/* refclock_ees - clock driver for the EES M201 receiver */ #ifdef HAVE_CONFIG_H #include #endif #if defined(REFCLOCK) && defined(MSFEES) && defined(PPS) /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes * were removed as the code was overly hairy, they weren't in use * (hence probably didn't work). Still in RCS file at cl.cam.ac.uk */ #include #include #include "ntpd.h" #include "ntp_io.h" #include "ntp_refclock.h" #include "ntp_unixtime.h" #include "ntp_calendar.h" #if defined(HAVE_BSD_TTYS) #include #endif /* HAVE_BSD_TTYS */ #if defined(HAVE_SYSV_TTYS) #include #endif /* HAVE_SYSV_TTYS */ #include #include #ifdef PPS #include #endif /* PPS */ #include "ntp_stdlib.h" /* fudgefactor = fudgetime1; os_delay = fudgetime2; offset_fudge = os_delay + fudgefactor + inherent_delay; stratumtouse = fudgeval1 & 0xf debug = fudgeval2; sloppyclockflag = flags & CLK_FLAG1; 1 log smoothing summary when processing sample 4 dump the buffer from the clock 8 EIOGETKD the last n uS time stamps if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0; ees->dump_vals = flags & CLK_FLAG3; ees->usealldata = flags & CLK_FLAG4; bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0; bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0; bug->values[2] = (u_long)ees->status; bug->values[3] = (u_long)ees->lastevent; bug->values[4] = (u_long)ees->reason; bug->values[5] = (u_long)ees->nsamples; bug->values[6] = (u_long)ees->codestate; bug->values[7] = (u_long)ees->day; bug->values[8] = (u_long)ees->hour; bug->values[9] = (u_long)ees->minute; bug->values[10] = (u_long)ees->second; bug->values[11] = (u_long)ees->tz; bug->values[12] = ees->yearstart; bug->values[13] = (ees->leaphold > current_time) ? ees->leaphold - current_time : 0; bug->values[14] = inherent_delay[unit].l_uf; bug->values[15] = offset_fudge[unit].l_uf; bug->times[0] = ees->reftime; bug->times[1] = ees->arrvtime; bug->times[2] = ees->lastsampletime; bug->times[3] = ees->offset; bug->times[4] = ees->lowoffset; bug->times[5] = ees->highoffset; bug->times[6] = inherent_delay[unit]; bug->times[8] = os_delay[unit]; bug->times[7] = fudgefactor[unit]; bug->times[9] = offset_fudge[unit]; bug->times[10]= ees->yearstart, 0; */ /* This should support the use of an EES M201 receiver with RS232 * output (modified to transmit time once per second). * * For the format of the message sent by the clock, see the EESM_ * definitions below. * * It appears to run free for an integral number of minutes, until the error * reaches 4mS, at which point it steps at second = 01. * It appears that sometimes it steps 4mS (say at 7 min interval), * then the next minute it decides that it was an error, so steps back. * On the next minute it steps forward again :-( * This is typically 16.5uS/S then 3975uS at the 4min re-sync, * or 9.5uS/S then 3990.5uS at a 7min re-sync, * at which point it may loose the "00" second time stamp. * I assume that the most accurate time is just AFTER the re-sync. * Hence remember the last cycle interval, * * Can run in any one of: * * PPSCD PPS signal sets CD which interupts, and grabs the current TOD * (sun) *in the interupt code*, so as to avoid problems with * the STREAMS scheduling. * * It appears that it goes 16.5 uS slow each second, then every 4 mins it * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7) */ /* Definitions */ #ifndef MAXUNITS #define MAXUNITS 4 /* maximum number of EES units permitted */ #endif #ifndef EES232 #define EES232 "/dev/ees%d" /* Device to open to read the data */ #endif /* Other constant stuff */ #ifndef EESPRECISION #define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */ #endif #ifndef EESREFID #define EESREFID "MSF\0" /* String to identify the clock */ #endif #ifndef EESHSREFID #define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */ #endif /* Description of clock */ #define EESDESCRIPTION "EES M201 MSF Receiver" /* Speed we run the clock port at. If this is changed the UARTDELAY * value should be recomputed to suit. */ #ifndef SPEED232 #define SPEED232 B9600 /* 9600 baud */ #endif /* What is the inherent delay for this mode of working, i.e. when is the * data time stamped. */ #define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */ #define BITS_TO_L_FP(bits, baud) \ (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT) #define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600) #define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600) #ifndef STREAM_PP1 #define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->" #endif #ifndef STREAM_PP2 #define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->" #endif /* Offsets of the bytes of the serial line code. The clock gives * local time with a GMT/BST indication. The EESM_ definitions * give offsets into ees->lastcode. */ #define EESM_CSEC 0 /* centiseconds - always zero in our clock */ #define EESM_SEC 1 /* seconds in BCD */ #define EESM_MIN 2 /* minutes in BCD */ #define EESM_HOUR 3 /* hours in BCD */ #define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */ #define EESM_DAY 5 /* day of month in BCD */ #define EESM_MON 6 /* month in BCD */ #define EESM_YEAR 7 /* year MOD 100 in BCD */ #define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */ #define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */ #define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */ /* followed by a frame alignment byte (0xff) / / which is not put into the lastcode buffer*/ /* Length of the serial time code, in characters. The first length * is less the frame alignment byte. */ #define LENEESPRT (EESM_MSFOK+1) #define LENEESCODE (LENEESPRT+1) /* Code state. */ #define EESCS_WAIT 0 /* waiting for start of timecode */ #define EESCS_GOTSOME 1 /* have an incomplete time code buffered */ /* Default fudge factor and character to receive */ #define DEFFUDGETIME 0 /* Default user supplied fudge factor */ #ifndef DEFOSTIME #define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */ #endif #define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/ /* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median * elimination. If we're running with an accurate clock, chose the BESTSAMPLE * as the estimated offset, otherwise average the remainder. */ #define FULLSHIFT 6 /* NCODES root 2 */ #define NCODES (1<< FULLSHIFT) /* 64 */ #define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */ /* Towards the high ( Why ?) end of half */ #define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */ /* Leap hold time. After a leap second the clock will no longer be * reliable until it resynchronizes. Hope 40 minutes is enough. */ #define EESLEAPHOLD (40 * 60) #define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */ #define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/ #define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */ #define EES_STEP_NOTES 50 /* Only do a limited number */ #define MAX_STEP 16 /* Max number of steps to remember */ /* debug is a bit mask of debugging that is wanted */ #define DB_SYSLOG_SMPLI 0x0001 #define DB_SYSLOG_SMPLE 0x0002 #define DB_SYSLOG_SMTHI 0x0004 #define DB_SYSLOG_NSMTHE 0x0008 #define DB_SYSLOG_NSMTHI 0x0010 #define DB_SYSLOG_SMTHE 0x0020 #define DB_PRINT_EV 0x0040 #define DB_PRINT_CDT 0x0080 #define DB_PRINT_CDTC 0x0100 #define DB_SYSLOG_KEEPD 0x0800 #define DB_SYSLOG_KEEPE 0x1000 #define DB_LOG_DELTAS 0x2000 #define DB_PRINT_DELTAS 0x4000 #define DB_LOG_AWAITMORE 0x8000 #define DB_LOG_SAMPLES 0x10000 #define DB_NO_PPS 0x20000 #define DB_INC_PPS 0x40000 #define DB_DUMP_DELTAS 0x80000 struct eesunit { /* EES unit control structure. */ struct peer *peer; /* associated peer structure */ struct refclockio io; /* given to the I/O handler */ l_fp reftime; /* reference time */ l_fp lastsampletime; /* time as in txt from last EES msg */ l_fp arrvtime; /* Time at which pkt arrived */ l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */ l_fp offset; /* chosen offset (for clkbug) */ l_fp lowoffset; /* lowest sample offset (for clkbug) */ l_fp highoffset; /* highest " " (for clkbug) */ char lastcode[LENEESCODE+6]; /* last time code we received */ u_long lasttime; /* last time clock heard from */ u_long clocklastgood; /* last time good radio seen */ u_char lencode; /* length of code in buffer */ u_char nsamples; /* number of samples we've collected */ u_char codestate; /* state of 232 code reception */ u_char unit; /* unit number for this guy */ u_char status; /* clock status */ u_char lastevent; /* last clock event */ u_char reason; /* reason for last abort */ u_char hour; /* hour of day */ u_char minute; /* minute of hour */ u_char second; /* seconds of minute */ char tz; /* timezone from clock */ u_char ttytype; /* method used */ u_char dump_vals; /* Should clock values be dumped */ u_char usealldata; /* Use ALL samples */ u_short day; /* day of year from last code */ u_long yearstart; /* start of current year */ u_long leaphold; /* time of leap hold expiry */ u_long badformat; /* number of bad format codes */ u_long baddata; /* number of invalid time codes */ u_long timestarted; /* time we started this */ long last_pps_no; /* The serial # of the last PPS */ char fix_pending; /* Is a "sync to time" pending ? */ /* Fine tuning - compensate for 4 mS ramping .... */ l_fp last_l; /* last time stamp */ u_char last_steps[MAX_STEP]; /* Most recent n steps */ int best_av_step; /* Best guess at average step */ char best_av_step_count; /* # of steps over used above */ char this_step; /* Current pos in buffer */ int last_step_late; /* How late the last step was (0-59) */ long jump_fsecs; /* # of fractions of a sec last jump */ u_long last_step; /* time of last step */ int last_step_secs; /* Number of seconds in last step */ int using_ramp; /* 1 -> noemal, -1 -> over stepped */ }; #define last_sec last_l.l_ui #define last_sfsec last_l.l_f #define this_uisec ((ees->arrvtime).l_ui) #define this_sfsec ((ees->arrvtime).l_f) #define msec(x) ((x) / (1<<22)) #define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0]) #define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5))) /* Bitmask for what methods to try to use -- currently only PPS enabled */ #define T_CBREAK 1 #define T_PPS 8 /* macros to test above */ #define is_cbreak(x) ((x)->ttytype & T_CBREAK) #define is_pps(x) ((x)->ttytype & T_PPS) #define is_any(x) ((x)->ttytype) #define CODEREASON 20 /* reason codes */ /* Data space for the unit structures. Note that we allocate these on * the fly, but never give them back. */ static struct eesunit *eesunits[MAXUNITS]; static u_char unitinuse[MAXUNITS]; /* Keep the fudge factors separately so they can be set even * when no clock is configured. */ static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */ static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */ static l_fp os_delay[MAXUNITS]; /* fudgetime2 */ static l_fp offset_fudge[MAXUNITS]; /* Sum of above */ static u_char stratumtouse[MAXUNITS]; static u_char sloppyclockflag[MAXUNITS]; static int deltas[60]; static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */ static l_fp onesec; /* = { 1, 0 }; */ /* Imported from the timer module */ extern u_long current_time; extern s_char sys_precision; #ifdef DEBUG static int debug; #endif #ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */ #define DUMP_BUF_SIZE 10112 #endif /* ees_reset - reset the count back to zero */ #define ees_reset(ees) (ees)->nsamples = 0; \ (ees)->codestate = EESCS_WAIT /* ees_event - record and report an event */ #define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \ ees_report_event((ees), (evcode)) /* Find the precision of the system clock by reading it */ #define USECS 1000000 #define MINSTEP 5 /* some systems increment uS on each call */ #define MAXLOOPS (USECS/9) static void dump_buf(coffs, from, to, text) l_fp *coffs; int from; int to; char *text; { char buff[DUMP_BUF_SIZE + 80]; int i; register char *ptr = buff; sprintf(ptr, text); for (i=from; i DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff); sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295); } msyslog(LOG_DEBUG, "D: %s", buff); } /* msfees_init - initialize internal ees driver data */ static void msfees_init() { register int i; /* Just zero the data arrays */ memset((char *)eesunits, 0, sizeof eesunits); memset((char *)unitinuse, 0, sizeof unitinuse); acceptable_slop.l_ui = 0; acceptable_slop.l_uf = 1 << (FRACTION_PREC -2); onesec.l_ui = 1; onesec.l_uf = 0; /* Initialize fudge factors to default. */ for (i = 0; i < MAXUNITS; i++) { fudgefactor[i].l_ui = 0; fudgefactor[i].l_uf = DEFFUDGETIME; os_delay[i].l_ui = 0; os_delay[i].l_uf = DEFOSTIME; inherent_delay[i].l_ui = 0; inherent_delay[i].l_uf = DEFINHTIME; offset_fudge[i] = os_delay[i]; L_ADD(&offset_fudge[i], &fudgefactor[i]); L_ADD(&offset_fudge[i], &inherent_delay[i]); stratumtouse[i] = 0; sloppyclockflag[i] = 0; } } /* msfees_start - open the EES devices and initialize data for processing */ static int msfees_start(unit, peer) int unit; struct peer *peer; { register struct eesunit *ees; register int i; int fd232 = -1; char eesdev[20]; struct termios ttyb, *ttyp; static void ees_receive(); extern int io_addclock(); extern void io_closeclock(); extern char *emalloc(); struct refclockproc *pp; pp = peer->procptr; if (unit >= MAXUNITS) { msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)", unit, MAXUNITS-1); return 0; } if (unitinuse[unit]) { msyslog(LOG_ERR, "ees clock: unit number %d in use", unit); return 0; } /* Unit okay, attempt to open the devices. We do them both at * once to make sure we can */ (void) sprintf(eesdev, EES232, unit); fd232 = open(eesdev, O_RDWR, 0777); if (fd232 == -1) { msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev); return 0; } #ifdef TIOCEXCL /* Set for exclusive use */ if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) { msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev); goto screwed; } #endif /* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */ /* Set port characteristics. If we don't have a STREAMS module or * a clock line discipline, cooked mode is just usable, even though it * strips the top bit. The only EES byte which uses the top * bit is the year, and we don't use that anyway. If we do * have the line discipline, we choose raw mode, and the * line discipline code will block up the messages. */ /* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */ ttyp = &ttyb; if (tcgetattr(fd232, ttyp) < 0) { msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev); goto screwed; } ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL; ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD; ttyp->c_oflag = 0; ttyp->c_lflag = ICANON; ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; if (tcsetattr(fd232, TCSANOW, ttyp) < 0) { msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev); goto screwed; } if (tcflush(fd232, TCIOFLUSH) < 0) { msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev); goto screwed; } inherent_delay[unit].l_uf = INH_DELAY_PPS; /* offset fudge (how *late* the timestamp is) = fudge + os delays */ offset_fudge[unit] = os_delay[unit]; L_ADD(&offset_fudge[unit], &fudgefactor[unit]); L_ADD(&offset_fudge[unit], &inherent_delay[unit]); /* Looks like this might succeed. Find memory for the structure. * Look to see if there are any unused ones, if not we malloc() one. */ if (eesunits[unit] != 0) /* The one we want is okay */ ees = eesunits[unit]; else { /* Look for an unused, but allocated struct */ for (i = 0; i < MAXUNITS; i++) { if (!unitinuse[i] && eesunits[i] != 0) break; } if (i < MAXUNITS) { /* Reclaim this one */ ees = eesunits[i]; eesunits[i] = 0; } /* no spare -- make a new one */ else ees = (struct eesunit *) emalloc(sizeof(struct eesunit)); } memset((char *)ees, 0, sizeof(struct eesunit)); eesunits[unit] = ees; /* Set up the structures */ ees->peer = peer; ees->unit = (u_char)unit; ees->timestarted= current_time; ees->ttytype = 0; ees->io.clock_recv= ees_receive; ees->io.srcclock= (caddr_t)ees; ees->io.datalen = 0; ees->io.fd = fd232; /* Okay. Push one of the two (linked into the kernel, or dynamically * loaded) STREAMS module, and give it to the I/O code to start * receiving stuff. */ { int rc1; /* Pop any existing onews first ... */ while (ioctl(fd232, I_POP, 0 ) >= 0) ; /* Now try pushing either of the possible modules */ if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 && ioctl(fd232, I_PUSH, STREAM_PP2) < 0) { msyslog(LOG_ERR, "ees clock: Push of `%s' and `%s' to %s failed %m", STREAM_PP1, STREAM_PP2, eesdev); goto screwed; } else { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s", (rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev); ees->ttytype |= T_PPS; } } /* Add the clock */ if (!io_addclock(&ees->io)) { /* Oh shit. Just close and return. */ msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev); goto screwed; } /* All done. Initialize a few random peer variables, then * return success. */ peer->precision = sys_precision; peer->stratum = stratumtouse[unit]; peer->rootdelay = 0; /* ++++ */ peer->rootdispersion = 0; /* ++++ */ if (stratumtouse[unit] <= 1) { memcpy((char *)&pp->refid, EESREFID, 4); if (unit > 0 && unit < 10) ((char *)&pp->refid)[3] = '0' + unit; } else { peer->refid = htonl(EESHSREFID); } unitinuse[unit] = 1; pp->unitptr = (caddr_t) &eesunits[unit]; pp->clockdesc = EESDESCRIPTION; pp->nstages = MAXSTAGE; msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit); return (1); screwed: if (fd232 != -1) (void) close(fd232); return (0); } /* msfees_shutdown - shut down a EES clock */ static void msfees_shutdown(unit, peer) int unit; struct peer *peer; { register struct eesunit *ees; extern void io_closeclock(); if (unit >= MAXUNITS) { msyslog(LOG_ERR, "ees clock: INTERNAL ERROR, unit number %d invalid (max %d)", unit, MAXUNITS); return; } if (!unitinuse[unit]) { msyslog(LOG_ERR, "ees clock: INTERNAL ERROR, unit number %d not in use", unit); return; } /* Tell the I/O module to turn us off. We're history. */ ees = eesunits[unit]; io_closeclock(&ees->io); unitinuse[unit] = 0; } /* ees_report_event - note the occurance of an event */ static void ees_report_event(ees, code) struct eesunit *ees; int code; { if (ees->status != (u_char)code) { ees->status = (u_char)code; if (code != CEVNT_NOMINAL) ees->lastevent = (u_char)code; /* Should report event to trap handler in here. * Soon... */ } } /* ees_receive - receive data from the serial interface on an EES clock */ static void ees_receive(rbufp) struct recvbuf *rbufp; { register int n_sample; register int day; register struct eesunit *ees; register u_char *dpt; /* Data PoinTeR: move along ... */ register u_char *dpend; /* Points just *after* last data char */ register char *cp; l_fp tmp; static void ees_process(); int call_pps_sample = 0; l_fp pps_arrvstamp; int sincelast; int pps_step = 0; int suspect_4ms_step = 0; struct ppsclockev ppsclockev; long *ptr = (long *) &ppsclockev; extern errno; int rc; /* Get the clock this applies to and a pointer to the data */ ees = (struct eesunit *)rbufp->recv_srcclock; dpt = (u_char *)&rbufp->recv_space; dpend = dpt + rbufp->recv_length; if ((debug & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE)) printf("[%d] ", rbufp->recv_length); /* Check out our state and process appropriately */ switch (ees->codestate) { case EESCS_WAIT: /* Set an initial guess at the timestamp as the recv time. * If just running in CBREAK mode, we can't improve this. * If we have the CLOCK Line Discipline, PPSCD, or sime such, * then we will do better later .... */ ees->arrvtime = rbufp->recv_time; ees->codestate = EESCS_GOTSOME; ees->lencode = 0; /*FALLSTHROUGH*/ case EESCS_GOTSOME: cp = &(ees->lastcode[ees->lencode]); /* Gobble the bytes until the final (possibly stripped) 0xff */ while (dpt < dpend && (*dpt & 0x7f) != 0x7f) { *cp++ = (char)*dpt++; ees->lencode++; /* Oh dear -- too many bytes .. */ if (ees->lencode > LENEESPRT) { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ msyslog(LOG_INFO, "I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]", ees->lencode, dpend - dpt, LENEESPRT, #define D(x) (ees->lastcode[x]) D(0), D(1), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(9), D(10), D(11), D(12)); #undef D ees->badformat++; ees->reason = CODEREASON + 1; ees_event(ees, CEVNT_BADREPLY); ees_reset(ees); return; } } /* Gave up because it was end of the buffer, rather than ff */ if (dpt == dpend) { /* Incomplete. Wait for more. */ if (debug & DB_LOG_AWAITMORE) msyslog(LOG_INFO, "I: ees clock %d: %d == %d: await more", ees->unit, dpt, dpend); return; } /* This shouldn't happen ... ! */ if ((*dpt & 0x7f) != 0x7f) { msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt); ees->badformat++; ees->reason = CODEREASON + 2; ees_event(ees, CEVNT_BADREPLY); ees_reset(ees); return; } /* Skip the 0xff */ dpt++; /* Finally, got a complete buffer. Mainline code will * continue on. */ cp = ees->lastcode; break; default: msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d", ees->unit, ees->codestate); ees->reason = CODEREASON + 5; ees_event(ees, CEVNT_FAULT); ees_reset(ees); return; } /* Boy! After all that crap, the lastcode buffer now contains * something we hope will be a valid time code. Do length * checks and sanity checks on constant data. */ ees->codestate = EESCS_WAIT; ees->lasttime = current_time; if (ees->lencode != LENEESPRT) { ees->badformat++; ees->reason = CODEREASON + 6; ees_event(ees, CEVNT_BADREPLY); ees_reset(ees); return; } cp = ees->lastcode; /* Check that centisecond is zero */ if (cp[EESM_CSEC] != 0) { ees->baddata++; ees->reason = CODEREASON + 7; ees_event(ees, CEVNT_BADREPLY); ees_reset(ees); return; } /* Check flag formats */ if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) { ees->badformat++; ees->reason = CODEREASON + 8; ees_event(ees, CEVNT_BADREPLY); ees_reset(ees); return; } if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) { ees->badformat++; ees->reason = CODEREASON + 9; ees_event(ees, CEVNT_BADREPLY); ees_reset(ees); return; } if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) { ees->badformat++; ees->reason = CODEREASON + 10; ees_event(ees, CEVNT_BADREPLY); ees_reset(ees); return; } /* So far, so good. Compute day, hours, minutes, seconds, * time zone. Do range checks on these. */ #define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) ) #define istrue(x) ((x)?1:0) ees->second = bcdunpack(cp[EESM_SEC]); /* second */ ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */ ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */ day = bcdunpack(cp[EESM_DAY]); /* day of month */ switch (bcdunpack(cp[EESM_MON])) { /* month */ /* Add in lengths of all previous months. Add one more if it is a leap year and after February. */ case 12: day += NOV; /*FALLSTHROUGH*/ case 11: day += OCT; /*FALLSTHROUGH*/ case 10: day += SEP; /*FALLSTHROUGH*/ case 9: day += AUG; /*FALLSTHROUGH*/ case 8: day += JUL; /*FALLSTHROUGH*/ case 7: day += JUN; /*FALLSTHROUGH*/ case 6: day += MAY; /*FALLSTHROUGH*/ case 5: day += APR; /*FALLSTHROUGH*/ case 4: day += MAR; /*FALLSTHROUGH*/ case 3: day += FEB; if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/ case 2: day += JAN; /*FALLSTHROUGH*/ case 1: break; default: ees->baddata++; ees->reason = CODEREASON + 11; ees_event(ees, CEVNT_BADDATE); ees_reset(ees); return; } ees->day = day; /* Get timezone. The clocktime routine wants the number * of hours to add to the delivered time to get UT. * Currently -1 if BST flag set, 0 otherwise. This * is the place to tweak things if double summer time * ever happens. */ ees->tz = istrue(cp[EESM_BST]) ? -1 : 0; if (ees->day > 366 || ees->day < 1 || ees->hour > 23 || ees->minute > 59 || ees->second > 59) { ees->baddata++; ees->reason = CODEREASON + 12; ees_event(ees, CEVNT_BADDATE); ees_reset(ees); return; } n_sample = ees->nsamples; /* Now, compute the reference time value: text -> tmp.l_ui */ if (!clocktime(ees->day, ees->hour, ees->minute, ees->second, ees->tz, rbufp->recv_time.l_ui, &ees->yearstart, &tmp.l_ui)) { ees->baddata++; ees->reason = CODEREASON + 13; ees_event(ees, CEVNT_BADDATE); ees_reset(ees); return; } tmp.l_uf = 0; /* DON'T use ees->arrvtime -- it may be < reftime */ ees->lastsampletime = tmp; /* If we are synchronised to the radio, update the reference time. * Also keep a note of when clock was last good. */ if (istrue(cp[EESM_MSFOK])) { ees->reftime = tmp; ees->clocklastgood = current_time; } /* Compute the offset. For the fractional part of the * offset we use the expected delay for the message. */ ees->codeoffsets[n_sample].l_ui = tmp.l_ui; ees->codeoffsets[n_sample].l_uf = 0; /* Number of seconds since the last step */ sincelast = this_uisec - ees->last_step; memset((char *) &ppsclockev, 0, sizeof ppsclockev); rc = ioctl(ees->io.fd, CIOGETEV, (char *) &ppsclockev); if (debug & DB_PRINT_EV) fprintf(stderr, "[%x] CIOGETEV u%d %d (%lx %d) gave %d (%d): %08lx %08lx %ld\n", DB_PRINT_EV, ees->unit, ees->io.fd, CIOGETEV, is_pps(ees), rc, errno, ptr[0], ptr[1], ptr[2]); /* If we managed to get the time of arrival, process the info */ if (rc >= 0) { int conv = -1; pps_step = ppsclockev.serial - ees->last_pps_no; /* Possible that PPS triggered, but text message didn't */ if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second); if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1; if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4; /* allow for single loss of PPS only */ if (pps_step != 1 && pps_step != 2) fprintf(stderr, "PPS step: %d too far off %ld (%d)\n", ppsclockev.serial, ees->last_pps_no, pps_step); else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp)) fprintf(stderr, "buftvtots failed\n"); else { /* if ((ABS(time difference) - 0.25) < 0) * then believe it ... */ l_fp diff; diff = pps_arrvstamp; conv = 0; L_SUB(&diff, &ees->arrvtime); if (debug & DB_PRINT_CDT) printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s", DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf, (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf, (long)diff.l_ui, (long)diff.l_uf, ctime(&(ppsclockev.tv.tv_sec))); if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); L_SUB(&diff, &acceptable_slop); if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ ees->arrvtime = pps_arrvstamp; conv++; call_pps_sample++; } /* Some loss of some signals around sec = 1 */ else if (ees->second == 1) { diff = pps_arrvstamp; L_ADD(&diff, &onesec); L_SUB(&diff, &ees->arrvtime); if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); L_SUB(&diff, &acceptable_slop); msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s", pps_arrvstamp.l_ui - ees->arrvtime.l_ui, pps_arrvstamp.l_uf, ees->arrvtime.l_uf, diff.l_ui, diff.l_uf, ppsclockev.tv.tv_usec, ctime(&(ppsclockev.tv.tv_sec))); if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ suspect_4ms_step |= 2; ees->arrvtime = pps_arrvstamp; L_ADD(&ees->arrvtime, &onesec); conv++; call_pps_sample++; } } } ees->last_pps_no = ppsclockev.serial; if (debug & DB_PRINT_CDTC) printf( "[%x] %08lx %08lx %d u%d (%d %d)\n", DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf, conv, ees->unit, call_pps_sample, pps_step); } /* See if there has been a 4ms jump at a minute boundry */ { l_fp delta; #define delta_isec delta.l_ui #define delta_ssec delta.l_i #define delta_sfsec delta.l_f long delta_f_abs; delta.l_i = ees->arrvtime.l_i; delta.l_f = ees->arrvtime.l_f; L_SUB(&delta, &ees->last_l); delta_f_abs = delta_sfsec; if (delta_f_abs < 0) delta_f_abs = -delta_f_abs; /* Dump the deltas each minute */ if (debug & DB_DUMP_DELTAS) { if (/*0 <= ees->second && */ ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec; /* Dump on second 1, as second 0 sometimes missed */ if (ees->second == 1) { char text[16 * ((sizeof deltas) / (sizeof deltas[0]))]; char *ptr=text; int i; for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) { sprintf(ptr, " %d.%04d", msec(deltas[i]), subms(deltas[i])); while (*ptr) ptr++; } msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s", msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE), msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE), text+1); for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0; } } /* Lets see if we have a 4 mS step at a minute boundaary */ if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) && (delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) && (ees->second == 0 || ees->second == 1 || ees->second == 2) && (sincelast < 0 || sincelast > 122) ) { /* 4ms jump at min boundry */ int old_sincelast; int count=0; int sum = 0; /* Yes -- so compute the ramp time */ if (ees->last_step == 0) sincelast = 0; old_sincelast = sincelast; /* First time in, just set "ees->last_step" */ if(ees->last_step) { int other_step = 0; int third_step = 0; int this_step = (sincelast + (60 /2)) / 60; int p_step = ees->this_step; int p; ees->last_steps[p_step] = this_step; p= p_step; p_step++; if (p_step >= LAST_STEPS) p_step = 0; ees->this_step = p_step; /* Find the "average" interval */ while (p != p_step) { int this = ees->last_steps[p]; if (this == 0) break; if (this != this_step) { if (other_step == 0 && ( this== (this_step +2) || this== (this_step -2) || this== (this_step +1) || this== (this_step -1))) other_step = this; if (other_step != this) { int delta = (this_step - other_step); if (delta < 0) delta = - delta; if (third_step == 0 && ( (delta == 1) ? ( this == (other_step +1) || this == (other_step -1) || this == (this_step +1) || this == (this_step -1)) : ( this == (this_step + other_step)/2 ) )) third_step = this; if (third_step != this) break; } } sum += this; p--; if (p < 0) p += LAST_STEPS; count++; } msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step); if (count != 0) sum = ((sum * 60) + (count /2)) / count; #define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS]) msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d", ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n", ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); #undef SV ees->jump_fsecs = delta_sfsec; ees->using_ramp = 1; if (sincelast > 170) ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs); else ees->last_step_late = 30; if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30; if (ees->last_step_late < 0) ees->last_step_late = 0; if (ees->last_step_late >= 60) ees->last_step_late = 59; sincelast = 0; } else { /* First time in -- just save info */ ees->last_step_late = 30; ees->jump_fsecs = delta_sfsec; ees->using_ramp = 1; sum = 4 * 60; } ees->last_step = this_uisec; printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n", ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), ees->second, old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs); msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d", ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs); if (sum) ees->last_step_secs = sum; } /* OK, so not a 4ms step at a minute boundry */ else { if (suspect_4ms_step) msyslog(LOG_ERR, "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]", ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec), msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE), msec(delta_f_abs), subms(delta_f_abs), msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE), ees->second, sincelast); if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) { static ees_step_notes = EES_STEP_NOTES; if (ees_step_notes > 0) { ees_step_notes--; printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n", ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !"); msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s", ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !"); } } } } ees->last_l = ees->arrvtime; /* IF we have found that it's ramping * && it's within twice the expected ramp period * && there is a non zero step size (avoid /0 !) * THEN we twiddle things */ if (ees->using_ramp && sincelast < (ees->last_step_secs)*2 && ees->last_step_secs) { long sec_of_ramp = sincelast + ees->last_step_late; long fsecs; l_fp inc; /* Ramp time may vary, so may ramp for longer than last time */ if (sec_of_ramp > (ees->last_step_secs + 120)) sec_of_ramp = ees->last_step_secs; /* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */ fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs); if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR, "[%x] MSF%d: %3d/%03d -> d=%11d (%d|%d)", DB_LOG_DELTAS, ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); if (debug & DB_PRINT_DELTAS) printf( "MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n", ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, (long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); /* Must sign extend the result */ inc.l_i = (fsecs < 0) ? -1 : 0; inc.l_f = fsecs; if (debug & DB_INC_PPS) { L_SUB(&pps_arrvstamp, &inc); L_SUB(&ees->arrvtime, &inc); } else { L_ADD(&pps_arrvstamp, &inc); L_ADD(&ees->arrvtime, &inc); } } else { if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR, "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x", DB_LOG_DELTAS, ees->unit, ees->using_ramp, sincelast, (ees->last_step_secs)*2, ees->last_step_secs); if (debug & DB_PRINT_DELTAS) printf( "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n", DB_LOG_DELTAS, ees->unit, ees->using_ramp, sincelast, (ees->last_step_secs)*2, ees->last_step_secs); } L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]); L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]); if (call_pps_sample && !(debug & DB_NO_PPS)) { /* Sigh -- it expects its args negated */ L_NEG(&pps_arrvstamp); (void) pps_sample(&pps_arrvstamp); } /* Subtract off the local clock time stamp */ L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime); if (debug & DB_LOG_SAMPLES) msyslog(LOG_ERR, "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s", ees->unit, DB_LOG_DELTAS, n_sample, ees->codeoffsets[n_sample].l_f, ees->codeoffsets[n_sample].l_f / 4295, pps_arrvstamp.l_f, pps_arrvstamp.l_f /4295, (debug & DB_NO_PPS) ? " [no PPS]" : ""); if (ees->nsamples++ == NCODES-1) ees_process(ees); /* Done! */ } static void set_x(fp_offset) l_fp *fp_offset; { step_systime_real(fp_offset); } /* offcompare - auxiliary comparison routine for offset sort */ static int offcompare(a, b) l_fp *a, *b; { return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1); } /* ees_process - process a pile of samples from the clock */ static void ees_process(ees) struct eesunit *ees; { static last_samples = -1; register int i, j; register int noff; register l_fp *coffs = ees->codeoffsets; l_fp offset, tmp; u_fp dispersion; /* ++++ */ int lostsync, isinsync; int samples = ees->nsamples; int samplelog = 0; /* keep "gcc -Wall" happy ! */ int samplereduce = (samples + 1) / 2; /* Reset things to zero so we don't have to worry later */ ees_reset(ees); if (sloppyclockflag[ees->unit]) { samplelog = (samples < 2) ? 0 : (samples < 5) ? 1 : (samples < 9) ? 2 : (samples < 17) ? 3 : (samples < 33) ? 4 : 5; samplereduce = (1 << samplelog); } if (samples != last_samples && ((samples != (last_samples-1)) || samples < 3)) { msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....", samples, last_samples, samplereduce); last_samples = samples; } if (samples < 1) return; /* If requested, dump the raw data we have in the buffer */ if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw data is:"); /* Sort the offsets, trim off the extremes, then choose one. */ qsort((char *) coffs, samples, sizeof(l_fp), offcompare); noff = samples; i = 0; while ((noff - i) > samplereduce) { /* Trim off the sample which is further away * from the median. We work this out by doubling * the median, subtracting off the end samples, and * looking at the sign of the answer, using the * identity (c-b)-(b-a) == 2*b-a-c */ tmp = coffs[(noff + i)/2]; L_ADD(&tmp, &tmp); L_SUB(&tmp, &coffs[i]); L_SUB(&tmp, &coffs[noff-1]); if (L_ISNEG(&tmp)) noff--; else i++; } /* If requested, dump the reduce data we have in the buffer */ if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:"); /* What we do next depends on the setting of the sloppy clock flag. * If it is on, average the remainder to derive our estimate. * Otherwise, just pick a representative value from the remaining stuff */ if (sloppyclockflag[ees->unit]) { offset.l_ui = offset.l_uf = 0; for (j = i; j < noff; j++) L_ADD(&offset, &coffs[j]); for (j = samplelog; j > 0; j--) L_RSHIFTU(&offset); } else offset = coffs[i+BESTSAMPLE]; /* Compute the dispersion as the difference between the * lowest and highest offsets that remain in the * consideration list. * * It looks like MOST clocks have MOD (max error), so halve it ! */ tmp = coffs[noff-1]; L_SUB(&tmp, &coffs[i]); #define FRACT_SEC(n) ((1 << 30) / (n/2)) dispersion = LFPTOFP(&tmp) / 2; /* ++++ */ if (debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog( (debug & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO, "I: [%x] Offset=%06d (%d), disp=%06d%s [%d], %d %d=%d %d:%d %d=%d %d", debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE), offset.l_f / 4295, offset.l_f, (dispersion * 1526) / 100, (sloppyclockflag[ees->unit]) ? " by averaging" : "", FRACT_SEC(10) / 4295, (coffs[0].l_f) / 4295, i, (coffs[i].l_f) / 4295, (coffs[samples/2].l_f) / 4295, (coffs[i+BESTSAMPLE].l_f) / 4295, noff-1, (coffs[noff-1].l_f) / 4295, (coffs[samples-1].l_f) / 4295); /* Are we playing silly wotsits ? * If we are using all data, see if there is a "small" delta, * and if so, blurr this with 3/4 of the delta from the last value */ if (ees->usealldata && ees->offset.l_uf) { long diff = (long) (ees->offset.l_uf - offset.l_uf); /* is the delta small enough ? */ if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) { int samd = (64 * 4) / samples; long new; if (samd < 2) samd = 2; new = offset.l_uf + ((diff * (samd -1)) / samd); /* Sign change -> need to fix up int part */ if ((new & (1 << 31)) != (((long) offset.l_uf) & ( 1 << 31))) { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ msyslog(LOG_INFO, "I: %x != %x (%x %x), so add %d", new & (1 << 31), ((long) offset.l_uf) & ( 1 << 31), new, (long) offset.l_uf, (new < 0) ? -1 : 1); offset.l_ui += (new < 0) ? -1 : 1; } dispersion /= 4; if (debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog( (debug & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO, "I: [%x] Smooth data: %d -> %d, dispersion now %d", debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE), ((long) offset.l_uf) / 4295, new / 4295, (dispersion * 1526) / 100); offset.l_uf = (unsigned long) new; } else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( (debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, "[%x] No smooth as delta not %d < %d < %d", debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), - FRACT_SEC(100), diff, FRACT_SEC(100)); } else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( (debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, "I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)", debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), ees->usealldata, ees->offset.l_f, ees->offset.l_uf, offset.l_f, ees->offset.l_f - offset.l_f); /* Collect offset info for debugging info */ ees->offset = offset; ees->lowoffset = coffs[i]; ees->highoffset = coffs[noff-1]; /* Determine synchronization status. Can be unsync'd either * by a report from the clock or by a leap hold. * * Loss of the radio signal for a short time does not cause * us to go unsynchronised, since the receiver keeps quite * good time on its own. The spec says 20ms in 4 hours; the * observed drift in our clock (Cambridge) is about a second * a day, but even that keeps us within the inherent tolerance * of the clock for about 15 minutes. Observation shows that * the typical "short" outage is 3 minutes, so to allow us * to ride out those, we will give it 5 minutes. */ lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0; isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1; /* Done. Use time of last good, synchronised code as the * reference time, and lastsampletime as the receive time. */ if (ees->fix_pending) { msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n", ees->fix_pending, ees->unit, offset.l_i, offset.l_f); ees->fix_pending = 0; set_x(&offset); L_CLR(&offset); } refclock_receive(ees->peer, &offset, 0, /* delay */ dispersion, &ees->reftime, &ees->lastsampletime, /* receive time */ (isinsync) ? 0 : LEAP_NOTINSYNC); ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL); } /* msfees_poll - called by the transmit procedure */ static void msfees_poll(unit, peer) int unit; char *peer; { if (unit >= MAXUNITS) { msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid", unit); return; } if (!unitinuse[unit]) { msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused", unit); return; } ees_process(eesunits[unit]); if ((current_time - eesunits[unit]->lasttime) > 150) ees_event(eesunits[unit], CEVNT_FAULT); } #if 0 /* Apparently unused... */ /* msfees_leap - called when a leap second occurs */ static void msfees_leap() { register int i; /* This routine should be entered a few seconds after * midnight UTC when a leap second occurs. To ensure we * don't believe foolish time from the clock(s) we set a * 40 minute hold on them. It shouldn't take anywhere * near this amount of time to adjust if the clock is getTING * data, but doing anything else is complicated. */ for (i = 0; i < MAXUNITS; i++) if (unitinuse[i]) eesunits[i]->leaphold = current_time + EESLEAPHOLD; } #endif /* msfees_control - set fudge factors, return statistics */ static void msfees_control(unit, in, out) int unit; struct refclockstat *in; struct refclockstat *out; { register struct eesunit *ees = eesunits[unit]; if (unit >= MAXUNITS) { msyslog(LOG_ERR, "ees clock: unit %d invalid (max %d)", unit, MAXUNITS-1); return; } if (in != 0) { if (in->haveflags & CLK_HAVETIME1) fudgefactor[unit] = in->fudgetime1; if (in->haveflags & CLK_HAVETIME2) os_delay[unit] = in->fudgetime2; offset_fudge[unit] = os_delay[unit]; L_ADD(&offset_fudge[unit], &fudgefactor[unit]); L_ADD(&offset_fudge[unit], &inherent_delay[unit]); if (in->haveflags & CLK_HAVEVAL1) { stratumtouse[unit] = (u_char)(in->fudgeval1 & 0xf); if (unitinuse[unit]) { /* Should actually reselect clock, but * will wait for the next timecode */ struct peer *peer = ees->peer; struct refclockproc *pp = peer->procptr; peer->stratum = stratumtouse[unit]; if (stratumtouse[unit] <= 1) { memmove((char *)&pp->refid, EESREFID, 4); if (unit>0 && unit<10) ((char *)&pp->refid)[3] = '0' + unit; } else peer->refid = htonl(EESHSREFID); } } if (in->haveflags & CLK_HAVEVAL2) { printf("Debug: %x -> %x\n", debug, in->fudgeval2); msyslog(LOG_ERR, "MSF%d: debug %x -> %x", unit, debug, in->fudgeval2); debug = in->fudgeval2; } if (in->haveflags & CLK_HAVEFLAG1) { sloppyclockflag[unit] = in->flags & CLK_FLAG1; } if (in->haveflags & CLK_HAVEFLAG2) { ees->fix_pending++; /* if (in->flags & CLK_FLAG2 && unitinuse[unit]) ees->leaphold = 0; */ } if (in->haveflags & CLK_HAVEFLAG3 && unitinuse[unit]) { printf("dump_vals: %x -> %x\n", ees->dump_vals, in->flags & CLK_FLAG3); ees->dump_vals = in->flags & CLK_FLAG3; } if (in->haveflags & CLK_HAVEFLAG4 && unitinuse[unit]) { ees->usealldata = in->flags & CLK_FLAG4; } } if (out != 0) { struct peer *peer = ees->peer; struct refclockproc *pp = peer->procptr; out->type = REFCLK_MSF_EES; out->haveflags = CLK_HAVETIME1|CLK_HAVETIME2|CLK_HAVEVAL1|CLK_HAVEVAL2|CLK_HAVEFLAG1|CLK_HAVEFLAG3|CLK_HAVEFLAG4; out->clockdesc = pp->clockdesc; out->fudgetime1 = fudgefactor[unit]; out->fudgetime2 = os_delay[unit]; out->fudgeval1 = (long)stratumtouse[unit]; /*out->fudgeval2= debug*/; memmove((char *)&out->fudgeval2, (char *)&pp->refid, 4); out->flags = sloppyclockflag[unit]; if (unitinuse[unit]) { out->flags |= ees->dump_vals | ees->usealldata; out->lencode = ees->lencode; out->lastcode = ees->lastcode; out->timereset = current_time - ees->timestarted; out->polls = 0; /* we don't poll */ out->noresponse = 0; /* ditto */ out->badformat = ees->badformat; out->baddata = ees->baddata; out->lastevent = ees->lastevent; out->currentstatus = ees->status; } else { out->lencode = 0; out->lastcode = ""; out->polls = out->noresponse = 0; out->badformat = out->baddata = 0; out->timereset = 0; out->currentstatus = out->lastevent = CEVNT_NOMINAL; } } } /* msfees_buginfo - return clock dependent debugging info */ static void msfees_buginfo(unit, bug) int unit; register struct refclockbug *bug; { register struct eesunit *ees; bug->nvalues = bug->ntimes = 0; if (unit >= MAXUNITS) { msyslog(LOG_ERR, "ees clock: unit %d invalid (max %d)", unit, MAXUNITS-1); return; } if (!unitinuse[unit]) return; ees = eesunits[unit]; bug->nvalues = 16; bug->svalues = 0x0800; bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0; bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0; bug->values[2] = (u_long)ees->status; bug->values[3] = (u_long)ees->lastevent; bug->values[4] = (u_long)ees->reason; bug->values[5] = (u_long)ees->nsamples; bug->values[6] = (u_long)ees->codestate; bug->values[7] = (u_long)ees->day; bug->values[8] = (u_long)ees->hour; bug->values[9] = (u_long)ees->minute; bug->values[10] = (u_long)ees->second; bug->values[11] = (u_long)ees->tz; bug->values[12] = ees->yearstart; bug->values[13] = (ees->leaphold > current_time) ? ees->leaphold - current_time : 0; bug->values[14] = inherent_delay[unit].l_uf; bug->values[15] = offset_fudge[unit].l_uf; bug->ntimes = 11; bug->stimes = 0x3f8; bug->times[0] = ees->reftime; bug->times[1] = ees->arrvtime; bug->times[2] = ees->lastsampletime; bug->times[3] = ees->offset; bug->times[4] = ees->lowoffset; bug->times[5] = ees->highoffset; bug->times[6] = inherent_delay[unit]; bug->times[8] = os_delay[unit]; bug->times[7] = fudgefactor[unit]; bug->times[9] = offset_fudge[unit]; bug->times[10].l_ui = ees->yearstart; bug->times[10].l_uf = 0; } struct refclock refclock_msfees = { msfees_start, msfees_shutdown, msfees_poll, msfees_control, msfees_init, msfees_buginfo, NOFLAGS }; #else /* not defined(REFCLOCK) && defined(MSFEES) && defined(PPS) */ int refclock_msfees_bs; #endif /* not defined(REFCLOCK) && defined(MSFEES) && defined(PPS) */