether_header *); #ifdef TLDEBUG_RX printf("tl_intr: Rx packet:\n"); ether_printheader(eh); #endif #if NBPFILTER > 0 if (ifp->if_bpf) { bpf_tap(ifp->if_bpf, mtod(m, caddr_t), size); /* * Only pass this packet up * if it is for us. */ if ((ifp->if_flags & IFF_PROMISC) && /* !mcast and !bcast */ (eh->ether_dhost[0] & 1) == 0 && bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl), sizeof(eh->ether_dhost)) != 0) { m_freem(m); continue; } } #endif /* NBPFILTER > 0 */ (*ifp->if_input)(ifp, m); } } #ifdef TLDEBUG_RX printf("TL_INTR_RxEOF: ack %d\n", ack); #else if (ack == 0) { printf("%s: EOF intr without anything to read !\n", sc->sc_dev.dv_xname); tl_reset(sc); /* shedule reinit of the board */ callout_reset(&sc->tl_restart_ch, 1, tl_restart, sc); return(1); } #endif break; case TL_INTR_RxEOC: ack++; #ifdef TLDEBUG_RX printf("TL_INTR_RxEOC: ack %d\n", ack); #endif #ifdef DIAGNOSTIC if (sc->active_Rx->hw_list.stat & TL_RX_CSTAT_CPLT) { printf("%s: Rx EOC interrupt and active Rx list not " "cleared\n", sc->sc_dev.dv_xname); return 0; } else #endif { /* * write adress of Rx list and send Rx GO command, ack * interrupt and enable interrupts in one command */ TL_HR_WRITE(sc, TL_HOST_CH_PARM, vtophys(&sc->active_Rx->hw_list)); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | ack | int_type | HOST_CMD_ACK | HOST_CMD_IntOn); return 1; } case TL_INTR_TxEOF: case TL_INTR_TxEOC: while ((Tx = sc->active_Tx) != NULL) { if((Tx->hw_list.stat & TL_TX_CSTAT_CPLT) == 0) break; ack++; #ifdef TLDEBUG_TX printf("TL_INTR_TxEOC: list 0x%xp done\n", vtophys(&Tx->hw_list)); #endif Tx->hw_list.stat = 0; m_freem(Tx->m); Tx->m = NULL; sc->active_Tx = Tx->next; if (sc->active_Tx == NULL) sc->last_Tx = NULL; Tx->next = sc->Free_Tx; sc->Free_Tx = Tx; } /* if this was an EOC, ACK immediatly */ if (int_type == TL_INTR_TxEOC) { #ifdef TLDEBUG_TX printf("TL_INTR_TxEOC: ack %d (will be set to 1)\n", ack); #endif TL_HR_WRITE(sc, TL_HOST_CMD, 1 | int_type | HOST_CMD_ACK | HOST_CMD_IntOn); if ( sc->active_Tx != NULL) { /* needs a Tx go command */ TL_HR_WRITE(sc, TL_HOST_CH_PARM, vtophys(&sc->active_Tx->hw_list)); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO); } sc->tl_if.if_timer = 0; if (sc->tl_if.if_snd.ifq_head != NULL) tl_ifstart(&sc->tl_if); return 1; } #ifdef TLDEBUG else { printf("TL_INTR_TxEOF: ack %d\n", ack); } #endif sc->tl_if.if_timer = 0; if (sc->tl_if.if_snd.ifq_head != NULL) tl_ifstart(&sc->tl_if); break; case TL_INTR_Stat: ack++; #ifdef TLDEBUG printf("TL_INTR_Stat: ack %d\n", ack); #endif tl_read_stats(sc); break; case TL_INTR_Adc: if (int_reg & TL_INTVec_MASK) { /* adapter check conditions */ printf("%s: check condition, intvect=0x%x, " "ch_param=0x%x\n", sc->sc_dev.dv_xname, int_reg & TL_INTVec_MASK, TL_HR_READ(sc, TL_HOST_CH_PARM)); tl_reset(sc); /* shedule reinit of the board */ callout_reset(&sc->tl_restart_ch, 1, tl_restart, sc); return(1); } else { u_int8_t netstat; /* Network status */ netstat = tl_intreg_read_byte(sc, TL_INT_NET+TL_INT_NetSts); printf("%s: network status, NetSts=%x\n", sc->sc_dev.dv_xname, netstat); /* Ack interrupts */ tl_intreg_write_byte(sc, TL_INT_NET+TL_INT_NetSts, netstat); ack++; } break; default: printf("%s: unhandled interrupt code %x!\n", sc->sc_dev.dv_xname, int_type); ack++; } if (ack) { /* Ack the interrupt and enable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, ack | int_type | HOST_CMD_ACK | HOST_CMD_IntOn); return 1; } /* ack = 0 ; interrupt was perhaps not our. Just enable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOn); return 0; } static int tl_ifioctl(ifp, cmd, data) struct ifnet *ifp; ioctl_cmd_t cmd; caddr_t data; { struct tl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error; s = splnet(); switch(cmd) { case SIOCSIFADDR: { struct ifaddr *ifa = (struct ifaddr *)data; sc->tl_if.if_flags |= IFF_UP; if ((error = tl_init(sc)) != NULL) { sc->tl_if.if_flags &= ~IFF_UP; break; } switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(ifp, ifa); break; #endif #ifdef NS case AF_NS: { struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host*) LLADDR(ifp->if_sadl); else bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl), ifp->if_addrlen); break; } #endif default: break; } break; } case SIOCSIFFLAGS: { u_int8_t reg; /* * If interface is marked up and not running, then start it. * If it is marked down and running, stop it. */ if (ifp->if_flags & IFF_UP) { if ((ifp->if_flags & IFF_RUNNING) == 0) { error = tl_init(sc); /* all flags have been handled by init */ break; } error = 0; reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetCmd); if (ifp->if_flags & IFF_PROMISC) reg |= TL_NETCOMMAND_CAF; else reg &= ~TL_NETCOMMAND_CAF; tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, reg); #ifdef TL_PRIV_STATS if (ifp->if_flags & IFF_LINK0) { ifp->if_flags &= ~IFF_LINK0; printf("%s errors statistics\n", sc->sc_dev.dv_xname); printf(" %4d RX buffer overrun\n", sc->ierr_overr); printf(" %4d RX code error\n", sc->ierr_code); printf(" %4d RX crc error\n", sc->ierr_crc); printf(" %4d RX out of memory\n", sc->ierr_nomem); printf(" %4d TX buffer underrun\n", sc->oerr_underr); printf(" %4d TX deffered frames\n", sc->oerr_deffered); printf(" %4d TX single collisions\n", sc->oerr_coll); printf(" %4d TX multi collisions\n", sc->oerr_multicoll); printf(" %4d TX exessive collisions\n", sc->oerr_exesscoll); printf(" %4d TX late collisions\n", sc->oerr_latecoll); printf(" %4d TX carrier loss\n", sc->oerr_carrloss); printf(" %4d TX mbuf copy\n", sc->oerr_mcopy); } #endif } else { if (ifp->if_flags & IFF_RUNNING) tl_shutdown(sc); error = 0; } break; } case SIOCADDMULTI: case SIOCDELMULTI: /* * Update multicast listeners */ if (cmd == SIOCADDMULTI) error = ether_addmulti(ifr, &sc->tl_ec); else error = ether_delmulti(ifr, &sc->tl_ec); if (error == ENETRESET) { tl_addr_filter(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->tl_mii.mii_media, cmd); break; default: error = EINVAL; } splx(s); return error; } static void tl_ifstart(ifp) struct ifnet *ifp; { tl_softc_t *sc = ifp->if_softc; struct mbuf *m, *mb_head; struct Tx_list *Tx; int segment, size; txloop: /* If we don't have more space ... */ if (sc->Free_Tx == NULL) { #ifdef TLDEBUG printf("tl_ifstart: No free TX list\n"); #endif return; } /* Grab a paquet for output */ IF_DEQUEUE(&ifp->if_snd, mb_head); if (mb_head == NULL) { #ifdef TLDEBUG_TX printf("tl_ifstart: nothing to send\n"); #endif return; } Tx = sc->Free_Tx; sc->Free_Tx = Tx->next; /* * Go through each of the mbufs in the chain and initialize * the transmit list descriptors with the physical address * and size of the mbuf. */ tbdinit: bzero(Tx, sizeof(struct Tx_list)); Tx->m = mb_head; size = 0; for (m = mb_head, segment = 0; m != NULL ; m = m->m_next) { if (m->m_len != 0) { if (segment == TL_NSEG) break; size += m->m_len; Tx->hw_list.seg[segment].data_addr = vtophys(mtod(m, vaddr_t)); Tx->hw_list.seg[segment].data_count = m->m_len; segment++; } } if (m != NULL || (size < ETHER_MIN_TX && segment == TL_NSEG)) { /* * We ran out of segments, or we will. We have to recopy this * mbuf chain first. */ struct mbuf *mn; #ifdef TLDEBUG_TX printf("tl_ifstart: need to copy mbuf\n"); #endif #ifdef TL_PRIV_STATS sc->oerr_mcopy++; #endif MGETHDR(mn, M_DONTWAIT, MT_DATA); if (mn == NULL) { m_freem(mb_head); goto bad; } if (mb_head->m_pkthdr.len > MHLEN) { MCLGET(mn, M_DONTWAIT); if ((mn->m_flags & M_EXT) == 0) { m_freem(mn); m_freem(mb_head); goto bad; } } m_copydata(mb_head, 0, mb_head->m_pkthdr.len, mtod(mn, caddr_t)); mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; m_freem(mb_head); mb_head = mn; goto tbdinit; } /* We are at end of mbuf chain. check the size and * see if it needs to be extended */ if (size < ETHER_MIN_TX) { #ifdef DIAGNOSTIC if (segment >= TL_NSEG) { panic("tl_ifstart: to much segmets (%d)\n", segment); } #endif /* * add the nullbuf in the seg */ Tx->hw_list.seg[segment].data_count = ETHER_MIN_TX - size; Tx->hw_list.seg[segment].data_addr = vtophys(nullbuf); size = ETHER_MIN_TX; segment++; } /* The list is done, finish the list init */ Tx->hw_list.seg[segment-1].data_count |= TL_LAST_SEG; Tx->hw_list.stat = (size << 16) | 0x3000; #ifdef TLDEBUG_TX printf("%s: sending, Tx : stat = 0x%x\n", sc->sc_dev.dv_xname, Tx->hw_list.stat); #if 0 for(segment = 0; segment < TL_NSEG; segment++) { printf(" seg %d addr 0x%x len 0x%x\n", segment, Tx->hw_list.seg[segment].data_addr, Tx->hw_list.seg[segment].data_count); } #endif #endif sc->opkt++; if (sc->active_Tx == NULL) { sc->active_Tx = sc->last_Tx = Tx; #ifdef TLDEBUG_TX printf("%s: Tx GO, addr=0x%x\n", sc->sc_dev.dv_xname, vtophys(&Tx->hw_list)); #endif TL_HR_WRITE(sc, TL_HOST_CH_PARM, vtophys(&Tx->hw_list)); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO); } else { #ifdef TLDEBUG_TX printf("%s: Tx addr=0x%x queued\n", sc->sc_dev.dv_xname, vtophys(&Tx->hw_list)); #endif sc->last_Tx->hw_list.fwd = vtophys(&Tx->hw_list); sc->last_Tx->next = Tx; sc->last_Tx = Tx; #ifdef DIAGNOSTIC if (sc->last_Tx->hw_list.fwd & 0x7) printf("%s: physical addr 0x%x of list not properly " "aligned\n", sc->sc_dev.dv_xname, sc->last_Rx->hw_list.fwd); #endif } #if NBPFILTER > 0 /* Pass packet to bpf if there is a listener */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, mb_head); #endif /* * Set a 5 second timer just in case we don't hear from the card again. */ ifp->if_timer = 5; goto txloop; bad: #ifdef TLDEBUG printf("tl_ifstart: Out of mbuf, Tx pkt lost\n"); #endif Tx->next = sc->Free_Tx; sc->Free_Tx = Tx; return; } static void tl_ifwatchdog(ifp) struct ifnet *ifp; { tl_softc_t *sc = ifp->if_softc; if ((ifp->if_flags & IFF_RUNNING) == 0) return; printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; tl_init(sc); } static int tl_mediachange(ifp) struct ifnet *ifp; { if (ifp->if_flags & IFF_UP) tl_init(ifp->if_softc); return (0); } static void tl_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { tl_softc_t *sc = ifp->if_softc; mii_pollstat(&sc->tl_mii); ifmr->ifm_active = sc->tl_mii.mii_media_active; ifmr->ifm_status = sc->tl_mii.mii_media_status; } static int tl_add_RxBuff(Rx, oldm) struct Rx_list *Rx; struct mbuf *oldm; { struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m != NULL) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); if (oldm == NULL) return 0; m = oldm; m->m_data = m->m_ext.ext_buf; } } else { if (oldm == NULL) return 0; m = oldm; m->m_data = m->m_ext.ext_buf; } /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += 2; /* (re)init the Rx_list struct */ Rx->m = m; Rx->hw_list.stat = ((MCLBYTES -2) << 16) | 0x3000; Rx->hw_list.seg.data_count = (MCLBYTES -2); Rx->hw_list.seg.data_addr = vtophys(m->m_data); return (m != oldm); } static void tl_ticks(v) void *v; { tl_softc_t *sc = v; tl_read_stats(sc); /* Tick the MII. */ mii_tick(&sc->tl_mii); if (sc->opkt > 0) { if (sc->oerr_exesscoll > sc->opkt / 100) { /* exess collisions */ if (sc->tl_flags & TL_IFACT) /* only print once */ printf("%s: no carrier\n", sc->sc_dev.dv_xname); sc->tl_flags &= ~TL_IFACT; } else sc->tl_flags |= TL_IFACT; sc->oerr_exesscoll = sc->opkt = 0; sc->tl_lasttx = 0; } else { sc->tl_lasttx++; if (sc->tl_lasttx >= TL_IDLETIME) { /* * No TX activity in the last TL_IDLETIME seconds. * sends a LLC Class1 TEST pkt */ struct mbuf *m; int s; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m != NULL) { #ifdef TLDEBUG printf("tl_ticks: sending LLC test pkt\n"); #endif bcopy(sc->tl_enaddr, mtod(m, struct ether_header *)->ether_dhost, 6); bcopy(sc->tl_enaddr, mtod(m, struct ether_header *)->ether_shost, 6); mtod(m, struct ether_header *)->ether_type = htons(3); mtod(m, unsigned char *)[14] = 0; mtod(m, unsigned char *)[15] = 0; mtod(m, unsigned char *)[16] = 0xE3; /* LLC Class1 TEST (no poll) */ m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3; s = splnet(); IF_PREPEND(&sc->tl_if.if_snd, m); tl_ifstart(&sc->tl_if); splx(s); } } } /* read statistics every seconds */ callout_reset(&sc->tl_tick_ch, hz, tl_ticks, sc); } static void tl_read_stats(sc) tl_softc_t *sc; { u_int32_t reg; int ierr_overr; int ierr_code; int ierr_crc; int oerr_underr; int oerr_deffered; int oerr_coll; int oerr_multicoll; int oerr_exesscoll; int oerr_latecoll; int oerr_carrloss; struct ifnet *ifp = &sc->tl_if; reg = tl_intreg_read(sc, TL_INT_STATS_TX); ifp->if_opackets += reg & 0x00ffffff; oerr_underr = reg >> 24; reg = tl_intreg_read(sc, TL_INT_STATS_RX); ifp->if_ipackets += reg & 0x00ffffff; ierr_overr = reg >> 24; reg = tl_intreg_read(sc, TL_INT_STATS_FERR); ierr_crc = (reg & TL_FERR_CRC) >> 16; ierr_code = (reg & TL_FERR_CODE) >> 24; oerr_deffered = (reg & TL_FERR_DEF); reg = tl_intreg_read(sc, TL_INT_STATS_COLL); oerr_multicoll = (reg & TL_COL_MULTI); oerr_coll = (reg & TL_COL_SINGLE) >> 16; reg = tl_intreg_read(sc, TL_INT_LERR); oerr_exesscoll = (reg & TL_LERR_ECOLL); oerr_latecoll = (reg & TL_LERR_LCOLL) >> 8; oerr_carrloss = (reg & TL_LERR_CL) >> 16; sc->stats_exesscoll += oerr_exesscoll; ifp->if_oerrors += oerr_underr + oerr_exesscoll + oerr_latecoll + oerr_carrloss; ifp->if_collisions += oerr_coll + oerr_multicoll; ifp->if_ierrors += ierr_overr + ierr_code + ierr_crc; if (ierr_overr) printf("%s: receiver ring buffer overrun\n", sc->sc_dev.dv_xname); if (oerr_underr) printf("%s: transmit buffer underrun\n", sc->sc_dev.dv_xname); #ifdef TL_PRIV_STATS sc->ierr_overr += ierr_overr; sc->ierr_code += ierr_code; sc->ierr_crc += ierr_crc; sc->oerr_underr += oerr_underr; sc->oerr_deffered += oerr_deffered; sc->oerr_coll += oerr_coll; sc->oerr_multicoll += oerr_multicoll; sc->oerr_exesscoll += oerr_exesscoll; sc->oerr_latecoll += oerr_latecoll; sc->oerr_carrloss += oerr_carrloss; #endif } static void tl_addr_filter(sc) tl_softc_t *sc; { struct ether_multistep step; struct ether_multi *enm; u_int32_t hash[2] = {0, 0}; int i; sc->tl_if.if_flags &= ~IFF_ALLMULTI; ETHER_FIRST_MULTI(step, &sc->tl_ec, enm); while (enm != NULL) { #ifdef TLDEBUG printf("tl_addr_filter: addrs %s %s\n", ether_sprintf(enm->enm_addrlo), ether_sprintf(enm->enm_addrhi)); #endif if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) { i = tl_multicast_hash(enm->enm_addrlo); hash[i/32] |= 1 << (i%32); } else { hash[0] = hash[1] = 0xffffffff; sc->tl_if.if_flags |= IFF_ALLMULTI; break; } ETHER_NEXT_MULTI(step, enm); } #ifdef TLDEBUG printf("tl_addr_filer: hash1 %x has2 %x\n", hash[0], hash[1]); #endif tl_intreg_write(sc, TL_INT_HASH1, hash[0]); tl_intreg_write(sc, TL_INT_HASH2, hash[1]); } static int tl_multicast_hash(a) u_int8_t *a; { int hash; #define DA(addr,bit) (addr[5 - (bit/8)] & (1 << bit%8)) #define xor8(a,b,c,d,e,f,g,h) (((a != 0) + (b != 0) + (c != 0) + (d != 0) + (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1) hash = xor8( DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30), DA(a,36), DA(a,42)); hash |= xor8( DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31), DA(a,37), DA(a,43)) << 1; hash |= xor8( DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32), DA(a,38), DA(a,44)) << 2; hash |= xor8( DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33), DA(a,39), DA(a,45)) << 3; hash |= xor8( DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34), DA(a,40), DA(a,46)) << 4; hash |= xor8( DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35), DA(a,41), DA(a,47)) << 5; return hash; } #if defined(TLDEBUG_RX) void ether_printheader(eh) struct ether_header *eh; { u_char *c = (char*)eh; int i; for (i=0; i