/* $NetBSD: if_le.c,v 1.4 1998/08/15 10:51:19 mycroft Exp $ */ /*- * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace * Simulation Facility, NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1996 * The President and Fellows of Harvard College. All rights reserved. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell and Rick Macklem. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Aaron Brown and * Harvard University. * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_le.c 8.2 (Berkeley) 11/16/93 */ #include "opt_inet.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include /*XXX*/ #include #include #include #include /* * LANCE registers. */ struct lereg1 { volatile u_int16_t ler1_rdp; /* data port */ volatile u_int16_t ler1_rap; /* register select port */ }; struct le_softc { struct am7990_softc sc_am7990; /* glue to MI code */ struct sbusdev sc_sd; /* sbus device */ bus_space_tag_t sc_bustag; bus_dma_tag_t sc_dmatag; struct lereg1 *sc_r1; /* LANCE registers */ }; #define MEMSIZE 0x4000 /* LANCE memory size */ int lematch_sbus __P((struct device *, struct cfdata *, void *)); void leattach_sbus __P((struct device *, struct device *, void *)); /* * Media types supported. */ static int lemedia[] = { IFM_ETHER|IFM_10_5, }; #define NLEMEDIA (sizeof(lemedia) / sizeof(lemedia[0])) struct cfattach le_sbus_ca = { sizeof(struct le_softc), lematch_sbus, leattach_sbus }; extern struct cfdriver le_cd; #if defined(_KERNEL) && !defined(_LKM) #include "opt_ddb.h" #endif #ifdef DDB #define integrate #define hide #else #define integrate static __inline #define hide static #endif static void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t)); static u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t)); static void lewrcsr(sc, port, val) struct lance_softc *sc; u_int16_t port, val; { struct lereg1 *ler1 = ((struct le_softc *)sc)->sc_r1; ler1->ler1_rap = port; ler1->ler1_rdp = val; #if defined(SUN4M) /* * We need to flush the Sbus->Mbus write buffers. This can most * easily be accomplished by reading back the register that we * just wrote (thanks to Chris Torek for this solution). */ if (CPU_ISSUN4M) { volatile u_int16_t discard; discard = ler1->ler1_rdp; } #endif } static u_int16_t lerdcsr(sc, port) struct lance_softc *sc; u_int16_t port; { struct lereg1 *ler1 = ((struct le_softc *)sc)->sc_r1; u_int16_t val; ler1->ler1_rap = port; val = ler1->ler1_rdp; return (val); } int lematch_sbus(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct sbus_attach_args *sa = aux; return (strcmp(cf->cf_driver->cd_name, sa->sa_name) == 0); } #define SAME_LANCE(bp, sa) \ ((bp->val[0] == sa->sa_slot && bp->val[1] == sa->sa_offset) || \ (bp->val[0] == -1 && bp->val[1] == sc->sc_dev.dv_unit)) void leattach_sbus(parent, self, aux) struct device *parent, *self; void *aux; { struct sbus_attach_args *sa = aux; struct le_softc *lesc = (struct le_softc *)self; struct lance_softc *sc = &lesc->sc_am7990.lsc; struct sbusdev *sd; bus_space_handle_t bh; /* XXX the following declarations should be elsewhere */ extern void myetheraddr __P((u_char *)); lesc->sc_bustag = sa->sa_bustag; lesc->sc_dmatag = sa->sa_dmatag; if (sbus_bus_map(sa->sa_bustag, sa->sa_slot, sa->sa_offset, sizeof(struct lereg1), BUS_SPACE_MAP_LINEAR, 0, &bh) != 0) { printf("%s @ sbus: cannot map registers\n", self->dv_xname); return; } lesc->sc_r1 = (struct lereg1 *)bh; /* * Look for an "unallocated" lebuffer and pair it with * this `le' device on the assumption that we're on * a pre-historic ROM that doesn't establish le<=>lebuffer * parent-child relationships. */ for (sd = ((struct sbus_softc *)parent)->sc_sbdev; sd != NULL; sd = sd->sd_bchain) { struct lebuf_softc *lebuf = (struct lebuf_softc *)sd->sd_dev; if (strncmp("lebuffer", sd->sd_dev->dv_xname, 8) != 0) continue; if (lebuf->attached != 0) continue; sc->sc_mem = lebuf->sc_buffer; sc->sc_memsize = lebuf->sc_bufsiz; sc->sc_addr = 0; /* Lance view is offset by buffer location */ lebuf->attached = 1; /* That old black magic... */ sc->sc_conf3 = getpropint(sa->sa_node, "busmaster-regval", LE_C3_BSWP | LE_C3_ACON | LE_C3_BCON); break; } lesc->sc_sd.sd_reset = (void *)lance_reset; sbus_establish(&lesc->sc_sd, &sc->sc_dev); if (sa->sa_bp != NULL && strcmp(sa->sa_bp->name, le_cd.cd_name) == 0 && SAME_LANCE(sa->sa_bp, sa)) sa->sa_bp->dev = &sc->sc_dev; if (sc->sc_mem == 0) { bus_dma_segment_t seg; int rseg, error; error = bus_dmamem_alloc(lesc->sc_dmatag, MEMSIZE, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_24BIT); if (error) { printf("if_le: DMA buffer alloc error %d\n", error); return; } error = bus_dmamem_map(lesc->sc_dmatag, &seg, rseg, MEMSIZE, (caddr_t *)&sc->sc_mem, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); if (error) { printf("if_le: DMA buffer map error %d\n", error); return; } sc->sc_addr = seg.ds_addr & 0xffffff; #if defined (SUN4M) if ((sc->sc_addr & 0xffffff) >= (sc->sc_addr & 0xffffff) + MEMSIZE) panic("if_le: Lance buffer crosses 16MB boundary"); #endif sc->sc_memsize = MEMSIZE; sc->sc_conf3 = LE_C3_BSWP | LE_C3_ACON | LE_C3_BCON; } myetheraddr(sc->sc_enaddr); sc->sc_supmedia = lemedia; sc->sc_nsupmedia = NLEMEDIA; sc->sc_defaultmedia = lemedia[0]; sc->sc_copytodesc = lance_copytobuf_contig; sc->sc_copyfromdesc = lance_copyfrombuf_contig; sc->sc_copytobuf = lance_copytobuf_contig; sc->sc_copyfrombuf = lance_copyfrombuf_contig; sc->sc_zerobuf = lance_zerobuf_contig; sc->sc_rdcsr = lerdcsr; sc->sc_wrcsr = lewrcsr; am7990_config(&lesc->sc_am7990); (void)bus_intr_establish(lesc->sc_bustag, sa->sa_pri, 0, am7990_intr, sc); }