/* * Copyright (c) 1991-1993 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the Computer Systems * Engineering Group at Lawrence Berkeley Laboratory. * 4. Neither the name of the University nor of the Laboratory may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: Header: sbreg.h,v 1.3 93/07/18 14:07:28 mccanne Exp (LBL) * $Id: sbreg.h,v 1.1 1994/01/09 19:35:10 cgd Exp $ */ /* * SoundBlaster register definitions. * See "The Developer Kit for Sound Blaster Series, User's Guide" for more * complete information (avialable from Creative Labs, Inc.). We refer * to this documentation as "SBK". * * We handle two types of cards: the basic SB version 2.0+, and * the SB PRO. There are several distinct pieces of the hardware: * * joystick port (independent of I/O base address) * FM synth (stereo on PRO) * mixer (PRO only) * DSP (sic) * CD-ROM (PRO only) * * The MIDI capabilities are handled by the DSP unit. */ /* * Address map. The SoundBlaster can be configured (via jumpers) for * either base I/O address 0x220 or 0x240. The encodings below give * the offsets to specific SB ports. SBP stands for SB port offset. */ #ifdef SBPRO #define SBP_LFM_STATUS 0 /* R left FM status port */ #define SBP_LFM_ADDR 0 /* W left FM address register */ #define SBP_LFM_DATA 1 /* RW left FM data port */ #define SBP_RFM_STATUS 2 /* R right FM status port */ #define SBP_RFM_ADDR 2 /* W right FM address register */ #define SBP_RFM_DATA 3 /* RW right FM data port */ #endif #define SBP_FM_STATUS 8 /* R FM status port */ #define SBP_FM_ADDR 8 /* W FM address register */ #define SBP_FM_DATA 9 /* RW FM data port */ #ifdef SBPRO #define SBP_MIXER_ADDR 4 /* W mixer address register */ #define SBP_MIXER_DATA 5 /* RW mixer data port */ #endif #define SBP_DSP_RESET 6 /* W reset port */ #define SB_MAGIC 0xaa /* card outputs on successful reset */ #define SBP_DSP_READ 10 /* R read port */ #define SBP_DSP_WRITE 12 /* W write port */ #define SBP_DSP_WSTAT 12 /* R write status */ #define SBP_DSP_RSTAT 14 /* R read status */ #define SB_DSP_BUSY 0x80 #define SB_DSP_READY 0x80 #ifdef SBPRO #define SBP_CDROM_DATA 16 /* RW send cmds/recv data */ #define SBP_CDROM_STATUS 17 /* R status port */ #define SBP_CDROM_RESET 18 /* W reset register */ #define SBP_CDROM_ENABLE 19 /* W enable register */ #endif #ifdef SBPRO #define SB_NPORT 24 #else #define SB_NPORT 16 #endif /* * DSP commands. This unit handles MIDI and audio capabilities. * The DSP can be reset, data/commands can be read or written to it, * and it can generate interrupts. Interrupts are generated for MIDI * input or DMA completion. They seem to have neglected the fact * that it would be nice to have a MIDI transmission complete interrupt. * Worse, the DMA engine is half-duplex. This means you need to do * (timed) programmed I/O to be able to record and play simulataneously. */ #define SB_DSP_DACWRITE 0x10 /* programmed I/O write to DAC */ #define SB_DSP_WDMA 0x14 /* begin 8-bit linear DMA output */ #define SB_DSP_WDMA_2 0x16 /* begin 2-bit ADPCM DMA output */ #define SB_DSP_ADCREAD 0x20 /* programmed I/O read from ADC */ #define SB_DSP_RDMA 0x24 /* begin 8-bit linear DMA input */ #define SB_MIDI_POLL 0x30 /* initiate a polling read for MIDI */ #define SB_MIDI_READ 0x31 /* read a MIDI byte on recv intr */ #define SB_MIDI_UART_POLL 0x34 /* enter UART mode w/ read polling */ #define SB_MIDI_UART_INTR 0x35 /* enter UART mode w/ read intrs */ #define SB_MIDI_WRITE 0x38 /* write a MIDI byte (non-UART mode) */ #define SB_DSP_TIMECONST 0x40 /* set ADAC time constant */ #define SB_DSP_BLOCKSIZE 0x48 /* set blk size for high speed xfer */ #define SB_DSP_WDMA_4 0x74 /* begin 4-bit ADPCM DMA output */ #define SB_DSP_WDMA_2_6 0x76 /* begin 2.6-bit ADPCM DMA output */ #define SB_DSP_SILENCE 0x80 /* send a block of silence */ #define SB_DSP_HS_OUTPUT 0x91 /* set high speed mode for wdma */ #define SB_DSP_HS_INPUT 0x99 /* set high speed mode for rdma */ #define SB_DSP_HALT 0xd0 /* temporarilty suspend DMA */ #define SB_DSP_SPKR_ON 0xd1 /* turn speaker on */ #define SB_DSP_SPKR_OFF 0xd3 /* turn speaker off */ #define SB_DSP_CONT 0xd4 /* continue suspended DMA */ #define SB_DSP_RD_SPKR 0xd8 /* get speaker status */ #define SB_SPKR_OFF 0x00 #define SB_SPKR_ON 0xff #define SB_DSP_VERSION 0xe1 /* get version number */ /* * The ADPCM encodings are differential, meaning each sample represents * a difference to add to a running sum. The inital value is called the * reference, or reference byte. Any of the ADPCM DMA transfers can specify * that the given transfer begins with a reference byte by or'ing * in the bit below. */ #define SB_DSP_REFERENCE 1 /* * Macros to detect valid hardware configuration data. */ #define SB_IRQ_VALID(mask) ((mask) & 0x00ac) /* IRQ 2,3,5,7 */ #define SB_DRQ_VALID(chan) ((chan) == 1) #define SB_BASE_VALID(chan) ((base) == 0x220 || (base) == 0x240) #define SB_INPUT_RATE 0 #define SB_OUTPUT_RATE 1