/* $NetBSD: tlsb.c,v 1.26 2003/01/01 00:39:21 thorpej Exp $ */ /* * Copyright (c) 1997 by Matthew Jacob * NASA AMES Research Center. * All rights reserved. * * Based in part upon a prototype version by Jason Thorpe * Copyright (c) 1996, 1998 by Jason Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Autoconfiguration and support routines for the TurboLaser System Bus * found on AlphaServer 8200 and 8400 systems. */ #include /* RCS ID & Copyright macro defns */ __KERNEL_RCSID(0, "$NetBSD: tlsb.c,v 1.26 2003/01/01 00:39:21 thorpej Exp $"); #include "opt_multiprocessor.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "locators.h" #define KV(_addr) ((caddr_t)ALPHA_PHYS_TO_K0SEG((_addr))) static int tlsbmatch __P((struct device *, struct cfdata *, void *)); static void tlsbattach __P((struct device *, struct device *, void *)); CFATTACH_DECL(tlsb, sizeof (struct device), tlsbmatch, tlsbattach, NULL, NULL); extern struct cfdriver tlsb_cd; static int tlsbprint __P((void *, const char *)); static int tlsbsubmatch __P((struct device *, struct cfdata *, void *)); static char *tlsb_node_type_str __P((u_int32_t)); /* * There can be only one TurboLaser, and we'll overload it * with a bitmap of found turbo laser nodes. Note that * these are just the actual hard TL node IDS that we * discover here, not the virtual IDs that get assigned * to CPUs. During TLSB specific error handling we * only need to know which actual TLSB slots have boards * in them (irrespective of how many CPUs they have). */ int tlsb_found; static int tlsbprint(aux, pnp) void *aux; const char *pnp; { struct tlsb_dev_attach_args *tap = aux; if (pnp) aprint_normal("%s at %s node %d", tlsb_node_type_str(tap->ta_dtype), pnp, tap->ta_node); else aprint_normal(" node %d: %s", tap->ta_node, tlsb_node_type_str(tap->ta_dtype)); return (UNCONF); } static int tlsbsubmatch(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct tlsb_dev_attach_args *tap = aux; if (cf->cf_loc[TLSBCF_NODE] != TLSBCF_NODE_DEFAULT && cf->cf_loc[TLSBCF_NODE] != tap->ta_node) return (0); return (config_match(parent, cf, aux)); } static int tlsbmatch(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct mainbus_attach_args *ma = aux; /* Make sure we're looking for a TurboLaser. */ if (strcmp(ma->ma_name, tlsb_cd.cd_name) != 0) return (0); /* * Only one instance of TurboLaser allowed, * and only available on 21000 processor type * platforms. */ if ((cputype != ST_DEC_21000) || tlsb_found) return (0); return (1); } static void tlsbattach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct tlsb_dev_attach_args ta; u_int32_t tldev; int node; printf("\n"); /* * Attempt to find all devices on the bus, including * CPUs, memory modules, and I/O modules. */ /* * Sigh. I would like to just start off nicely, * but I need to treat I/O modules differently- * The highest priority I/O node has to be in * node #8, and I want to find it *first*, since * it will have the primary disks (most likely) * on it. */ for (node = 0; node <= TLSB_NODE_MAX; ++node) { /* * Check for invalid address. This may not really * be necessary, but what the heck... */ if (badaddr(TLSB_NODE_REG_ADDR(node, TLDEV), sizeof(u_int32_t))) continue; tldev = TLSB_GET_NODEREG(node, TLDEV); if (tldev == 0) { /* Nothing at this node. */ continue; } /* * Store up that we found something at this node. * We do this so that we don't have to do something * silly at fault time like try a 'baddadr'... */ tlsb_found |= (1 << node); if (TLDEV_ISIOPORT(tldev)) continue; /* not interested right now */ ta.ta_node = node; ta.ta_dtype = TLDEV_DTYPE(tldev); ta.ta_swrev = TLDEV_SWREV(tldev); ta.ta_hwrev = TLDEV_HWREV(tldev); /* * Deal with hooking CPU instances to TurboLaser nodes. */ if (TLDEV_ISCPU(tldev)) { printf("%s node %d: %s\n", self->dv_xname, node, tlsb_node_type_str(tldev)); } /* * Attach any children nodes, including a CPU's GBus */ config_found_sm(self, &ta, tlsbprint, tlsbsubmatch); } /* * *Now* search for I/O nodes (in descending order) */ while (--node > 0) { if (badaddr(TLSB_NODE_REG_ADDR(node, TLDEV), sizeof(u_int32_t))) continue; tldev = TLSB_GET_NODEREG(node, TLDEV); if (tldev == 0) { continue; } if (TLDEV_ISIOPORT(tldev)) { #if defined(MULTIPROCESSOR) /* * XXX Eventually, we want to select a secondary * XXX processor on which to field interrupts for * XXX this node. However, we just send them to * XXX the primary CPU for now. * * XXX Maybe multiple CPUs? Does the hardware * XXX round-robin, or check the length of the * XXX per-CPU interrupt queue? */ printf("%s node %d: routing interrupts to %s\n", self->dv_xname, node, cpu_info[hwrpb->rpb_primary_cpu_id]->ci_softc->sc_dev.dv_xname); TLSB_PUT_NODEREG(node, TLCPUMASK, (1UL << hwrpb->rpb_primary_cpu_id)); #else /* * Make sure interrupts are sent to the primary CPU. */ TLSB_PUT_NODEREG(node, TLCPUMASK, (1UL << hwrpb->rpb_primary_cpu_id)); #endif /* MULTIPROCESSOR */ ta.ta_node = node; ta.ta_dtype = TLDEV_DTYPE(tldev); ta.ta_swrev = TLDEV_SWREV(tldev); ta.ta_hwrev = TLDEV_HWREV(tldev); config_found_sm(self, &ta, tlsbprint, tlsbsubmatch); } } } static char * tlsb_node_type_str(dtype) u_int32_t dtype; { static char tlsb_line[64]; switch (dtype & TLDEV_DTYPE_MASK) { case TLDEV_DTYPE_KFTHA: return ("KFTHA I/O interface"); case TLDEV_DTYPE_KFTIA: return ("KFTIA I/O interface"); case TLDEV_DTYPE_MS7CC: return ("MS7CC Memory Module"); case TLDEV_DTYPE_SCPU4: return ("Single CPU, 4MB cache"); case TLDEV_DTYPE_SCPU16: return ("Single CPU, 16MB cache"); case TLDEV_DTYPE_DCPU4: return ("Dual CPU, 4MB cache"); case TLDEV_DTYPE_DCPU16: return ("Dual CPU, 16MB cache"); default: memset(tlsb_line, 0, sizeof(tlsb_line)); sprintf(tlsb_line, "unknown, dtype 0x%x", dtype); return (tlsb_line); } /* NOTREACHED */ }