/* $NetBSD: mkfs.c,v 1.29 1997/11/01 18:25:47 drochner Exp $ */ /* * Copyright (c) 1980, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #ifndef lint #if 0 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; #else __RCSID("$NetBSD: mkfs.c,v 1.29 1997/11/01 18:25:47 drochner Exp $"); #endif #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #ifndef STANDALONE #include #include #endif #include static void initcg __P((int, time_t)); static void fsinit __P((time_t)); static int makedir __P((struct direct *, int)); static daddr_t alloc __P((int, int)); static void iput __P((struct dinode *, ino_t)); static void rdfs __P((daddr_t, int, void *)); static void wtfs __P((daddr_t, int, void *)); static int isblock __P((struct fs *, unsigned char *, int)); static void clrblock __P((struct fs *, unsigned char *, int)); static void setblock __P((struct fs *, unsigned char *, int)); static int32_t calcipg __P((int32_t, int32_t, off_t *)); /* * make file system for cylinder-group style file systems */ /* * We limit the size of the inode map to be no more than a * third of the cylinder group space, since we must leave at * least an equal amount of space for the block map. * * N.B.: MAXIPG must be a multiple of INOPB(fs). */ #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) #define UMASK 0755 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) #define POWEROF2(num) (((num) & ((num) - 1)) == 0) /* * variables set up by front end. */ extern int mfs; /* run as the memory based filesystem */ extern int Nflag; /* run mkfs without writing file system */ extern int Oflag; /* format as an 4.3BSD file system */ extern int fssize; /* file system size */ extern int ntracks; /* # tracks/cylinder */ extern int nsectors; /* # sectors/track */ extern int nphyssectors; /* # sectors/track including spares */ extern int secpercyl; /* sectors per cylinder */ extern int sectorsize; /* bytes/sector */ extern int rpm; /* revolutions/minute of drive */ extern int interleave; /* hardware sector interleave */ extern int trackskew; /* sector 0 skew, per track */ extern int headswitch; /* head switch time, usec */ extern int trackseek; /* track-to-track seek, usec */ extern int fsize; /* fragment size */ extern int bsize; /* block size */ extern int cpg; /* cylinders/cylinder group */ extern int cpgflg; /* cylinders/cylinder group flag was given */ extern int minfree; /* free space threshold */ extern int opt; /* optimization preference (space or time) */ extern int density; /* number of bytes per inode */ extern int maxcontig; /* max contiguous blocks to allocate */ extern int rotdelay; /* rotational delay between blocks */ extern int maxbpg; /* maximum blocks per file in a cyl group */ extern int nrpos; /* # of distinguished rotational positions */ extern int bbsize; /* boot block size */ extern int sbsize; /* superblock size */ extern u_long memleft; /* virtual memory available */ extern caddr_t membase; /* start address of memory based filesystem */ union { struct fs fs; char pad[SBSIZE]; } fsun; #define sblock fsun.fs struct csum *fscs; union { struct cg cg; char pad[MAXBSIZE]; } cgun; #define acg cgun.cg struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; int fsi, fso; void mkfs(pp, fsys, fi, fo) struct partition *pp; char *fsys; int fi, fo; { int32_t i, mincpc, mincpg, inospercg; int32_t cylno, rpos, blk, j, warn = 0; int32_t used, mincpgcnt, bpcg; off_t usedb; int32_t mapcramped, inodecramped; int32_t postblsize, rotblsize, totalsbsize; time_t utime; quad_t sizepb; #ifndef STANDALONE time(&utime); #endif if (mfs) { (void)malloc(0); if (fssize * sectorsize > memleft) fssize = (memleft - 16384) / sectorsize; if ((membase = malloc(fssize * sectorsize)) == 0) exit(12); } fsi = fi; fso = fo; if (Oflag) { sblock.fs_inodefmt = FS_42INODEFMT; sblock.fs_maxsymlinklen = 0; } else { sblock.fs_inodefmt = FS_44INODEFMT; sblock.fs_maxsymlinklen = MAXSYMLINKLEN; } /* * Validate the given file system size. * Verify that its last block can actually be accessed. */ if (fssize <= 0) printf("preposterous size %d\n", fssize), exit(13); wtfs(fssize - 1, sectorsize, (char *)&sblock); /* * collect and verify the sector and track info */ sblock.fs_nsect = nsectors; sblock.fs_ntrak = ntracks; if (sblock.fs_ntrak <= 0) printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); if (sblock.fs_nsect <= 0) printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); /* * collect and verify the block and fragment sizes */ sblock.fs_bsize = bsize; sblock.fs_fsize = fsize; if (!POWEROF2(sblock.fs_bsize)) { printf("block size must be a power of 2, not %d\n", sblock.fs_bsize); exit(16); } if (!POWEROF2(sblock.fs_fsize)) { printf("fragment size must be a power of 2, not %d\n", sblock.fs_fsize); exit(17); } if (sblock.fs_fsize < sectorsize) { printf("fragment size %d is too small, minimum is %d\n", sblock.fs_fsize, sectorsize); exit(18); } if (sblock.fs_bsize < MINBSIZE) { printf("block size %d is too small, minimum is %d\n", sblock.fs_bsize, MINBSIZE); exit(19); } if (sblock.fs_bsize < sblock.fs_fsize) { printf("block size (%d) cannot be smaller than fragment size (%d)\n", sblock.fs_bsize, sblock.fs_fsize); exit(20); } sblock.fs_bmask = ~(sblock.fs_bsize - 1); sblock.fs_fmask = ~(sblock.fs_fsize - 1); sblock.fs_qbmask = ~sblock.fs_bmask; sblock.fs_qfmask = ~sblock.fs_fmask; for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) sblock.fs_bshift++; for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) sblock.fs_fshift++; sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) sblock.fs_fragshift++; if (sblock.fs_frag > MAXFRAG) { printf("fragment size %d is too small, minimum with block size %d is %d\n", sblock.fs_fsize, sblock.fs_bsize, sblock.fs_bsize / MAXFRAG); exit(21); } sblock.fs_nrpos = nrpos; sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); sblock.fs_nspf = sblock.fs_fsize / sectorsize; for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) sblock.fs_fsbtodb++; sblock.fs_sblkno = roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; sblock.fs_cgoffset = roundup( howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) sblock.fs_cgmask <<= 1; if (!POWEROF2(sblock.fs_ntrak)) sblock.fs_cgmask <<= 1; sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { sizepb *= NINDIR(&sblock); sblock.fs_maxfilesize += sizepb; } /* * Validate specified/determined secpercyl * and calculate minimum cylinders per group. */ sblock.fs_spc = secpercyl; for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; sblock.fs_cpc > 1 && (i & 1) == 0; sblock.fs_cpc >>= 1, i >>= 1) /* void */; mincpc = sblock.fs_cpc; bpcg = sblock.fs_spc * sectorsize; inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); if (inospercg > MAXIPG(&sblock)) inospercg = MAXIPG(&sblock); used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, sblock.fs_spc); mincpg = roundup(mincpgcnt, mincpc); /* * Ensure that cylinder group with mincpg has enough space * for block maps. */ sblock.fs_cpg = mincpg; sblock.fs_ipg = inospercg; if (maxcontig > 1) sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); mapcramped = 0; while (CGSIZE(&sblock) > sblock.fs_bsize) { mapcramped = 1; if (sblock.fs_bsize < MAXBSIZE) { sblock.fs_bsize <<= 1; if ((i & 1) == 0) { i >>= 1; } else { sblock.fs_cpc <<= 1; mincpc <<= 1; mincpg = roundup(mincpgcnt, mincpc); sblock.fs_cpg = mincpg; } sblock.fs_frag <<= 1; sblock.fs_fragshift += 1; if (sblock.fs_frag <= MAXFRAG) continue; } if (sblock.fs_fsize == sblock.fs_bsize) { printf("There is no block size that"); printf(" can support this disk\n"); exit(22); } sblock.fs_frag >>= 1; sblock.fs_fragshift -= 1; sblock.fs_fsize <<= 1; sblock.fs_nspf <<= 1; } /* * Ensure that cylinder group with mincpg has enough space for inodes. */ inodecramped = 0; inospercg = calcipg(mincpg, bpcg, &usedb); sblock.fs_ipg = inospercg; while (inospercg > MAXIPG(&sblock)) { inodecramped = 1; if (mincpc == 1 || sblock.fs_frag == 1 || sblock.fs_bsize == MINBSIZE) break; printf("With a block size of %d %s %d\n", sblock.fs_bsize, "minimum bytes per inode is", (int)((mincpg * (off_t)bpcg - usedb) / MAXIPG(&sblock) + 1)); sblock.fs_bsize >>= 1; sblock.fs_frag >>= 1; sblock.fs_fragshift -= 1; mincpc >>= 1; sblock.fs_cpg = roundup(mincpgcnt, mincpc); if (CGSIZE(&sblock) > sblock.fs_bsize) { sblock.fs_bsize <<= 1; break; } mincpg = sblock.fs_cpg; inospercg = calcipg(mincpg, bpcg, &usedb); sblock.fs_ipg = inospercg; } if (inodecramped) { if (inospercg > MAXIPG(&sblock)) { printf("Minimum bytes per inode is %d\n", (int)((mincpg * (off_t)bpcg - usedb) / MAXIPG(&sblock) + 1)); } else if (!mapcramped) { printf("With %d bytes per inode, ", density); printf("minimum cylinders per group is %d\n", mincpg); } } if (mapcramped) { printf("With %d sectors per cylinder, ", sblock.fs_spc); printf("minimum cylinders per group is %d\n", mincpg); } if (inodecramped || mapcramped) { if (sblock.fs_bsize != bsize) printf("%s to be changed from %d to %d\n", "This requires the block size", bsize, sblock.fs_bsize); if (sblock.fs_fsize != fsize) printf("\t%s to be changed from %d to %d\n", "and the fragment size", fsize, sblock.fs_fsize); exit(23); } /* * Calculate the number of cylinders per group */ sblock.fs_cpg = cpg; if (sblock.fs_cpg % mincpc != 0) { printf("%s groups must have a multiple of %d cylinders\n", cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); if (!cpgflg) cpg = sblock.fs_cpg; } /* * Must ensure there is enough space for inodes. */ sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); while (sblock.fs_ipg > MAXIPG(&sblock)) { inodecramped = 1; sblock.fs_cpg -= mincpc; sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); } /* * Must ensure there is enough space to hold block map. */ while (CGSIZE(&sblock) > sblock.fs_bsize) { mapcramped = 1; sblock.fs_cpg -= mincpc; sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); } sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); exit(24); } if (sblock.fs_cpg < mincpg) { printf("cylinder groups must have at least %d cylinders\n", mincpg); exit(25); } else if (sblock.fs_cpg != cpg) { if (!cpgflg) printf("Warning: "); else if (!mapcramped && !inodecramped) exit(26); if (mapcramped && inodecramped) printf("Block size and bytes per inode restrict"); else if (mapcramped) printf("Block size restricts"); else printf("Bytes per inode restrict"); printf(" cylinders per group to %d.\n", sblock.fs_cpg); if (cpgflg) exit(27); } sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); /* * Now have size for file system and nsect and ntrak. * Determine number of cylinders and blocks in the file system. */ sblock.fs_size = fssize = dbtofsb(&sblock, fssize); sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { sblock.fs_ncyl++; warn = 1; } if (sblock.fs_ncyl < 1) { printf("file systems must have at least one cylinder\n"); exit(28); } /* * Determine feasability/values of rotational layout tables. * * The size of the rotational layout tables is limited by the * size of the superblock, SBSIZE. The amount of space available * for tables is calculated as (SBSIZE - sizeof (struct fs)). * The size of these tables is inversely proportional to the block * size of the file system. The size increases if sectors per track * are not powers of two, because more cylinders must be described * by the tables before the rotational pattern repeats (fs_cpc). */ sblock.fs_interleave = interleave; sblock.fs_trackskew = trackskew; sblock.fs_npsect = nphyssectors; sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); if (sblock.fs_ntrak == 1) { sblock.fs_cpc = 0; goto next; } postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); totalsbsize = sizeof(struct fs) + rotblsize; if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { /* use old static table space */ sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - (char *)(&sblock.fs_firstfield); sblock.fs_rotbloff = &sblock.fs_space[0] - (u_char *)(&sblock.fs_firstfield); } else { /* use dynamic table space */ sblock.fs_postbloff = &sblock.fs_space[0] - (u_char *)(&sblock.fs_firstfield); sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; totalsbsize += postblsize; } if (totalsbsize > SBSIZE || sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { printf("%s %s %d %s %d.%s", "Warning: insufficient space in super block for\n", "rotational layout tables with nsect", sblock.fs_nsect, "and ntrak", sblock.fs_ntrak, "\nFile system performance may be impaired.\n"); sblock.fs_cpc = 0; goto next; } sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); /* * calculate the available blocks for each rotational position */ for (cylno = 0; cylno < sblock.fs_cpc; cylno++) for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) fs_postbl(&sblock, cylno)[rpos] = -1; for (i = (rotblsize - 1) * sblock.fs_frag; i >= 0; i -= sblock.fs_frag) { cylno = cbtocylno(&sblock, i); rpos = cbtorpos(&sblock, i); blk = fragstoblks(&sblock, i); if (fs_postbl(&sblock, cylno)[rpos] == -1) fs_rotbl(&sblock)[blk] = 0; else fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk; fs_postbl(&sblock, cylno)[rpos] = blk; } next: /* * Compute/validate number of cylinder groups. */ sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; if (sblock.fs_ncyl % sblock.fs_cpg) sblock.fs_ncg++; sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { printf("inode blocks/cyl group (%d) >= data blocks (%d)\n", cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, sblock.fs_fpg / sblock.fs_frag); printf("number of cylinders per cylinder group (%d) %s.\n", sblock.fs_cpg, "must be increased"); exit(29); } j = sblock.fs_ncg - 1; if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { if (j == 0) { printf("Filesystem must have at least %d sectors\n", NSPF(&sblock) * (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); exit(30); } printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n", (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, i / sblock.fs_frag); printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n", i * NSPF(&sblock)); sblock.fs_ncg--; sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock); warn = 0; } if (warn && !mfs) { printf("Warning: %d sector(s) in last cylinder unallocated\n", sblock.fs_spc - (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) * sblock.fs_spc)); } /* * fill in remaining fields of the super block */ sblock.fs_csaddr = cgdmin(&sblock, 0); sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); i = sblock.fs_bsize / sizeof(struct csum); sblock.fs_csmask = ~(i - 1); for (sblock.fs_csshift = 0; i > 1; i >>= 1) sblock.fs_csshift++; fscs = (struct csum *)calloc(1, sblock.fs_cssize); sblock.fs_magic = FS_MAGIC; sblock.fs_rotdelay = rotdelay; sblock.fs_minfree = minfree; sblock.fs_maxcontig = maxcontig; sblock.fs_headswitch = headswitch; sblock.fs_trkseek = trackseek; sblock.fs_maxbpg = maxbpg; sblock.fs_rps = rpm / 60; sblock.fs_optim = opt; sblock.fs_cgrotor = 0; sblock.fs_cstotal.cs_ndir = 0; sblock.fs_cstotal.cs_nbfree = 0; sblock.fs_cstotal.cs_nifree = 0; sblock.fs_cstotal.cs_nffree = 0; sblock.fs_fmod = 0; sblock.fs_clean = FS_ISCLEAN; sblock.fs_ronly = 0; sblock.fs_clean = 1; /* * Dump out summary information about file system. */ if (!mfs) { printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, "cylinders", sblock.fs_ntrak, sblock.fs_nsect); #define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, sblock.fs_ncg, sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_ipg); #undef B2MBFACTOR } /* * Now build the cylinders group blocks and * then print out indices of cylinder groups. */ if (!mfs) printf("super-block backups (for fsck -b #) at:"); for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { initcg(cylno, utime); if (mfs) continue; if (cylno % 8 == 0) printf("\n"); printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno))); fflush(stdout); } if (!mfs) printf("\n"); if (Nflag && !mfs) exit(0); /* * Now construct the initial file system, * then write out the super-block. */ fsinit(utime); sblock.fs_time = utime; wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), sblock.fs_cssize - i < sblock.fs_bsize ? sblock.fs_cssize - i : sblock.fs_bsize, ((char *)fscs) + i); /* * Write out the duplicate super blocks */ for (cylno = 0; cylno < sblock.fs_ncg; cylno++) wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), sbsize, (char *)&sblock); /* * Update information about this partion in pack * label, to that it may be updated on disk. */ pp->p_fstype = FS_BSDFFS; pp->p_fsize = sblock.fs_fsize; pp->p_frag = sblock.fs_frag; pp->p_cpg = sblock.fs_cpg; } /* * Initialize a cylinder group. */ void initcg(cylno, utime) int cylno; time_t utime; { daddr_t cbase, d, dlower, dupper, dmax, blkno; int32_t i; struct csum *cs; /* * Determine block bounds for cylinder group. * Allow space for super block summary information in first * cylinder group. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); cs = fscs + cylno; memset(&acg, 0, sblock.fs_cgsize); acg.cg_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; if (cylno == sblock.fs_ncg - 1) acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; else acg.cg_ncyl = sblock.fs_cpg; acg.cg_niblk = sblock.fs_ipg; acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_boff + sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t); acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); if (sblock.fs_contigsumsize <= 0) { acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); } else { acg.cg_clustersumoff = acg.cg_freeoff + howmany (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - sizeof(int32_t); acg.cg_clustersumoff = roundup(acg.cg_clustersumoff, sizeof(int32_t)); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); } if (acg.cg_nextfreeoff - (int32_t)(&acg.cg_firstfield) > sblock.fs_cgsize) { printf("Panic: cylinder group too big\n"); exit(37); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) for (i = 0; i < ROOTINO; i++) { setbit(cg_inosused(&acg), i); acg.cg_cs.cs_nifree--; } for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), sblock.fs_bsize, (char *)zino); if (cylno > 0) { /* * In cylno 0, beginning space is reserved * for boot and super blocks. */ for (d = 0; d < dlower; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; cg_blktot(&acg)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) [cbtorpos(&sblock, d)]++; } sblock.fs_dsize += dlower; } sblock.fs_dsize += acg.cg_ndblk - dupper; if ((i = (dupper % sblock.fs_frag)) != 0) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; cg_blktot(&acg)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) [cbtorpos(&sblock, d)]++; d += sblock.fs_frag; } if (d < dmax - cbase) { acg.cg_frsum[dmax - cbase - d]++; for (; d < dmax - cbase; d++) { setbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum(&acg); u_char *mapp = cg_clustersfree(&acg); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) { run++; } else if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; run = 0; } if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; } } sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; *cs = acg.cg_cs; wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), sblock.fs_bsize, (char *)&acg); } /* * initialize the file system */ struct dinode node; #ifdef LOSTDIR #define PREDEFDIR 3 #else #define PREDEFDIR 2 #endif struct direct root_dir[] = { { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, #ifdef LOSTDIR { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, #endif }; struct odirect { u_int32_t d_ino; u_int16_t d_reclen; u_int16_t d_namlen; u_char d_name[MAXNAMLEN + 1]; } oroot_dir[] = { { ROOTINO, sizeof(struct direct), 1, "." }, { ROOTINO, sizeof(struct direct), 2, ".." }, #ifdef LOSTDIR { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, #endif }; #ifdef LOSTDIR struct direct lost_found_dir[] = { { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, { 0, DIRBLKSIZ, 0, 0, 0 }, }; struct odirect olost_found_dir[] = { { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, { ROOTINO, sizeof(struct direct), 2, ".." }, { 0, DIRBLKSIZ, 0, 0 }, }; #endif char buf[MAXBSIZE]; void fsinit(utime) time_t utime; { #ifdef LOSTDIR int i; #endif /* * initialize the node */ node.di_atime = utime; node.di_mtime = utime; node.di_ctime = utime; #ifdef LOSTDIR /* * create the lost+found directory */ if (Oflag) { (void)makedir((struct direct *)olost_found_dir, 2); for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) memmove(&buf[i], &olost_found_dir[2], DIRSIZ(0, &olost_found_dir[2])); } else { (void)makedir(lost_found_dir, 2); for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) memmove(&buf[i], &lost_found_dir[2], DIRSIZ(0, &lost_found_dir[2])); } node.di_mode = IFDIR | UMASK; node.di_nlink = 2; node.di_size = sblock.fs_bsize; node.di_db[0] = alloc(node.di_size, node.di_mode); node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); iput(&node, LOSTFOUNDINO); #endif /* * create the root directory */ if (mfs) node.di_mode = IFDIR | 01777; else node.di_mode = IFDIR | UMASK; node.di_nlink = PREDEFDIR; if (Oflag) node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); else node.di_size = makedir(root_dir, PREDEFDIR); node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); iput(&node, ROOTINO); } /* * construct a set of directory entries in "buf". * return size of directory. */ int makedir(protodir, entries) struct direct *protodir; int entries; { char *cp; int i, spcleft; spcleft = DIRBLKSIZ; for (cp = buf, i = 0; i < entries - 1; i++) { protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); memmove(cp, &protodir[i], protodir[i].d_reclen); cp += protodir[i].d_reclen; spcleft -= protodir[i].d_reclen; } protodir[i].d_reclen = spcleft; memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); return (DIRBLKSIZ); } /* * allocate a block or frag */ daddr_t alloc(size, mode) int size; int mode; { int i, frag; daddr_t d, blkno; rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); if (acg.cg_magic != CG_MAGIC) { printf("cg 0: bad magic number\n"); return (0); } if (acg.cg_cs.cs_nbfree == 0) { printf("first cylinder group ran out of space\n"); return (0); } for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) goto goth; printf("internal error: can't find block in cyl 0\n"); return (0); goth: blkno = fragstoblks(&sblock, d); clrblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) clrbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; fscs[0].cs_nbfree--; if (mode & IFDIR) { acg.cg_cs.cs_ndir++; sblock.fs_cstotal.cs_ndir++; fscs[0].cs_ndir++; } cg_blktot(&acg)[cbtocylno(&sblock, d)]--; cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; if (size != sblock.fs_bsize) { frag = howmany(size, sblock.fs_fsize); fscs[0].cs_nffree += sblock.fs_frag - frag; sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; acg.cg_cs.cs_nffree += sblock.fs_frag - frag; acg.cg_frsum[sblock.fs_frag - frag]++; for (i = frag; i < sblock.fs_frag; i++) setbit(cg_blksfree(&acg), d + i); } wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); return (d); } /* * Calculate number of inodes per group. */ int32_t calcipg(cpg, bpcg, usedbp) int32_t cpg; int32_t bpcg; off_t *usedbp; { int i; int32_t ipg, new_ipg, ncg, ncyl; off_t usedb; #if __GNUC__ /* XXX work around gcc 2.7.2 initialization bug */ (void)&usedb; #endif /* * Prepare to scale by fssize / (number of sectors in cylinder groups). * Note that fssize is still in sectors, not filesystem blocks. */ ncyl = howmany(fssize, secpercyl); ncg = howmany(ncyl, cpg); /* * Iterate a few times to allow for ipg depending on itself. */ ipg = 0; for (i = 0; i < 10; i++) { usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) * NSPF(&sblock) * (off_t)sectorsize; new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize / ncg / secpercyl / cpg; new_ipg = roundup(new_ipg, INOPB(&sblock)); if (new_ipg == ipg) break; ipg = new_ipg; } *usedbp = usedb; return (ipg); } /* * Allocate an inode on the disk */ static void iput(ip, ino) struct dinode *ip; ino_t ino; { struct dinode buf[MAXINOPB]; daddr_t d; int c; c = ino_to_cg(&sblock, ino); rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); if (acg.cg_magic != CG_MAGIC) { printf("cg 0: bad magic number\n"); exit(31); } acg.cg_cs.cs_nifree--; setbit(cg_inosused(&acg), ino); wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); sblock.fs_cstotal.cs_nifree--; fscs[0].cs_nifree--; if (ino >= sblock.fs_ipg * sblock.fs_ncg) { printf("fsinit: inode value out of range (%d).\n", ino); exit(32); } d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); rdfs(d, sblock.fs_bsize, buf); buf[ino_to_fsbo(&sblock, ino)] = *ip; wtfs(d, sblock.fs_bsize, buf); } /* * Replace libc function with one suited to our needs. */ void * malloc(size) size_t size; { char *base, *i; static u_long pgsz; struct rlimit rlp; if (pgsz == 0) { base = sbrk(0); pgsz = getpagesize() - 1; i = (char *)((u_long)(base + pgsz) &~ pgsz); base = sbrk(i - base); if (getrlimit(RLIMIT_DATA, &rlp) < 0) perror("getrlimit"); rlp.rlim_cur = rlp.rlim_max; if (setrlimit(RLIMIT_DATA, &rlp) < 0) perror("setrlimit"); memleft = rlp.rlim_max - (u_long)base; } size = (size + pgsz) &~ pgsz; if (size > memleft) size = memleft; memleft -= size; if (size == 0) return (0); return ((caddr_t)sbrk(size)); } /* * Replace libc function with one suited to our needs. */ void * realloc(ptr, size) void *ptr; size_t size; { void *p; if ((p = malloc(size)) == NULL) return (NULL); memmove(p, ptr, size); free(ptr); return (p); } /* * Replace libc function with one suited to our needs. */ void * calloc(size, numelm) size_t size, numelm; { void *base; size *= numelm; base = malloc(size); memset(base, 0, size); return (base); } /* * Replace libc function with one suited to our needs. */ void free(ptr) void *ptr; { /* do not worry about it for now */ } /* * read a block from the file system */ void rdfs(bno, size, bf) daddr_t bno; int size; void *bf; { int n; off_t offset; if (mfs) { memmove(bf, membase + bno * sectorsize, size); return; } offset = bno; offset *= sectorsize; if (lseek(fsi, offset, SEEK_SET) < 0) { printf("seek error: %d\n", bno); perror("rdfs"); exit(33); } n = read(fsi, bf, size); if (n != size) { printf("read error: %d\n", bno); perror("rdfs"); exit(34); } } /* * write a block to the file system */ void wtfs(bno, size, bf) daddr_t bno; int size; void *bf; { int n; off_t offset; if (mfs) { memmove(membase + bno * sectorsize, bf, size); return; } if (Nflag) return; offset = bno; offset *= sectorsize; if (lseek(fso, offset, SEEK_SET) < 0) { printf("seek error: %d\n", bno); perror("wtfs"); exit(35); } n = write(fso, bf, size); if (n != size) { printf("write error: %d\n", bno); perror("wtfs"); exit(36); } } /* * check if a block is available */ int isblock(fs, cp, h) struct fs *fs; unsigned char *cp; int h; { unsigned char mask; switch (fs->fs_frag) { case 8: return (cp[h] == 0xff); case 4: mask = 0x0f << ((h & 0x1) << 2); return ((cp[h >> 1] & mask) == mask); case 2: mask = 0x03 << ((h & 0x3) << 1); return ((cp[h >> 2] & mask) == mask); case 1: mask = 0x01 << (h & 0x7); return ((cp[h >> 3] & mask) == mask); default: #ifdef STANDALONE printf("isblock bad fs_frag %d\n", fs->fs_frag); #else fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); #endif return (0); } } /* * take a block out of the map */ void clrblock(fs, cp, h) struct fs *fs; unsigned char *cp; int h; { switch ((fs)->fs_frag) { case 8: cp[h] = 0; return; case 4: cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); return; case 2: cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); return; case 1: cp[h >> 3] &= ~(0x01 << (h & 0x7)); return; default: #ifdef STANDALONE printf("clrblock bad fs_frag %d\n", fs->fs_frag); #else fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); #endif return; } } /* * put a block into the map */ void setblock(fs, cp, h) struct fs *fs; unsigned char *cp; int h; { switch (fs->fs_frag) { case 8: cp[h] = 0xff; return; case 4: cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); return; case 2: cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); return; case 1: cp[h >> 3] |= (0x01 << (h & 0x7)); return; default: #ifdef STANDALONE printf("setblock bad fs_frag %d\n", fs->fs_frag); #else fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); #endif return; } }