/* $NetBSD: udp_usrreq.c,v 1.158 2007/03/04 06:03:22 christos Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 */ #include __KERNEL_RCSID(0, "$NetBSD: udp_usrreq.c,v 1.158 2007/03/04 06:03:22 christos Exp $"); #include "opt_inet.h" #include "opt_ipsec.h" #include "opt_inet_csum.h" #include "opt_ipkdb.h" #include "opt_mbuftrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #include #endif #ifndef INET6 /* always need ip6.h for IP6_EXTHDR_GET */ #include #endif #include "faith.h" #if defined(NFAITH) && NFAITH > 0 #include #endif #include #ifdef FAST_IPSEC #include #include /* XXX ipsecstat namespace */ #include #ifdef INET6 #include #endif #endif /* FAST_IPSEC*/ #ifdef IPSEC #include #include #include #endif /*IPSEC*/ #ifdef IPKDB #include #endif /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ int udpcksum = 1; int udp_do_loopback_cksum = 0; struct inpcbtable udbtable; struct udpstat udpstat; #ifdef INET #ifdef IPSEC_NAT_T static int udp4_espinudp (struct mbuf **, int, struct sockaddr *, struct socket *); #endif static void udp4_sendup (struct mbuf *, int, struct sockaddr *, struct socket *); static int udp4_realinput (struct sockaddr_in *, struct sockaddr_in *, struct mbuf **, int); static int udp4_input_checksum(struct mbuf *, const struct udphdr *, int, int); #endif #ifdef INET6 static void udp6_sendup (struct mbuf *, int, struct sockaddr *, struct socket *); static int udp6_realinput (int, struct sockaddr_in6 *, struct sockaddr_in6 *, struct mbuf *, int); static int udp6_input_checksum(struct mbuf *, const struct udphdr *, int, int); #endif #ifdef INET static void udp_notify (struct inpcb *, int); #endif #ifndef UDBHASHSIZE #define UDBHASHSIZE 128 #endif int udbhashsize = UDBHASHSIZE; #ifdef MBUFTRACE struct mowner udp_mowner = MOWNER_INIT("udp", ""); struct mowner udp_rx_mowner = MOWNER_INIT("udp", "rx"); struct mowner udp_tx_mowner = MOWNER_INIT("udp", "tx"); #endif #ifdef UDP_CSUM_COUNTERS #include #if defined(INET) struct evcnt udp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "hwcsum bad"); struct evcnt udp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "hwcsum ok"); struct evcnt udp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "hwcsum data"); struct evcnt udp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "swcsum"); EVCNT_ATTACH_STATIC(udp_hwcsum_bad); EVCNT_ATTACH_STATIC(udp_hwcsum_ok); EVCNT_ATTACH_STATIC(udp_hwcsum_data); EVCNT_ATTACH_STATIC(udp_swcsum); #endif /* defined(INET) */ #if defined(INET6) struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "hwcsum bad"); struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "hwcsum ok"); struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "hwcsum data"); struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "swcsum"); EVCNT_ATTACH_STATIC(udp6_hwcsum_bad); EVCNT_ATTACH_STATIC(udp6_hwcsum_ok); EVCNT_ATTACH_STATIC(udp6_hwcsum_data); EVCNT_ATTACH_STATIC(udp6_swcsum); #endif /* defined(INET6) */ #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++ #else #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */ #endif /* UDP_CSUM_COUNTERS */ void udp_init(void) { in_pcbinit(&udbtable, udbhashsize, udbhashsize); MOWNER_ATTACH(&udp_tx_mowner); MOWNER_ATTACH(&udp_rx_mowner); MOWNER_ATTACH(&udp_mowner); } /* * Checksum extended UDP header and data. */ int udp_input_checksum(int af, struct mbuf *m, const struct udphdr *uh, int iphlen, int len) { switch (af) { #ifdef INET case AF_INET: return udp4_input_checksum(m, uh, iphlen, len); #endif #ifdef INET6 case AF_INET6: return udp6_input_checksum(m, uh, iphlen, len); #endif } #ifdef DIAGNOSTIC panic("udp_input_checksum: unknown af %d", af); #endif /* NOTREACHED */ return -1; } #ifdef INET /* * Checksum extended UDP header and data. */ static int udp4_input_checksum(struct mbuf *m, const struct udphdr *uh, int iphlen, int len) { /* * XXX it's better to record and check if this mbuf is * already checked. */ if (uh->uh_sum == 0) return 0; switch (m->m_pkthdr.csum_flags & ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_UDPv4) | M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) { case M_CSUM_UDPv4|M_CSUM_TCP_UDP_BAD: UDP_CSUM_COUNTER_INCR(&udp_hwcsum_bad); goto badcsum; case M_CSUM_UDPv4|M_CSUM_DATA: { u_int32_t hw_csum = m->m_pkthdr.csum_data; UDP_CSUM_COUNTER_INCR(&udp_hwcsum_data); if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) { const struct ip *ip = mtod(m, const struct ip *); hw_csum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(hw_csum + len + IPPROTO_UDP)); } if ((hw_csum ^ 0xffff) != 0) goto badcsum; break; } case M_CSUM_UDPv4: /* Checksum was okay. */ UDP_CSUM_COUNTER_INCR(&udp_hwcsum_ok); break; default: /* * Need to compute it ourselves. Maybe skip checksum * on loopback interfaces. */ if (__predict_true(!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) || udp_do_loopback_cksum)) { UDP_CSUM_COUNTER_INCR(&udp_swcsum); if (in4_cksum(m, IPPROTO_UDP, iphlen, len) != 0) goto badcsum; } break; } return 0; badcsum: udpstat.udps_badsum++; return -1; } void udp_input(struct mbuf *m, ...) { va_list ap; struct sockaddr_in src, dst; struct ip *ip; struct udphdr *uh; int iphlen; int len; int n; u_int16_t ip_len; va_start(ap, m); iphlen = va_arg(ap, int); (void)va_arg(ap, int); /* ignore value, advance ap */ va_end(ap); MCLAIM(m, &udp_rx_mowner); udpstat.udps_ipackets++; /* * Get IP and UDP header together in first mbuf. */ ip = mtod(m, struct ip *); IP6_EXTHDR_GET(uh, struct udphdr *, m, iphlen, sizeof(struct udphdr)); if (uh == NULL) { udpstat.udps_hdrops++; return; } KASSERT(UDP_HDR_ALIGNED_P(uh)); /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto bad; /* * Make mbuf data length reflect UDP length. * If not enough data to reflect UDP length, drop. */ ip_len = ntohs(ip->ip_len); len = ntohs((u_int16_t)uh->uh_ulen); if (ip_len != iphlen + len) { if (ip_len < iphlen + len || len < sizeof(struct udphdr)) { udpstat.udps_badlen++; goto bad; } m_adj(m, iphlen + len - ip_len); } /* * Checksum extended UDP header and data. */ if (udp4_input_checksum(m, uh, iphlen, len)) goto badcsum; /* construct source and dst sockaddrs. */ bzero(&src, sizeof(src)); src.sin_family = AF_INET; src.sin_len = sizeof(struct sockaddr_in); bcopy(&ip->ip_src, &src.sin_addr, sizeof(src.sin_addr)); src.sin_port = uh->uh_sport; bzero(&dst, sizeof(dst)); dst.sin_family = AF_INET; dst.sin_len = sizeof(struct sockaddr_in); bcopy(&ip->ip_dst, &dst.sin_addr, sizeof(dst.sin_addr)); dst.sin_port = uh->uh_dport; if ((n = udp4_realinput(&src, &dst, &m, iphlen)) == -1) { udpstat.udps_hdrops++; return; } #ifdef INET6 if (IN_MULTICAST(ip->ip_dst.s_addr) || n == 0) { struct sockaddr_in6 src6, dst6; bzero(&src6, sizeof(src6)); src6.sin6_family = AF_INET6; src6.sin6_len = sizeof(struct sockaddr_in6); src6.sin6_addr.s6_addr[10] = src6.sin6_addr.s6_addr[11] = 0xff; bcopy(&ip->ip_src, &src6.sin6_addr.s6_addr[12], sizeof(ip->ip_src)); src6.sin6_port = uh->uh_sport; bzero(&dst6, sizeof(dst6)); dst6.sin6_family = AF_INET6; dst6.sin6_len = sizeof(struct sockaddr_in6); dst6.sin6_addr.s6_addr[10] = dst6.sin6_addr.s6_addr[11] = 0xff; bcopy(&ip->ip_dst, &dst6.sin6_addr.s6_addr[12], sizeof(ip->ip_dst)); dst6.sin6_port = uh->uh_dport; n += udp6_realinput(AF_INET, &src6, &dst6, m, iphlen); } #endif if (n == 0) { if (m->m_flags & (M_BCAST | M_MCAST)) { udpstat.udps_noportbcast++; goto bad; } udpstat.udps_noport++; #ifdef IPKDB if (checkipkdb(&ip->ip_src, uh->uh_sport, uh->uh_dport, m, iphlen + sizeof(struct udphdr), m->m_pkthdr.len - iphlen - sizeof(struct udphdr))) { /* * It was a debugger connect packet, * just drop it now */ goto bad; } #endif icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); m = NULL; } bad: if (m) m_freem(m); return; badcsum: m_freem(m); } #endif #ifdef INET6 static int udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len) { /* * XXX it's better to record and check if this mbuf is * already checked. */ if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) { goto good; } if (uh->uh_sum == 0) { udp6stat.udp6s_nosum++; goto bad; } switch (m->m_pkthdr.csum_flags & ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_UDPv6) | M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) { case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD: UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad); udp6stat.udp6s_badsum++; goto bad; #if 0 /* notyet */ case M_CSUM_UDPv6|M_CSUM_DATA: #endif case M_CSUM_UDPv6: /* Checksum was okay. */ UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok); break; default: /* * Need to compute it ourselves. Maybe skip checksum * on loopback interfaces. */ UDP_CSUM_COUNTER_INCR(&udp6_swcsum); if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) { udp6stat.udp6s_badsum++; goto bad; } } good: return 0; bad: return -1; } int udp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; int off = *offp; struct sockaddr_in6 src, dst; struct ip6_hdr *ip6; struct udphdr *uh; u_int32_t plen, ulen; ip6 = mtod(m, struct ip6_hdr *); #if defined(NFAITH) && 0 < NFAITH if (faithprefix(&ip6->ip6_dst)) { /* send icmp6 host unreach? */ m_freem(m); return IPPROTO_DONE; } #endif udp6stat.udp6s_ipackets++; /* check for jumbogram is done in ip6_input. we can trust pkthdr.len */ plen = m->m_pkthdr.len - off; IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr)); if (uh == NULL) { ip6stat.ip6s_tooshort++; return IPPROTO_DONE; } KASSERT(UDP_HDR_ALIGNED_P(uh)); ulen = ntohs((u_short)uh->uh_ulen); /* * RFC2675 section 4: jumbograms will have 0 in the UDP header field, * iff payload length > 0xffff. */ if (ulen == 0 && plen > 0xffff) ulen = plen; if (plen != ulen) { udp6stat.udp6s_badlen++; goto bad; } /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto bad; /* Be proactive about malicious use of IPv4 mapped address */ if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) || IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) { /* XXX stat */ goto bad; } /* * Checksum extended UDP header and data. Maybe skip checksum * on loopback interfaces. */ if (udp6_input_checksum(m, uh, off, ulen)) goto bad; /* * Construct source and dst sockaddrs. */ bzero(&src, sizeof(src)); src.sin6_family = AF_INET6; src.sin6_len = sizeof(struct sockaddr_in6); src.sin6_addr = ip6->ip6_src; src.sin6_port = uh->uh_sport; bzero(&dst, sizeof(dst)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(struct sockaddr_in6); dst.sin6_addr = ip6->ip6_dst; dst.sin6_port = uh->uh_dport; if (udp6_realinput(AF_INET6, &src, &dst, m, off) == 0) { if (m->m_flags & M_MCAST) { udp6stat.udp6s_noportmcast++; goto bad; } udp6stat.udp6s_noport++; icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); m = NULL; } bad: if (m) m_freem(m); return IPPROTO_DONE; } #endif #ifdef INET static void udp4_sendup(struct mbuf *m, int off /* offset of data portion */, struct sockaddr *src, struct socket *so) { struct mbuf *opts = NULL; struct mbuf *n; struct inpcb *inp = NULL; if (!so) return; switch (so->so_proto->pr_domain->dom_family) { case AF_INET: inp = sotoinpcb(so); break; #ifdef INET6 case AF_INET6: break; #endif default: return; } #if defined(IPSEC) || defined(FAST_IPSEC) /* check AH/ESP integrity. */ if (so != NULL && ipsec4_in_reject_so(m, so)) { ipsecstat.in_polvio++; if ((n = m_copy(m, 0, M_COPYALL)) != NULL) icmp_error(n, ICMP_UNREACH, ICMP_UNREACH_ADMIN_PROHIBIT, 0, 0); return; } #endif /*IPSEC*/ if ((n = m_copy(m, 0, M_COPYALL)) != NULL) { if (inp && (inp->inp_flags & INP_CONTROLOPTS || so->so_options & SO_TIMESTAMP)) { struct ip *ip = mtod(n, struct ip *); ip_savecontrol(inp, &opts, ip, n); } m_adj(n, off); if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) { m_freem(n); if (opts) m_freem(opts); so->so_rcv.sb_overflowed++; udpstat.udps_fullsock++; } else sorwakeup(so); } } #endif #ifdef INET6 static void udp6_sendup(struct mbuf *m, int off /* offset of data portion */, struct sockaddr *src, struct socket *so) { struct mbuf *opts = NULL; struct mbuf *n; struct in6pcb *in6p = NULL; if (!so) return; if (so->so_proto->pr_domain->dom_family != AF_INET6) return; in6p = sotoin6pcb(so); #if defined(IPSEC) || defined(FAST_IPSEC) /* check AH/ESP integrity. */ if (so != NULL && ipsec6_in_reject_so(m, so)) { ipsec6stat.in_polvio++; if ((n = m_copy(m, 0, M_COPYALL)) != NULL) icmp6_error(n, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADMIN, 0); return; } #endif /*IPSEC*/ if ((n = m_copy(m, 0, M_COPYALL)) != NULL) { if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS || in6p->in6p_socket->so_options & SO_TIMESTAMP)) { struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *); ip6_savecontrol(in6p, &opts, ip6, n); } m_adj(n, off); if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) { m_freem(n); if (opts) m_freem(opts); so->so_rcv.sb_overflowed++; udp6stat.udp6s_fullsock++; } else sorwakeup(so); } } #endif #ifdef INET static int udp4_realinput(struct sockaddr_in *src, struct sockaddr_in *dst, struct mbuf **mp, int off /* offset of udphdr */) { u_int16_t *sport, *dport; int rcvcnt; struct in_addr *src4, *dst4; struct inpcb_hdr *inph; struct inpcb *inp; struct mbuf *m = *mp; rcvcnt = 0; off += sizeof(struct udphdr); /* now, offset of payload */ if (src->sin_family != AF_INET || dst->sin_family != AF_INET) goto bad; src4 = &src->sin_addr; sport = &src->sin_port; dst4 = &dst->sin_addr; dport = &dst->sin_port; if (IN_MULTICAST(dst4->s_addr) || in_broadcast(*dst4, m->m_pkthdr.rcvif)) { /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * KAME note: traditionally we dropped udpiphdr from mbuf here. * we need udpiphdr for IPsec processing so we do that later. */ /* * Locate pcb(s) for datagram. */ CIRCLEQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) { inp = (struct inpcb *)inph; if (inp->inp_af != AF_INET) continue; if (inp->inp_lport != *dport) continue; if (!in_nullhost(inp->inp_laddr)) { if (!in_hosteq(inp->inp_laddr, *dst4)) continue; } if (!in_nullhost(inp->inp_faddr)) { if (!in_hosteq(inp->inp_faddr, *src4) || inp->inp_fport != *sport) continue; } udp4_sendup(m, off, (struct sockaddr *)src, inp->inp_socket); rcvcnt++; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It assumes that an application will never * clear these options after setting them. */ if ((inp->inp_socket->so_options & (SO_REUSEPORT|SO_REUSEADDR)) == 0) break; } } else { /* * Locate pcb for datagram. */ inp = in_pcblookup_connect(&udbtable, *src4, *sport, *dst4, *dport); if (inp == 0) { ++udpstat.udps_pcbhashmiss; inp = in_pcblookup_bind(&udbtable, *dst4, *dport); if (inp == 0) return rcvcnt; } #ifdef IPSEC_NAT_T /* Handle ESP over UDP */ if (inp->inp_flags & INP_ESPINUDP_ALL) { struct sockaddr *sa = (struct sockaddr *)src; switch(udp4_espinudp(mp, off, sa, inp->inp_socket)) { case -1: /* Error, m was freeed */ rcvcnt = -1; goto bad; break; case 1: /* ESP over UDP */ rcvcnt++; goto bad; break; case 0: /* plain UDP */ default: /* Unexpected */ /* * Normal UDP processing will take place * m may have changed. */ m = *mp; break; } } #endif udp4_sendup(m, off, (struct sockaddr *)src, inp->inp_socket); rcvcnt++; } bad: return rcvcnt; } #endif #ifdef INET6 static int udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst, struct mbuf *m, int off) { u_int16_t sport, dport; int rcvcnt; struct in6_addr src6, *dst6; const struct in_addr *dst4; struct inpcb_hdr *inph; struct in6pcb *in6p; rcvcnt = 0; off += sizeof(struct udphdr); /* now, offset of payload */ if (af != AF_INET && af != AF_INET6) goto bad; if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6) goto bad; src6 = src->sin6_addr; if (sa6_recoverscope(src) != 0) { /* XXX: should be impossible. */ goto bad; } sport = src->sin6_port; dport = dst->sin6_port; dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12]; dst6 = &dst->sin6_addr; if (IN6_IS_ADDR_MULTICAST(dst6) || (af == AF_INET && IN_MULTICAST(dst4->s_addr))) { /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * KAME note: traditionally we dropped udpiphdr from mbuf here. * we need udpiphdr for IPsec processing so we do that later. */ /* * Locate pcb(s) for datagram. */ CIRCLEQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) { in6p = (struct in6pcb *)inph; if (in6p->in6p_af != AF_INET6) continue; if (in6p->in6p_lport != dport) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, dst6)) continue; } else { if (IN6_IS_ADDR_V4MAPPED(dst6) && (in6p->in6p_flags & IN6P_IPV6_V6ONLY)) continue; } if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr, &src6) || in6p->in6p_fport != sport) continue; } else { if (IN6_IS_ADDR_V4MAPPED(&src6) && (in6p->in6p_flags & IN6P_IPV6_V6ONLY)) continue; } udp6_sendup(m, off, (struct sockaddr *)src, in6p->in6p_socket); rcvcnt++; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It assumes that an application will never * clear these options after setting them. */ if ((in6p->in6p_socket->so_options & (SO_REUSEPORT|SO_REUSEADDR)) == 0) break; } } else { /* * Locate pcb for datagram. */ in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6, dport, 0); if (in6p == 0) { ++udpstat.udps_pcbhashmiss; in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0); if (in6p == 0) return rcvcnt; } udp6_sendup(m, off, (struct sockaddr *)src, in6p->in6p_socket); rcvcnt++; } bad: return rcvcnt; } #endif #ifdef INET /* * Notify a udp user of an asynchronous error; * just wake up so that he can collect error status. */ static void udp_notify(struct inpcb *inp, int errno) { inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); } void * udp_ctlinput(int cmd, const struct sockaddr *sa, void *v) { struct ip *ip = v; struct udphdr *uh; void (*notify)(struct inpcb *, int) = udp_notify; int errno; if (sa->sa_family != AF_INET || sa->sa_len != sizeof(struct sockaddr_in)) return NULL; if ((unsigned)cmd >= PRC_NCMDS) return NULL; errno = inetctlerrmap[cmd]; if (PRC_IS_REDIRECT(cmd)) notify = in_rtchange, ip = 0; else if (cmd == PRC_HOSTDEAD) ip = 0; else if (errno == 0) return NULL; if (ip) { uh = (struct udphdr *)((char *)ip + (ip->ip_hl << 2)); in_pcbnotify(&udbtable, satocsin(sa)->sin_addr, uh->uh_dport, ip->ip_src, uh->uh_sport, errno, notify); /* XXX mapped address case */ } else in_pcbnotifyall(&udbtable, satocsin(sa)->sin_addr, errno, notify); return NULL; } int udp_ctloutput(int op, struct socket *so, int level, int optname, struct mbuf **mp) { int s; int error = 0; struct mbuf *m; struct inpcb *inp; int family; family = so->so_proto->pr_domain->dom_family; s = splsoftnet(); switch (family) { #ifdef INET case PF_INET: if (level != IPPROTO_UDP) { error = ip_ctloutput(op, so, level, optname, mp); goto end; } break; #endif #ifdef INET6 case PF_INET6: if (level != IPPROTO_UDP) { error = ip6_ctloutput(op, so, level, optname, mp); goto end; } break; #endif default: error = EAFNOSUPPORT; goto end; } switch (op) { case PRCO_SETOPT: m = *mp; inp = sotoinpcb(so); switch (optname) { case UDP_ENCAP: if (m == NULL || m->m_len < sizeof (int)) { error = EINVAL; break; } switch(*mtod(m, int *)) { #ifdef IPSEC_NAT_T case 0: inp->inp_flags &= ~INP_ESPINUDP_ALL; break; case UDP_ENCAP_ESPINUDP: inp->inp_flags &= ~INP_ESPINUDP_ALL; inp->inp_flags |= INP_ESPINUDP; break; case UDP_ENCAP_ESPINUDP_NON_IKE: inp->inp_flags &= ~INP_ESPINUDP_ALL; inp->inp_flags |= INP_ESPINUDP_NON_IKE; break; #endif default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } if (m != NULL) { m_free(m); } break; default: error = EINVAL; break; } end: splx(s); return error; } int udp_output(struct mbuf *m, ...) { struct inpcb *inp; struct udpiphdr *ui; struct route *ro; int len = m->m_pkthdr.len; int error = 0; va_list ap; MCLAIM(m, &udp_tx_mowner); va_start(ap, m); inp = va_arg(ap, struct inpcb *); va_end(ap); /* * Calculate data length and get a mbuf * for UDP and IP headers. */ M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT); if (m == 0) { error = ENOBUFS; goto release; } /* * Compute the packet length of the IP header, and * punt if the length looks bogus. */ if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { error = EMSGSIZE; goto release; } /* * Fill in mbuf with extended UDP header * and addresses and length put into network format. */ ui = mtod(m, struct udpiphdr *); ui->ui_pr = IPPROTO_UDP; ui->ui_src = inp->inp_laddr; ui->ui_dst = inp->inp_faddr; ui->ui_sport = inp->inp_lport; ui->ui_dport = inp->inp_fport; ui->ui_ulen = htons((u_int16_t)len + sizeof(struct udphdr)); ro = &inp->inp_route; /* * Set up checksum and output datagram. */ if (udpcksum) { /* * XXX Cache pseudo-header checksum part for * XXX "connected" UDP sockets. */ ui->ui_sum = in_cksum_phdr(ui->ui_src.s_addr, ui->ui_dst.s_addr, htons((u_int16_t)len + sizeof(struct udphdr) + IPPROTO_UDP)); m->m_pkthdr.csum_flags = M_CSUM_UDPv4; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } else ui->ui_sum = 0; ((struct ip *)ui)->ip_len = htons(sizeof (struct udpiphdr) + len); ((struct ip *)ui)->ip_ttl = inp->inp_ip.ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = inp->inp_ip.ip_tos; /* XXX */ udpstat.udps_opackets++; return (ip_output(m, inp->inp_options, ro, inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST), inp->inp_moptions, inp->inp_socket)); release: m_freem(m); return (error); } int udp_sendspace = 9216; /* really max datagram size */ int udp_recvspace = 40 * (1024 + sizeof(struct sockaddr_in)); /* 40 1K datagrams */ /*ARGSUSED*/ int udp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam, struct mbuf *control, struct lwp *l) { struct inpcb *inp; int s; int error = 0; if (req == PRU_CONTROL) return (in_control(so, (long)m, (void *)nam, (struct ifnet *)control, l)); s = splsoftnet(); if (req == PRU_PURGEIF) { in_pcbpurgeif0(&udbtable, (struct ifnet *)control); in_purgeif((struct ifnet *)control); in_pcbpurgeif(&udbtable, (struct ifnet *)control); splx(s); return (0); } inp = sotoinpcb(so); #ifdef DIAGNOSTIC if (req != PRU_SEND && req != PRU_SENDOOB && control) panic("udp_usrreq: unexpected control mbuf"); #endif if (inp == 0 && req != PRU_ATTACH) { error = EINVAL; goto release; } /* * Note: need to block udp_input while changing * the udp pcb queue and/or pcb addresses. */ switch (req) { case PRU_ATTACH: if (inp != 0) { error = EISCONN; break; } #ifdef MBUFTRACE so->so_mowner = &udp_mowner; so->so_rcv.sb_mowner = &udp_rx_mowner; so->so_snd.sb_mowner = &udp_tx_mowner; #endif if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, udp_sendspace, udp_recvspace); if (error) break; } error = in_pcballoc(so, &udbtable); if (error) break; inp = sotoinpcb(so); inp->inp_ip.ip_ttl = ip_defttl; break; case PRU_DETACH: in_pcbdetach(inp); break; case PRU_BIND: error = in_pcbbind(inp, nam, l); break; case PRU_LISTEN: error = EOPNOTSUPP; break; case PRU_CONNECT: error = in_pcbconnect(inp, nam, l); if (error) break; soisconnected(so); break; case PRU_CONNECT2: error = EOPNOTSUPP; break; case PRU_DISCONNECT: /*soisdisconnected(so);*/ so->so_state &= ~SS_ISCONNECTED; /* XXX */ in_pcbdisconnect(inp); inp->inp_laddr = zeroin_addr; /* XXX */ in_pcbstate(inp, INP_BOUND); /* XXX */ break; case PRU_SHUTDOWN: socantsendmore(so); break; case PRU_RCVD: error = EOPNOTSUPP; break; case PRU_SEND: if (control && control->m_len) { m_freem(control); m_freem(m); error = EINVAL; break; } { struct in_addr laddr; /* XXX */ if (nam) { laddr = inp->inp_laddr; /* XXX */ if ((so->so_state & SS_ISCONNECTED) != 0) { error = EISCONN; goto die; } error = in_pcbconnect(inp, nam, l); if (error) goto die; } else { if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto die; } } error = udp_output(m, inp); m = NULL; if (nam) { in_pcbdisconnect(inp); inp->inp_laddr = laddr; /* XXX */ in_pcbstate(inp, INP_BOUND); /* XXX */ } die: if (m) m_freem(m); } break; case PRU_SENSE: /* * stat: don't bother with a blocksize. */ splx(s); return (0); case PRU_RCVOOB: error = EOPNOTSUPP; break; case PRU_SENDOOB: m_freem(control); m_freem(m); error = EOPNOTSUPP; break; case PRU_SOCKADDR: in_setsockaddr(inp, nam); break; case PRU_PEERADDR: in_setpeeraddr(inp, nam); break; default: panic("udp_usrreq"); } release: splx(s); return (error); } /* * Sysctl for udp variables. */ SYSCTL_SETUP(sysctl_net_inet_udp_setup, "sysctl net.inet.udp subtree setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "inet", NULL, NULL, 0, NULL, 0, CTL_NET, PF_INET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "udp", SYSCTL_DESCR("UDPv4 related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET, IPPROTO_UDP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "checksum", SYSCTL_DESCR("Compute UDP checksums"), NULL, 0, &udpcksum, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_CHECKSUM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sendspace", SYSCTL_DESCR("Default UDP send buffer size"), NULL, 0, &udp_sendspace, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_SENDSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvspace", SYSCTL_DESCR("Default UDP receive buffer size"), NULL, 0, &udp_recvspace, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_RECVSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "do_loopback_cksum", SYSCTL_DESCR("Perform UDP checksum on loopback"), NULL, 0, &udp_do_loopback_cksum, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_LOOPBACKCKSUM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "pcblist", SYSCTL_DESCR("UDP protocol control block list"), sysctl_inpcblist, 0, &udbtable, 0, CTL_NET, PF_INET, IPPROTO_UDP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("UDP statistics"), NULL, 0, &udpstat, sizeof(udpstat), CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_STATS, CTL_EOL); } #endif #if (defined INET && defined IPSEC_NAT_T) /* * Returns: * 1 if the packet was processed * 0 if normal UDP processing should take place * -1 if an error occurent and m was freed */ static int udp4_espinudp(struct mbuf **mp, int off, struct sockaddr *src, struct socket *so) { size_t len; void *data; struct inpcb *inp; size_t skip = 0; size_t minlen; size_t iphdrlen; struct ip *ip; struct mbuf *n; struct m_tag *tag; struct udphdr *udphdr; u_int16_t sport, dport; struct mbuf *m = *mp; /* * Collapse the mbuf chain if the first mbuf is too short * The longest case is: UDP + non ESP marker + ESP */ minlen = off + sizeof(u_int64_t) + sizeof(struct esp); if (minlen > m->m_pkthdr.len) minlen = m->m_pkthdr.len; if (m->m_len < minlen) { if ((*mp = m_pullup(m, minlen)) == NULL) { printf("udp4_espinudp: m_pullup failed\n"); return -1; } m = *mp; } len = m->m_len - off; data = mtod(m, char *) + off; inp = sotoinpcb(so); /* Ignore keepalive packets */ if ((len == 1) && (*(unsigned char *)data == 0xff)) { return 1; } /* * Check that the payload is long enough to hold * an ESP header and compute the length of encapsulation * header to remove */ if (inp->inp_flags & INP_ESPINUDP) { u_int32_t *st = (u_int32_t *)data; if ((len <= sizeof(struct esp)) || (*st == 0)) return 0; /* Normal UDP processing */ skip = sizeof(struct udphdr); } if (inp->inp_flags & INP_ESPINUDP_NON_IKE) { u_int32_t *st = (u_int32_t *)data; if ((len <= sizeof(u_int64_t) + sizeof(struct esp)) || ((st[0] | st[1]) != 0)) return 0; /* Normal UDP processing */ skip = sizeof(struct udphdr) + sizeof(u_int64_t); } /* * Get the UDP ports. They are handled in network * order everywhere in IPSEC_NAT_T code. */ udphdr = (struct udphdr *)((char *)data - skip); sport = udphdr->uh_sport; dport = udphdr->uh_dport; /* * Remove the UDP header (and possibly the non ESP marker) * IP header lendth is iphdrlen * Before: * <--- off ---> * +----+------+-----+ * | IP | UDP | ESP | * +----+------+-----+ * <-skip-> * After: * +----+-----+ * | IP | ESP | * +----+-----+ * <-skip-> */ iphdrlen = off - sizeof(struct udphdr); memmove(mtod(m, char *) + skip, mtod(m, void *), iphdrlen); m_adj(m, skip); ip = mtod(m, struct ip *); ip->ip_len = htons(ntohs(ip->ip_len) - skip); ip->ip_p = IPPROTO_ESP; /* * Copy the mbuf to avoid multiple free, as both * esp4_input (which we call) and udp_input (which * called us) free the mbuf. */ if ((n = m_dup(m, 0, M_COPYALL, M_DONTWAIT)) == NULL) { printf("udp4_espinudp: m_dup failed\n"); return 0; } /* * Add a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember * the source UDP port. This is required if we want * to select the right SPD for multiple hosts behind * same NAT */ if ((tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, sizeof(sport) + sizeof(dport), M_DONTWAIT)) == NULL) { printf("udp4_espinudp: m_tag_get failed\n"); m_freem(n); return 0; } ((u_int16_t *)(tag + 1))[0] = sport; ((u_int16_t *)(tag + 1))[1] = dport; m_tag_prepend(n, tag); #ifdef FAST_IPSEC ipsec4_common_input(n, iphdrlen); #else esp4_input(n, iphdrlen); #endif /* We handled it, it shoudln't be handled by UDP */ return 1; } #endif