/* $NetBSD: stic.c,v 1.13 2002/01/12 16:29:31 tsutsui Exp $ */ /*- * Copyright (c) 1999, 2000, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1998, 1999 Tohru Nishimura. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Tohru Nishimura * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for the DEC PixelStamp interface chip (STIC). * * XXX The bt459 interface shouldn't be replicated here. */ #include __KERNEL_RCSID(0, "$NetBSD: stic.c,v 1.13 2002/01/12 16:29:31 tsutsui Exp $"); #include #include #include #include #include #include #include #include #include #include #if defined(pmax) #include #elif defined(alpha) #include #endif #include #include #include #include #include #include #include #include #include #include #include #define DUPBYTE0(x) ((((x)&0xff)<<16) | (((x)&0xff)<<8) | ((x)&0xff)) #define DUPBYTE1(x) ((((x)<<8)&0xff0000) | ((x)&0xff00) | (((x)>>8)&0xff)) #define DUPBYTE2(x) (((x)&0xff0000) | (((x)>>8)&0xff00) | (((x)>>16)&0xff)) #define PACK(p, o) ((p)[(o)] | ((p)[(o)+1] << 16)) #if defined(pmax) #define machine_btop(x) mips_btop(x) #elif defined(alpha) #define machine_btop(x) alpha_btop(x) #endif /* * N.B., Bt459 registers are 8bit width. Some of TC framebuffers have * obscure register layout such as 2nd and 3rd Bt459 registers are * adjacent each other in a word, i.e., * struct bt459triplet { * struct { * u_int8_t u0; * u_int8_t u1; * u_int8_t u2; * unsigned :8; * } bt_lo; * struct { * * Although HX has single Bt459, 32bit R/W can be done w/o any trouble. * struct bt459reg { * u_int32_t bt_lo; * u_int32_t bt_hi; * u_int32_t bt_reg; * u_int32_t bt_cmap; * }; * */ /* Bt459 hardware registers */ #define bt_lo 0 #define bt_hi 1 #define bt_reg 2 #define bt_cmap 3 #define REG(base, index) *((u_int32_t *)(base) + (index)) #define SELECT(vdac, regno) do { \ REG(vdac, bt_lo) = DUPBYTE0(regno); \ REG(vdac, bt_hi) = DUPBYTE1(regno); \ tc_wmb(); \ } while (0) int sticioctl(void *, u_long, caddr_t, int, struct proc *); int stic_alloc_screen(void *, const struct wsscreen_descr *, void **, int *, int *, long *); void stic_free_screen(void *, void *); int stic_show_screen(void *, void *, int, void (*)(void *, int, int), void *); int sticopen(dev_t, int, int, struct proc *); int sticclose(dev_t, int, int, struct proc *); paddr_t sticmmap(dev_t, off_t, int); void stic_do_switch(void *); void stic_setup_backing(struct stic_info *, struct stic_screen *); void stic_setup_vdac(struct stic_info *); void stic_clear_screen(struct stic_info *); int stic_get_cmap(struct stic_info *, struct wsdisplay_cmap *); int stic_set_cmap(struct stic_info *, struct wsdisplay_cmap *); int stic_set_cursor(struct stic_info *, struct wsdisplay_cursor *); int stic_get_cursor(struct stic_info *, struct wsdisplay_cursor *); void stic_set_curpos(struct stic_info *, struct wsdisplay_curpos *); void stic_set_hwcurpos(struct stic_info *); void stic_cursor(void *, int, int, int); void stic_copycols(void *, int, int, int, int); void stic_copyrows(void *, int, int, int); void stic_erasecols(void *, int, int, int, long); void stic_eraserows(void *, int, int, long); int stic_mapchar(void *, int, u_int *); void stic_putchar(void *, int, int, u_int, long); int stic_alloc_attr(void *, int, int, int, long *); /* Colormap for wscons, matching WSCOL_*. Upper 8 are high-intensity. */ static const u_int8_t stic_cmap[16*3] = { 0x00, 0x00, 0x00, /* black */ 0x7f, 0x00, 0x00, /* red */ 0x00, 0x7f, 0x00, /* green */ 0x7f, 0x7f, 0x00, /* brown */ 0x00, 0x00, 0x7f, /* blue */ 0x7f, 0x00, 0x7f, /* magenta */ 0x00, 0x7f, 0x7f, /* cyan */ 0xc7, 0xc7, 0xc7, /* white */ 0x7f, 0x7f, 0x7f, /* black */ 0xff, 0x00, 0x00, /* red */ 0x00, 0xff, 0x00, /* green */ 0xff, 0xff, 0x00, /* brown */ 0x00, 0x00, 0xff, /* blue */ 0xff, 0x00, 0xff, /* magenta */ 0x00, 0xff, 0xff, /* cyan */ 0xff, 0xff, 0xff, /* white */ }; /* * Compose 2 bit/pixel cursor image. Bit order will be reversed. * M M M M I I I I M I M I M I M I * [ before ] [ after ] * 3 2 1 0 3 2 1 0 0 0 1 1 2 2 3 3 * 7 6 5 4 7 6 5 4 4 4 5 5 6 6 7 7 */ static const u_int8_t shuffle[256] = { 0x00, 0x40, 0x10, 0x50, 0x04, 0x44, 0x14, 0x54, 0x01, 0x41, 0x11, 0x51, 0x05, 0x45, 0x15, 0x55, 0x80, 0xc0, 0x90, 0xd0, 0x84, 0xc4, 0x94, 0xd4, 0x81, 0xc1, 0x91, 0xd1, 0x85, 0xc5, 0x95, 0xd5, 0x20, 0x60, 0x30, 0x70, 0x24, 0x64, 0x34, 0x74, 0x21, 0x61, 0x31, 0x71, 0x25, 0x65, 0x35, 0x75, 0xa0, 0xe0, 0xb0, 0xf0, 0xa4, 0xe4, 0xb4, 0xf4, 0xa1, 0xe1, 0xb1, 0xf1, 0xa5, 0xe5, 0xb5, 0xf5, 0x08, 0x48, 0x18, 0x58, 0x0c, 0x4c, 0x1c, 0x5c, 0x09, 0x49, 0x19, 0x59, 0x0d, 0x4d, 0x1d, 0x5d, 0x88, 0xc8, 0x98, 0xd8, 0x8c, 0xcc, 0x9c, 0xdc, 0x89, 0xc9, 0x99, 0xd9, 0x8d, 0xcd, 0x9d, 0xdd, 0x28, 0x68, 0x38, 0x78, 0x2c, 0x6c, 0x3c, 0x7c, 0x29, 0x69, 0x39, 0x79, 0x2d, 0x6d, 0x3d, 0x7d, 0xa8, 0xe8, 0xb8, 0xf8, 0xac, 0xec, 0xbc, 0xfc, 0xa9, 0xe9, 0xb9, 0xf9, 0xad, 0xed, 0xbd, 0xfd, 0x02, 0x42, 0x12, 0x52, 0x06, 0x46, 0x16, 0x56, 0x03, 0x43, 0x13, 0x53, 0x07, 0x47, 0x17, 0x57, 0x82, 0xc2, 0x92, 0xd2, 0x86, 0xc6, 0x96, 0xd6, 0x83, 0xc3, 0x93, 0xd3, 0x87, 0xc7, 0x97, 0xd7, 0x22, 0x62, 0x32, 0x72, 0x26, 0x66, 0x36, 0x76, 0x23, 0x63, 0x33, 0x73, 0x27, 0x67, 0x37, 0x77, 0xa2, 0xe2, 0xb2, 0xf2, 0xa6, 0xe6, 0xb6, 0xf6, 0xa3, 0xe3, 0xb3, 0xf3, 0xa7, 0xe7, 0xb7, 0xf7, 0x0a, 0x4a, 0x1a, 0x5a, 0x0e, 0x4e, 0x1e, 0x5e, 0x0b, 0x4b, 0x1b, 0x5b, 0x0f, 0x4f, 0x1f, 0x5f, 0x8a, 0xca, 0x9a, 0xda, 0x8e, 0xce, 0x9e, 0xde, 0x8b, 0xcb, 0x9b, 0xdb, 0x8f, 0xcf, 0x9f, 0xdf, 0x2a, 0x6a, 0x3a, 0x7a, 0x2e, 0x6e, 0x3e, 0x7e, 0x2b, 0x6b, 0x3b, 0x7b, 0x2f, 0x6f, 0x3f, 0x7f, 0xaa, 0xea, 0xba, 0xfa, 0xae, 0xee, 0xbe, 0xfe, 0xab, 0xeb, 0xbb, 0xfb, 0xaf, 0xef, 0xbf, 0xff, }; static const struct wsdisplay_accessops stic_accessops = { sticioctl, NULL, /* mmap */ stic_alloc_screen, stic_free_screen, stic_show_screen, NULL, /* load_font */ }; static const struct wsdisplay_emulops stic_emulops = { stic_cursor, stic_mapchar, stic_putchar, stic_copycols, stic_erasecols, stic_copyrows, stic_eraserows, stic_alloc_attr }; static struct wsscreen_descr stic_stdscreen = { "std", 0, 0, &stic_emulops, 0, 0, WSSCREEN_WSCOLORS | WSSCREEN_HILIT }; static const struct wsscreen_descr *_stic_scrlist[] = { &stic_stdscreen, }; static const struct wsscreen_list stic_screenlist = { sizeof(_stic_scrlist) / sizeof(struct wsscreen_descr *), _stic_scrlist }; struct stic_info stic_consinfo; static struct stic_screen stic_consscr; static struct stic_info *stic_info[STIC_MAXDV]; static int stic_unit; void stic_init(struct stic_info *si) { volatile u_int32_t *vdac; int i, cookie; /* Reset the STIC & stamp(s). */ stic_reset(si); vdac = si->si_vdac; /* Hit it... */ SELECT(vdac, BT459_IREG_COMMAND_0); REG(vdac, bt_reg) = 0x00c0c0c0; tc_wmb(); /* Now reset the VDAC. */ *si->si_vdac_reset = 0; tc_wmb(); tc_syncbus(); DELAY(1000); /* Finish the initialization. */ SELECT(vdac, BT459_IREG_COMMAND_1); REG(vdac, bt_reg) = 0x00000000; tc_wmb(); REG(vdac, bt_reg) = 0x00c2c2c2; tc_wmb(); REG(vdac, bt_reg) = 0x00ffffff; tc_wmb(); for (i = 0; i < 7; i++) { REG(vdac, bt_reg) = 0x00000000; tc_wmb(); } /* Set cursor colormap. */ SELECT(vdac, BT459_IREG_CCOLOR_1); REG(vdac, bt_reg) = 0x00ffffff; tc_wmb(); REG(vdac, bt_reg) = 0x00ffffff; tc_wmb(); REG(vdac, bt_reg) = 0x00ffffff; tc_wmb(); REG(vdac, bt_reg) = 0x00000000; tc_wmb(); REG(vdac, bt_reg) = 0x00000000; tc_wmb(); REG(vdac, bt_reg) = 0x00000000; tc_wmb(); REG(vdac, bt_reg) = 0x00ffffff; tc_wmb(); REG(vdac, bt_reg) = 0x00ffffff; tc_wmb(); REG(vdac, bt_reg) = 0x00ffffff; tc_wmb(); /* Get a font and set up screen metrics. */ wsfont_init(); cookie = wsfont_find(NULL, 0, 0, 0); if (wsfont_lock(cookie, &si->si_font, WSDISPLAY_FONTORDER_R2L, WSDISPLAY_FONTORDER_L2R) <= 0) panic("stic_init: couldn't lock font\n"); si->si_fontw = si->si_font->fontwidth; si->si_fonth = si->si_font->fontheight; si->si_consw = (1280 / si->si_fontw) & ~1; si->si_consh = 1024 / si->si_fonth; stic_stdscreen.ncols = si->si_consw; stic_stdscreen.nrows = si->si_consh; #ifdef DIAGNOSTIC if ((u_int)si->si_fonth > 32 || (u_int)si->si_fontw > 16) panic("stic_init: unusable font"); #endif stic_setup_vdac(si); stic_clear_screen(si); si->si_dispmode = WSDISPLAYIO_MODE_EMUL; } void stic_reset(struct stic_info *si) { int modtype, xconfig, yconfig, config; volatile struct stic_regs *sr; sr = si->si_stic; /* * Initialize the interface chip registers. */ sr->sr_sticsr = 0x00000030; /* Get the STIC's attention. */ tc_wmb(); tc_syncbus(); DELAY(2000); /* wait 2ms for STIC to respond. */ sr->sr_sticsr = 0x00000000; /* Hit the STIC's csr again... */ tc_wmb(); sr->sr_buscsr = 0xffffffff; /* and bash its bus-acess csr. */ tc_wmb(); tc_syncbus(); /* Blam! */ DELAY(20000); /* wait until the stic recovers... */ modtype = sr->sr_modcl; xconfig = (modtype & 0x800) >> 11; yconfig = (modtype & 0x600) >> 9; config = (yconfig << 1) | xconfig; si->si_stampw = (xconfig ? 5 : 4); si->si_stamph = (1 << yconfig); #ifdef notyet si->si_option = (char)((modtype >> 12) & 3); #endif /* First PixelStamp */ si->si_stamp[0x000b0] = config; si->si_stamp[0x000b4] = 0x0; /* Second PixelStamp */ if (yconfig > 0) { si->si_stamp[0x100b0] = config | 8; si->si_stamp[0x100b4] = 0; } /* * Initialize STIC video registers. Enable error and vertical * retrace interrupts. Set the packet done flag so the Xserver will * not time-out on the first packet submitted. */ sr->sr_vblank = (1024 << 16) | 1063; sr->sr_vsync = (1027 << 16) | 1030; sr->sr_hblank = (255 << 16) | 340; sr->sr_hsync2 = 245; sr->sr_hsync = (261 << 16) | 293; sr->sr_ipdvint = STIC_INT_WE | STIC_INT_P | STIC_INT_E_EN | STIC_INT_V_EN; sr->sr_sticsr = 8; tc_wmb(); tc_syncbus(); } void stic_attach(struct device *self, struct stic_info *si, int console) { struct wsemuldisplaydev_attach_args waa; if (stic_unit < STIC_MAXDV) { stic_info[stic_unit] = si; si->si_unit = stic_unit++; } else si->si_unit = -1; callout_init(&si->si_switch_callout); /* * Allocate backing for the console. We could trawl back through * msgbuf and and fill the backing, but it's not worth the hassle. * We could also grab backing using pmap_steal_memory() early on, * but that's a little ugly. */ if (console) stic_setup_backing(si, &stic_consscr); waa.console = console; waa.scrdata = &stic_screenlist; waa.accessops = &stic_accessops; waa.accesscookie = si; config_found(self, &waa, wsemuldisplaydevprint); } void stic_cnattach(struct stic_info *si) { struct stic_screen *ss; long defattr; ss = &stic_consscr; si->si_curscreen = ss; ss->ss_flags = SS_ALLOCED | SS_ACTIVE | SS_CURENB; ss->ss_si = si; si->si_flags |= SI_CURENB_CHANGED; stic_flush(si); stic_alloc_attr(ss, 0, 0, 0, &defattr); stic_eraserows(ss, 0, si->si_consh, 0); wsdisplay_cnattach(&stic_stdscreen, ss, 0, 0, defattr); } void stic_setup_vdac(struct stic_info *si) { u_int8_t *ip, *mp; int r, c, o, b, i, s; s = spltty(); ip = (u_int8_t *)si->si_cursor.cc_image; mp = ip + (sizeof(si->si_cursor.cc_image) >> 1); memset(ip, 0, sizeof(si->si_cursor.cc_image)); for (r = 0; r < si->si_fonth; r++) { for (c = r & 1; c < si->si_fontw; c += 2) { o = c >> 3; b = 1 << (c & 7); ip[o] |= b; mp[o] |= b; } ip += 8; mp += 8; } si->si_cursor.cc_size.x = 64; si->si_cursor.cc_size.y = si->si_fonth; si->si_cursor.cc_hot.x = 0; si->si_cursor.cc_hot.y = 0; si->si_cursor.cc_color[0] = 0xff; si->si_cursor.cc_color[2] = 0xff; si->si_cursor.cc_color[4] = 0xff; si->si_cursor.cc_color[1] = 0x00; si->si_cursor.cc_color[3] = 0x00; si->si_cursor.cc_color[5] = 0x00; memset(&si->si_cmap, 0, sizeof(si->si_cmap)); for (i = 0; i < 16; i++) { si->si_cmap.r[i] = stic_cmap[i*3 + 0]; si->si_cmap.g[i] = stic_cmap[i*3 + 1]; si->si_cmap.b[i] = stic_cmap[i*3 + 2]; } si->si_flags |= SI_CMAP_CHANGED | SI_CURSHAPE_CHANGED | SI_CURCMAP_CHANGED; splx(s); } void stic_clear_screen(struct stic_info *si) { u_int32_t *pb; int i; /* * Do this twice, since the first packet after a reset may be * silently ignored. */ for (i = 0; i < 2; i++) { pb = (*si->si_pbuf_get)(si); pb[0] = STAMP_CMD_LINES | STAMP_RGB_CONST | STAMP_LW_PERPACKET; pb[1] = 0x01ffffff; pb[2] = 0; pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY; pb[4] = (1024 << 2) - 1; pb[5] = 0; pb[6] = 0; pb[7] = (1280 << 19) | ((1024 << 3) + pb[4]); (*si->si_pbuf_post)(si, pb); } } int sticioctl(void *v, u_long cmd, caddr_t data, int flag, struct proc *p) { struct stic_info *si; si = v; switch (cmd) { case WSDISPLAYIO_GTYPE: *(u_int *)data = si->si_disptype; return (0); case WSDISPLAYIO_GINFO: #define wsd_fbip ((struct wsdisplay_fbinfo *)data) wsd_fbip->height = 1024; wsd_fbip->width = 1280; wsd_fbip->depth = si->si_depth == 8 ? 8 : 32; wsd_fbip->cmsize = CMAP_SIZE; #undef fbt return (0); case WSDISPLAYIO_GETCMAP: return (stic_get_cmap(si, (struct wsdisplay_cmap *)data)); case WSDISPLAYIO_PUTCMAP: return (stic_set_cmap(si, (struct wsdisplay_cmap *)data)); case WSDISPLAYIO_SVIDEO: #if 0 /* XXX later */ turnoff = *(int *)data == WSDISPLAYIO_VIDEO_OFF; if ((si->si_blanked == 0) ^ turnoff) si->si_blanked = turnoff; #endif return (0); case WSDISPLAYIO_GVIDEO: #if 0 /* XXX later */ *(u_int *)data = si->si_blanked ? WSDISPLAYIO_VIDEO_OFF : WSDISPLAYIO_VIDEO_ON; #endif return (0); case WSDISPLAYIO_GCURPOS: *(struct wsdisplay_curpos *)data = si->si_cursor.cc_pos; return (0); case WSDISPLAYIO_SCURPOS: stic_set_curpos(si, (struct wsdisplay_curpos *)data); return (0); case WSDISPLAYIO_GCURMAX: ((struct wsdisplay_curpos *)data)->x = ((struct wsdisplay_curpos *)data)->y = CURSOR_MAX_SIZE; return (0); case WSDISPLAYIO_GCURSOR: return (stic_get_cursor(si, (struct wsdisplay_cursor *)data)); case WSDISPLAYIO_SCURSOR: return (stic_set_cursor(si, (struct wsdisplay_cursor *)data)); case WSDISPLAYIO_SMODE: si->si_dispmode = *(int *)data; if (si->si_dispmode == WSDISPLAYIO_MODE_EMUL) { (*si->si_ioctl)(si, STICIO_STOPQ, NULL, flag, p); stic_setup_vdac(si); stic_flush(si); stic_clear_screen(si); stic_do_switch(si->si_curscreen); } return (0); case STICIO_RESET: stic_reset(si); return (0); } if (si->si_ioctl != NULL) return ((*si->si_ioctl)(si, cmd, data, flag, p)); return (ENOTTY); } void stic_setup_backing(struct stic_info *si, struct stic_screen *ss) { int size; size = si->si_consw * si->si_consh * sizeof(*ss->ss_backing); ss->ss_backing = malloc(size, M_DEVBUF, M_NOWAIT|M_ZERO); } int stic_alloc_screen(void *v, const struct wsscreen_descr *type, void **cookiep, int *curxp, int *curyp, long *attrp) { struct stic_info *si; struct stic_screen *ss; si = (struct stic_info *)v; if ((stic_consscr.ss_flags & SS_ALLOCED) == 0) ss = &stic_consscr; else { ss = malloc(sizeof(*ss), M_DEVBUF, M_WAITOK|M_ZERO); } stic_setup_backing(si, ss); ss->ss_si = si; ss->ss_flags = SS_ALLOCED | SS_CURENB; *cookiep = ss; *curxp = 0; *curyp = 0; stic_alloc_attr(ss, 0, 0, 0, attrp); return (0); } void stic_free_screen(void *v, void *cookie) { struct stic_screen *ss; ss = cookie; #ifdef DIAGNOSTIC if (ss == &stic_consscr) panic("stic_free_screen: console"); if (ss == ((struct stic_info *)v)->si_curscreen) panic("stic_free_screen: freeing current screen"); #endif free(ss->ss_backing, M_DEVBUF); free(ss, M_DEVBUF); } int stic_show_screen(void *v, void *cookie, int waitok, void (*cb)(void *, int, int), void *cbarg) { struct stic_info *si; si = (struct stic_info *)v; if (si->si_switchcbarg != NULL) return (EAGAIN); si->si_switchcb = cb; si->si_switchcbarg = cbarg; if (cb != NULL) { callout_reset(&si->si_switch_callout, 0, stic_do_switch, cookie); return (EAGAIN); } stic_do_switch(cookie); return (0); } void stic_do_switch(void *cookie) { struct stic_screen *ss; struct stic_info *si; u_int r, c, nr, nc; u_int16_t *p, *sp; ss = cookie; si = ss->ss_si; #ifdef DIAGNOSTIC if (ss->ss_backing == NULL) panic("stic_do_switch: screen not backed"); #endif /* Swap in the new screen, and temporarily disable its backing. */ if (si->si_curscreen != NULL) si->si_curscreen->ss_flags ^= SS_ACTIVE; si->si_curscreen = ss; ss->ss_flags |= SS_ACTIVE; sp = ss->ss_backing; ss->ss_backing = NULL; /* * We assume that most of the screen is blank and blast it with * eraserows(), because eraserows() is cheap. */ nr = si->si_consh; stic_eraserows(ss, 0, nr, 0); nc = si->si_consw; p = sp; for (r = 0; r < nr; r++) for (c = 0; c < nc; c += 2, p += 2) { if ((p[0] & 0xfff0) != 0) stic_putchar(ss, r, c, p[0] >> 8, p[0] & 0x00ff); if ((p[1] & 0xfff0) != 0) stic_putchar(ss, r, c + 1, p[1] >> 8, p[1] & 0x00ff); } /* * Re-enable the screen's backing, and move the cursor to the * correct spot. */ ss->ss_backing = sp; si->si_cursor.cc_pos.x = ss->ss_curx; si->si_cursor.cc_pos.y = ss->ss_cury; stic_set_hwcurpos(si); si->si_flags |= SI_CURENB_CHANGED; /* * XXX Since we don't yet receive vblank interrupts from the * PXG, we must flush immediatley. */ if (si->si_disptype == WSDISPLAY_TYPE_PXG) stic_flush(si); /* Tell wscons that we're done. */ if (si->si_switchcbarg != NULL) { cookie = si->si_switchcbarg; si->si_switchcbarg = NULL; (*si->si_switchcb)(cookie, 0, 0); } } int stic_alloc_attr(void *cookie, int fg, int bg, int flags, long *attr) { long tmp; if ((flags & (WSATTR_BLINK | WSATTR_UNDERLINE)) != 0) return (EINVAL); if ((flags & WSATTR_WSCOLORS) == 0) { fg = 7; bg = 0; } if ((flags & WSATTR_HILIT) != 0) fg += 8; tmp = fg | (bg << 4); *attr = tmp | (tmp << 16); return (0); } void stic_erasecols(void *cookie, int row, int col, int num, long attr) { struct stic_info *si; struct stic_screen *ss; u_int32_t *pb; u_int i, linewidth; u_int16_t *p; ss = cookie; si = ss->ss_si; if (ss->ss_backing != NULL) { p = ss->ss_backing + row * si->si_consw + col; for (i = num; i != 0; i--) *p++ = (u_int16_t)attr; } if ((ss->ss_flags & SS_ACTIVE) == 0) return; col = (col * si->si_fontw) << 19; num = (num * si->si_fontw) << 19; row = row * si->si_fonth; attr = (attr & 0xf0) >> 4; linewidth = (si->si_fonth << 2) - 1; row = (row << 3) + linewidth; pb = (*si->si_pbuf_get)(si); pb[0] = STAMP_CMD_LINES | STAMP_RGB_CONST | STAMP_LW_PERPACKET; pb[1] = 0x01ffffff; pb[2] = 0; pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY; pb[4] = linewidth; pb[5] = DUPBYTE0(attr); pb[6] = col | row; pb[7] = (col + num) | row; (*si->si_pbuf_post)(si, pb); } void stic_eraserows(void *cookie, int row, int num, long attr) { struct stic_info *si; struct stic_screen *ss; u_int linewidth, i; u_int32_t *pb; ss = cookie; si = ss->ss_si; if (ss->ss_backing != NULL) { pb = (u_int32_t *)(ss->ss_backing + row * si->si_consw); for (i = si->si_consw * num; i > 0; i -= 2) *pb++ = (u_int32_t)attr; } if ((ss->ss_flags & SS_ACTIVE) == 0) return; row *= si->si_fonth; num *= si->si_fonth; attr = (attr & 0xf0) >> 4; linewidth = (num << 2) - 1; row = (row << 3) + linewidth; pb = (*si->si_pbuf_get)(si); pb[0] = STAMP_CMD_LINES | STAMP_RGB_CONST | STAMP_LW_PERPACKET; pb[1] = 0x01ffffff; pb[2] = 0; pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY; pb[4] = linewidth; pb[5] = DUPBYTE0(attr); pb[6] = row; pb[7] = (1280 << 19) | row; (*si->si_pbuf_post)(si, pb); } void stic_copyrows(void *cookie, int src, int dst, int height) { struct stic_info *si; struct stic_screen *ss; u_int32_t *pb, *pbs; u_int num, inc, adj; ss = cookie; si = ss->ss_si; if (ss->ss_backing != NULL) bcopy(ss->ss_backing + src * si->si_consw, ss->ss_backing + dst * si->si_consw, si->si_consw * sizeof(*ss->ss_backing) * height); if ((ss->ss_flags & SS_ACTIVE) == 0) return; /* * We need to do this in reverse if the destination row is below * the source. */ if (dst > src) { src += height; dst += height; inc = -8; adj = -1; } else { inc = 8; adj = 0; } src = (src * si->si_fonth + adj) << 3; dst = (dst * si->si_fonth + adj) << 3; height *= si->si_fonth; while (height > 0) { num = (height < 255 ? height : 255); height -= num; pbs = (*si->si_pbuf_get)(si); pb = pbs; pb[0] = STAMP_CMD_COPYSPANS | STAMP_LW_PERPACKET; pb[1] = (num << 24) | 0xffffff; pb[2] = 0x0; pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY | STAMP_SPAN | STAMP_COPYSPAN_ALIGNED; pb[4] = 1; /* linewidth */ for (; num != 0; num--, src += inc, dst += inc, pb += 3) { pb[5] = 1280 << 3; pb[6] = src; pb[7] = dst; } (*si->si_pbuf_post)(si, pbs); } } void stic_copycols(void *cookie, int row, int src, int dst, int num) { struct stic_info *si; struct stic_screen *ss; u_int height, updword; u_int32_t *pb, *pbs; ss = cookie; si = ss->ss_si; if (ss->ss_backing != NULL) bcopy(ss->ss_backing + row * si->si_consw + src, ss->ss_backing + row * si->si_consw + dst, num * sizeof(*ss->ss_backing)); if ((ss->ss_flags & SS_ACTIVE) == 0) return; /* * The stamp reads and writes left -> right only, so we need to * buffer the span if the source and destination regions overlap * and the source is left of the destination. */ updword = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY | STAMP_SPAN; if (src < dst && src + num > dst) updword |= STAMP_HALF_BUFF; row = (row * si->si_fonth) << 3; num = (num * si->si_fontw) << 3; src = row | ((src * si->si_fontw) << 19); dst = row | ((dst * si->si_fontw) << 19); height = si->si_fonth; pbs = (*si->si_pbuf_get)(si); pb = pbs; pb[0] = STAMP_CMD_COPYSPANS | STAMP_LW_PERPACKET; pb[1] = (height << 24) | 0xffffff; pb[2] = 0x0; pb[3] = updword; pb[4] = 1; /* linewidth */ for ( ; height != 0; height--, src += 8, dst += 8, pb += 3) { pb[5] = num; pb[6] = src; pb[7] = dst; } (*si->si_pbuf_post)(si, pbs); } void stic_putchar(void *cookie, int r, int c, u_int uc, long attr) { struct wsdisplay_font *font; struct stic_screen *ss; struct stic_info *si; u_int i, bgcolor, fgcolor; u_int *pb, v1, v2, xya; u_short *fr; ss = cookie; si = ss->ss_si; /* It's cheaper to use erasecols() to blit blanks. */ if (uc == 0) { stic_erasecols(cookie, r, c, 1, attr); return; } if (ss->ss_backing != NULL) ss->ss_backing[r * si->si_consw + c] = (u_short)((attr & 0xff) | (uc << 8)); if ((ss->ss_flags & SS_ACTIVE) == 0) return; font = si->si_font; pb = (*si->si_pbuf_get)(si); /* * Create a mask from the glyph. Squeeze the foreground color * through the mask, and then squeeze the background color through * the inverted mask. We may well read outside the glyph when * creating the mask, but it's bounded by the hardware so it * shouldn't matter a great deal... */ pb[0] = STAMP_CMD_LINES | STAMP_RGB_FLAT | STAMP_XY_PERPRIMATIVE | STAMP_LW_PERPRIMATIVE; pb[1] = font->fontheight > 16 ? 0x04ffffff : 0x02ffffff; pb[2] = 0x0; pb[3] = STAMP_UPDATE_ENABLE | STAMP_WE_XYMASK | STAMP_METHOD_COPY; r *= font->fontheight; c *= font->fontwidth; uc = (uc - font->firstchar) * font->stride * font->fontheight; fr = (u_short *)((caddr_t)font->data + uc); bgcolor = DUPBYTE0((attr & 0xf0) >> 4); fgcolor = DUPBYTE0(attr & 0x0f); i = ((font->fontheight > 16 ? 16 : font->fontheight) << 2) - 1; v1 = (c << 19) | ((r << 3) + i); v2 = ((c + font->fontwidth) << 19) | (v1 & 0xffff); xya = XYMASKADDR(si->si_stampw, si->si_stamph, c, r, 0, 0); pb[4] = PACK(fr, 0); pb[5] = PACK(fr, 2); pb[6] = PACK(fr, 4); pb[7] = PACK(fr, 6); pb[8] = PACK(fr, 8); pb[9] = PACK(fr, 10); pb[10] = PACK(fr, 12); pb[11] = PACK(fr, 14); pb[12] = xya; pb[13] = v1; pb[14] = v2; pb[15] = i; pb[16] = fgcolor; pb[17] = ~pb[4]; pb[18] = ~pb[5]; pb[19] = ~pb[6]; pb[20] = ~pb[7]; pb[21] = ~pb[8]; pb[22] = ~pb[9]; pb[23] = ~pb[10]; pb[24] = ~pb[11]; pb[25] = xya; pb[26] = v1; pb[27] = v2; pb[28] = i; pb[29] = bgcolor; /* Two more squeezes for the lower part of the character. */ if (font->fontheight > 16) { i = ((font->fontheight - 16) << 2) - 1; r += 16; v1 = (c << 19) | ((r << 3) + i); v2 = ((c + font->fontwidth) << 19) | (v1 & 0xffff); pb[30] = PACK(fr, 16); pb[31] = PACK(fr, 18); pb[32] = PACK(fr, 20); pb[33] = PACK(fr, 22); pb[34] = PACK(fr, 24); pb[35] = PACK(fr, 26); pb[36] = PACK(fr, 28); pb[37] = PACK(fr, 30); pb[38] = xya; pb[39] = v1; pb[40] = v2; pb[41] = i; pb[42] = fgcolor; pb[43] = ~pb[30]; pb[44] = ~pb[31]; pb[45] = ~pb[32]; pb[46] = ~pb[33]; pb[47] = ~pb[34]; pb[48] = ~pb[35]; pb[49] = ~pb[36]; pb[50] = ~pb[37]; pb[51] = xya; pb[52] = v1; pb[53] = v2; pb[54] = i; pb[55] = bgcolor; } (*si->si_pbuf_post)(si, pb); } int stic_mapchar(void *cookie, int c, u_int *cp) { struct stic_info *si; si = ((struct stic_screen *)cookie)->ss_si; if (c < si->si_font->firstchar || c == ' ') { *cp = 0; return (0); } if (c - si->si_font->firstchar >= si->si_font->numchars) { *cp = 0; return (0); } *cp = c; return (5); } void stic_cursor(void *cookie, int on, int row, int col) { struct stic_screen *ss; struct stic_info *si; int s; ss = cookie; si = ss->ss_si; ss->ss_curx = col * si->si_fontw; ss->ss_cury = row * si->si_fonth; s = spltty(); if (on) ss->ss_flags |= SS_CURENB; else ss->ss_flags &= ~SS_CURENB; if ((ss->ss_flags & SS_ACTIVE) != 0) { si->si_cursor.cc_pos.x = ss->ss_curx; si->si_cursor.cc_pos.y = ss->ss_cury; si->si_flags |= SI_CURENB_CHANGED; stic_set_hwcurpos(si); /* * XXX Since we don't yet receive vblank interrupts from the * PXG, we must flush immediatley. */ if (si->si_disptype == WSDISPLAY_TYPE_PXG) stic_flush(si); } splx(s); } void stic_flush(struct stic_info *si) { volatile u_int32_t *vdac; int v; if ((si->si_flags & SI_ALL_CHANGED) == 0) return; vdac = si->si_vdac; v = si->si_flags; si->si_flags &= ~SI_ALL_CHANGED; if ((v & SI_CURENB_CHANGED) != 0) { SELECT(vdac, BT459_IREG_CCR); if ((si->si_curscreen->ss_flags & SS_CURENB) != 0) REG(vdac, bt_reg) = 0x00c0c0c0; else REG(vdac, bt_reg) = 0x00000000; tc_wmb(); } if ((v & SI_CURCMAP_CHANGED) != 0) { u_int8_t *cp; cp = si->si_cursor.cc_color; SELECT(vdac, BT459_IREG_CCOLOR_2); REG(vdac, bt_reg) = DUPBYTE0(cp[1]); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE0(cp[3]); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE0(cp[5]); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE0(cp[0]); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE0(cp[2]); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE0(cp[4]); tc_wmb(); } if ((v & SI_CURSHAPE_CHANGED) != 0) { u_int8_t *ip, *mp, img, msk; u_int8_t u; int bcnt; ip = (u_int8_t *)si->si_cursor.cc_image; mp = (u_int8_t *)(si->si_cursor.cc_image + CURSOR_MAX_SIZE); bcnt = 0; SELECT(vdac, BT459_IREG_CRAM_BASE); /* 64 pixel scan line is consisted with 16 byte cursor ram */ while (bcnt < CURSOR_MAX_SIZE * 16) { img = *ip++; msk = *mp++; img &= msk; /* cookie off image */ u = (msk & 0x0f) << 4 | (img & 0x0f); REG(vdac, bt_reg) = DUPBYTE0(shuffle[u]); tc_wmb(); u = (msk & 0xf0) | (img & 0xf0) >> 4; REG(vdac, bt_reg) = DUPBYTE0(shuffle[u]); tc_wmb(); bcnt += 2; } } if ((v & SI_CMAP_CHANGED) != 0) { struct stic_hwcmap256 *cm; int index; cm = &si->si_cmap; SELECT(vdac, 0); SELECT(vdac, 0); for (index = 0; index < CMAP_SIZE; index++) { REG(vdac, bt_cmap) = DUPBYTE0(cm->r[index]); tc_wmb(); REG(vdac, bt_cmap) = DUPBYTE0(cm->g[index]); tc_wmb(); REG(vdac, bt_cmap) = DUPBYTE0(cm->b[index]); tc_wmb(); } } } int stic_get_cmap(struct stic_info *si, struct wsdisplay_cmap *p) { u_int index, count; index = p->index; count = p->count; if (index >= CMAP_SIZE || (index + count) > CMAP_SIZE) return (EINVAL); if (!uvm_useracc(p->red, count, B_WRITE) || !uvm_useracc(p->green, count, B_WRITE) || !uvm_useracc(p->blue, count, B_WRITE)) return (EFAULT); copyout(&si->si_cmap.r[index], p->red, count); copyout(&si->si_cmap.g[index], p->green, count); copyout(&si->si_cmap.b[index], p->blue, count); return (0); } int stic_set_cmap(struct stic_info *si, struct wsdisplay_cmap *p) { u_int index, count; int s; index = p->index; count = p->count; if ((index + count) > CMAP_SIZE) return (EINVAL); if (!uvm_useracc(p->red, count, B_READ) || !uvm_useracc(p->green, count, B_READ) || !uvm_useracc(p->blue, count, B_READ)) return (EFAULT); s = spltty(); copyin(p->red, &si->si_cmap.r[index], count); copyin(p->green, &si->si_cmap.g[index], count); copyin(p->blue, &si->si_cmap.b[index], count); si->si_flags |= SI_CMAP_CHANGED; splx(s); /* * XXX Since we don't yet receive vblank interrupts from the PXG, we * must flush immediatley. */ if (si->si_disptype == WSDISPLAY_TYPE_PXG) stic_flush(si); return (0); } int stic_set_cursor(struct stic_info *si, struct wsdisplay_cursor *p) { #define cc (&si->si_cursor) u_int v, index, count, icount; struct stic_screen *ss; int s; v = p->which; ss = si->si_curscreen; if ((v & WSDISPLAY_CURSOR_DOCMAP) != 0) { index = p->cmap.index; count = p->cmap.count; if (index >= 2 || (index + count) > 2) return (EINVAL); if (!uvm_useracc(p->cmap.red, count, B_READ) || !uvm_useracc(p->cmap.green, count, B_READ) || !uvm_useracc(p->cmap.blue, count, B_READ)) return (EFAULT); } if ((v & WSDISPLAY_CURSOR_DOSHAPE) != 0) { if (p->size.x > CURSOR_MAX_SIZE || p->size.y > CURSOR_MAX_SIZE) return (EINVAL); icount = ((p->size.x < 33) ? 4 : 8) * p->size.y; if (!uvm_useracc(p->image, icount, B_READ) || !uvm_useracc(p->mask, icount, B_READ)) return (EFAULT); } if ((v & (WSDISPLAY_CURSOR_DOPOS | WSDISPLAY_CURSOR_DOCUR)) != 0) { if (v & WSDISPLAY_CURSOR_DOCUR) cc->cc_hot = p->hot; if (v & WSDISPLAY_CURSOR_DOPOS) stic_set_curpos(si, &p->pos); } s = spltty(); if ((v & WSDISPLAY_CURSOR_DOCUR) != 0) { if (p->enable) ss->ss_flags |= SS_CURENB; else ss->ss_flags &= ~SS_CURENB; si->si_flags |= SI_CURENB_CHANGED; } if ((v & WSDISPLAY_CURSOR_DOCMAP) != 0) { copyin(p->cmap.red, &cc->cc_color[index], count); copyin(p->cmap.green, &cc->cc_color[index + 2], count); copyin(p->cmap.blue, &cc->cc_color[index + 4], count); si->si_flags |= SI_CURCMAP_CHANGED; } if ((v & WSDISPLAY_CURSOR_DOSHAPE) != 0) { memset(cc->cc_image, 0, sizeof(cc->cc_image)); copyin(p->image, cc->cc_image, icount); copyin(p->mask, cc->cc_image + CURSOR_MAX_SIZE, icount); si->si_flags |= SI_CURSHAPE_CHANGED; } splx(s); /* * XXX Since we don't yet receive vblank interrupts from the PXG, we * must flush immediatley. */ if (si->si_disptype == WSDISPLAY_TYPE_PXG) stic_flush(si); return (0); #undef cc } int stic_get_cursor(struct stic_info *si, struct wsdisplay_cursor *p) { /* XXX */ return (ENOTTY); } void stic_set_curpos(struct stic_info *si, struct wsdisplay_curpos *curpos) { int x, y; x = curpos->x; y = curpos->y; if (y < 0) y = 0; else if (y > 1023) y = 1023; if (x < 0) x = 0; else if (x > 1279) x = 1279; si->si_cursor.cc_pos.x = x; si->si_cursor.cc_pos.y = y; stic_set_hwcurpos(si); } void stic_set_hwcurpos(struct stic_info *si) { volatile u_int32_t *vdac; int x, y, s; vdac = si->si_vdac; x = si->si_cursor.cc_pos.x - si->si_cursor.cc_hot.x; y = si->si_cursor.cc_pos.y - si->si_cursor.cc_hot.y; x += STIC_MAGIC_X; y += STIC_MAGIC_Y; s = spltty(); SELECT(vdac, BT459_IREG_CURSOR_X_LOW); REG(vdac, bt_reg) = DUPBYTE0(x); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE1(x); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE0(y); tc_wmb(); REG(vdac, bt_reg) = DUPBYTE1(y); tc_wmb(); splx(s); } /* * STIC control inteface. We have a seperate device for mapping the board, * because access to the DMA engine means that it's possible to circumvent * the securelevel mechanism. Given the way devices work in the BSD kernel, * and given the unfortunate design of the mmap() call it's near impossible * to protect against this using a shared device (i.e. wsdisplay). * * This is a gross hack... Hopefully not too many other devices will need * it. */ int sticopen(dev_t dev, int flag, int mode, struct proc *p) { struct stic_info *si; int s; if (securelevel > 0) return (EPERM); if (minor(dev) >= STIC_MAXDV) return (ENXIO); if ((si = stic_info[minor(dev)]) == NULL) return (ENXIO); s = spltty(); if ((si->si_flags & SI_DVOPEN) != 0) { splx(s); return (EBUSY); } si->si_flags |= SI_DVOPEN; splx(s); return (0); } int sticclose(dev_t dev, int flag, int mode, struct proc *p) { struct stic_info *si; int s; si = stic_info[minor(dev)]; s = spltty(); si->si_flags &= ~SI_DVOPEN; splx(s); return (0); } paddr_t sticmmap(dev_t dev, off_t offset, int prot) { struct stic_info *si; struct stic_xmap *sxm; paddr_t pa; si = stic_info[minor(dev)]; sxm = NULL; if (securelevel > 0) return (-1L); if (si->si_dispmode != WSDISPLAYIO_MODE_MAPPED) return (-1L); if (offset < 0) return ((paddr_t)-1L); if (offset < sizeof(sxm->sxm_stic)) { pa = STIC_KSEG_TO_PHYS(si->si_stic); return (machine_btop(pa + offset)); } offset -= sizeof(sxm->sxm_stic); if (offset < sizeof(sxm->sxm_poll)) { pa = STIC_KSEG_TO_PHYS(si->si_slotbase); return (machine_btop(pa + offset)); } offset -= sizeof(sxm->sxm_poll); if (offset < si->si_buf_size) return (machine_btop(si->si_buf_phys + offset)); return ((paddr_t)-1L); }