/* $NetBSD: dz.c,v 1.5 1998/01/12 20:52:47 thorpej Exp $ */ /* * Copyright (c) 1996 Ken C. Wellsch. All rights reserved. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell and Rick Macklem. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* A DZ-11 has 8 ports while a DZV/DZQ-11 has only 4. We use 8 by default */ #define NDZLINE 8 #define DZ_C2I(c) ((c)<<3) /* convert controller # to index */ #define DZ_I2C(c) ((c)>>3) /* convert minor to controller # */ #define DZ_PORT(u) ((u)&07) /* extract the port # */ struct dz_softc { struct device sc_dev; /* Autoconf blaha */ dzregs * sc_addr; /* controller reg address */ int sc_type; /* DZ11 or DZV11? */ int sc_rxint; /* Receive interrupt count XXX */ u_char sc_brk; /* Break asserted on some lines */ struct { struct tty * dz_tty; /* what we work on */ caddr_t dz_mem; /* pointers to clist output */ caddr_t dz_end; /* allowing pdma action */ } sc_dz[NDZLINE]; }; /* Flags used to monitor modem bits, make them understood outside driver */ #define DML_DTR TIOCM_DTR #define DML_DCD TIOCM_CD #define DML_RI TIOCM_RI #define DML_BRK 0100000 /* no equivalent, we will mask */ static struct speedtab dzspeedtab[] = { { 0, 0 }, { 50, DZ_LPR_B50 }, { 75, DZ_LPR_B75 }, { 110, DZ_LPR_B110 }, { 134, DZ_LPR_B134 }, { 150, DZ_LPR_B150 }, { 300, DZ_LPR_B300 }, { 600, DZ_LPR_B600 }, { 1200, DZ_LPR_B1200 }, { 1800, DZ_LPR_B1800 }, { 2000, DZ_LPR_B2000 }, { 2400, DZ_LPR_B2400 }, { 3600, DZ_LPR_B3600 }, { 4800, DZ_LPR_B4800 }, { 7200, DZ_LPR_B7200 }, { 9600, DZ_LPR_B9600 }, { -1, -1 } }; static int dz_match __P((struct device *, void *, void *)); static void dz_attach __P((struct device *, struct device *, void *)); static void dzrint __P((int)); static void dzxint __P((int)); static void dzstart __P((struct tty *)); static int dzparam __P((struct tty *, struct termios *)); static unsigned dzmctl __P((struct dz_softc *, int, int, int)); static void dzscan __P((void *)); struct tty * dztty __P((dev_t)); int dzopen __P((dev_t, int, int, struct proc *)); int dzclose __P((dev_t, int, int, struct proc *)); int dzread __P((dev_t, struct uio *, int)); int dzwrite __P((dev_t, struct uio *, int)); int dzioctl __P((dev_t, int, caddr_t, int, struct proc *)); void dzstop __P((struct tty *, int)); struct cfattach dz_ca = { sizeof(struct dz_softc), dz_match, dz_attach }; extern struct cfdriver dz_cd; /* * The DZ series doesn't interrupt on carrier transitions, * so we have to use a timer to watch it. */ static int dz_timer = 0; /* true if timer started */ #define DZ_DZ 8 /* Unibus DZ-11 board linecount */ #define DZ_DZV 4 /* Q-bus DZV-11 or DZQ-11 */ /* Autoconfig handles: setup the controller to interrupt, */ /* then complete the housecleaning for full operation */ static int dz_match (parent, match, aux) struct device *parent; void *match, *aux; { struct uba_attach_args *ua = aux; register dzregs *dzaddr; register int n; dzaddr = (dzregs *) ua->ua_addr; /* Reset controller to initialize, enable TX interrupts */ /* to catch floating vector info elsewhere when completed */ dzaddr->dz_csr = (DZ_CSR_MSE | DZ_CSR_TXIE); dzaddr->dz_tcr = 1; /* Force a TX interrupt */ DELAY(100000); /* delay 1/10 second */ dzaddr->dz_csr = DZ_CSR_RESET; /* Now wait up to 3 seconds for reset/clear to complete. */ for (n = 0; n < 300; n++) { DELAY(10000); if ((dzaddr->dz_csr & DZ_CSR_RESET) == 0) break; } /* If the RESET did not clear after 3 seconds, */ /* the controller must be broken. */ if (n >= 300) return (0); /* Register the TX interrupt handler */ ua->ua_ivec = dzxint; return (1); } static void dz_attach (parent, self, aux) struct device *parent, *self; void *aux; { struct uba_softc *uh = (void *)parent; struct dz_softc *sc = (void *)self; register struct uba_attach_args *ua = aux; register dzregs *dzaddr; register int n; dzaddr = (dzregs *) ua->ua_addr; sc->sc_addr = dzaddr; #ifdef QBA if (uh->uh_type == QBA) sc->sc_type = DZ_DZV; else #endif sc->sc_type = DZ_DZ; sc->sc_rxint = sc->sc_brk = 0; dzaddr->dz_csr = (DZ_CSR_MSE | DZ_CSR_RXIE | DZ_CSR_TXIE); dzaddr->dz_dtr = 0; /* Make sure DTR bits are zero */ dzaddr->dz_break = 0; /* Status of BREAK bits, all off */ /* Initialize our softc structure. Should be done in open? */ for (n = 0; n < sc->sc_type; n++) sc->sc_dz[n].dz_tty = ttymalloc(); /* Now register the RX interrupt handler */ ubasetvec(self, ua->ua_cvec-1, dzrint); /* Alas no interrupt on modem bit changes, so we manually scan */ if (dz_timer == 0) { dz_timer = 1; timeout(dzscan, (void *)0, hz); } printf("\n"); return; } /* Receiver Interrupt */ static void dzrint(cntlr) int cntlr; { struct dz_softc *sc = dz_cd.cd_devs[cntlr]; volatile dzregs *dzaddr; register struct tty *tp; register int cc, line; register unsigned c; int overrun = 0; sc->sc_rxint++; dzaddr = sc->sc_addr; while ((c = dzaddr->dz_rbuf) & DZ_RBUF_DATA_VALID) { cc = c & 0xFF; line = DZ_PORT(c>>8); tp = sc->sc_dz[line].dz_tty; if (!(tp->t_state & TS_ISOPEN)) { wakeup((caddr_t)&tp->t_rawq); continue; } if ((c & DZ_RBUF_OVERRUN_ERR) && overrun == 0) { log(LOG_WARNING, "%s: silo overflow, line %d\n", sc->sc_dev.dv_xname, line); overrun = 1; } /* A BREAK key will appear as a NULL with a framing error */ if (c & DZ_RBUF_FRAMING_ERR) cc |= TTY_FE; if (c & DZ_RBUF_PARITY_ERR) cc |= TTY_PE; (*linesw[tp->t_line].l_rint)(cc, tp); } return; } /* Transmitter Interrupt */ static void dzxint(cntlr) int cntlr; { volatile dzregs *dzaddr; register struct dz_softc *sc = dz_cd.cd_devs[cntlr]; register struct tty *tp; register unsigned csr; register int line; dzaddr = sc->sc_addr; /* * Switch to POLLED mode. * Some simple measurements indicated that even on * one port, by freeing the scanner in the controller * by either providing a character or turning off * the port when output is complete, the transmitter * was ready to accept more output when polled again. * With just two ports running the game "worms," * almost every interrupt serviced both transmitters! * Each UART is double buffered, so if the scanner * is quick enough and timing works out, we can even * feed the same port twice. */ dzaddr->dz_csr &= ~(DZ_CSR_TXIE); while (((csr = dzaddr->dz_csr) & DZ_CSR_TX_READY) != 0) { line = DZ_PORT(csr>>8); if (sc->sc_dz[line].dz_mem < sc->sc_dz[line].dz_end) { dzaddr->dz_tbuf = *sc->sc_dz[line].dz_mem++; continue; } /* * Turn off this TX port as all pending output * has been completed - thus freeing the scanner * on the controller to hopefully find another * pending TX operation we can service now. * (avoiding the overhead of another interrupt) */ dzaddr->dz_tcr &= ~(1 << line); tp = sc->sc_dz[line].dz_tty; tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else { ndflush (&tp->t_outq, (sc->sc_dz[line].dz_mem - (caddr_t)tp->t_outq.c_cf)); sc->sc_dz[line].dz_end = sc->sc_dz[line].dz_mem = tp->t_outq.c_cf; } if (tp->t_line) (*linesw[tp->t_line].l_start)(tp); else dzstart(tp); } /* * Re-enable TX interrupts. */ dzaddr->dz_csr |= (DZ_CSR_TXIE); return; } int dzopen(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { register struct tty *tp; register int unit, line; struct dz_softc *sc; int s, error = 0; unit = DZ_I2C(minor(dev)); line = DZ_PORT(minor(dev)); if (unit >= dz_cd.cd_ndevs || dz_cd.cd_devs[unit] == NULL) return (ENXIO); sc = dz_cd.cd_devs[unit]; if (line >= sc->sc_type) return ENXIO; tp = sc->sc_dz[line].dz_tty; if (tp == NULL) return (ENODEV); tp->t_oproc = dzstart; tp->t_param = dzparam; tp->t_dev = dev; if ((tp->t_state & TS_ISOPEN) == 0) { tp->t_state |= TS_WOPEN; ttychars(tp); if (tp->t_ispeed == 0) { tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED; } (void) dzparam(tp, &tp->t_termios); ttsetwater(tp); } else if ((tp->t_state & TS_XCLUDE) && p->p_ucred->cr_uid != 0) return (EBUSY); /* Use DMBIS and *not* DMSET or else we clobber incoming bits */ if (dzmctl(sc, line, DML_DTR, DMBIS) & DML_DCD) tp->t_state |= TS_CARR_ON; s = spltty(); while (!(flag & O_NONBLOCK) && !(tp->t_cflag & CLOCAL) && !(tp->t_state & TS_CARR_ON)) { tp->t_state |= TS_WOPEN; error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0); if (error) break; } (void) splx(s); if (error) return (error); return ((*linesw[tp->t_line].l_open)(dev, tp)); } /*ARGSUSED*/ int dzclose (dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { struct dz_softc *sc; register struct tty *tp; register int unit, line; unit = DZ_I2C(minor(dev)); line = DZ_PORT(minor(dev)); sc = dz_cd.cd_devs[unit]; tp = sc->sc_dz[line].dz_tty; (*linesw[tp->t_line].l_close)(tp, flag); /* Make sure a BREAK state is not left enabled. */ (void) dzmctl(sc, line, DML_BRK, DMBIC); /* Do a hangup if so required. */ if ((tp->t_cflag & HUPCL) || (tp->t_state & TS_WOPEN) || !(tp->t_state & TS_ISOPEN)) (void) dzmctl(sc, line, 0, DMSET); return (ttyclose(tp)); } int dzread (dev, uio, flag) dev_t dev; struct uio *uio; { register struct tty *tp; struct dz_softc *sc; sc = dz_cd.cd_devs[DZ_I2C(minor(dev))]; tp = sc->sc_dz[DZ_PORT(minor(dev))].dz_tty; return ((*linesw[tp->t_line].l_read)(tp, uio, flag)); } int dzwrite (dev, uio, flag) dev_t dev; struct uio *uio; { register struct tty *tp; struct dz_softc *sc; sc = dz_cd.cd_devs[DZ_I2C(minor(dev))]; tp = sc->sc_dz[DZ_PORT(minor(dev))].dz_tty; return ((*linesw[tp->t_line].l_write)(tp, uio, flag)); } /*ARGSUSED*/ int dzioctl (dev, cmd, data, flag, p) dev_t dev; int cmd; caddr_t data; int flag; struct proc *p; { struct dz_softc *sc; register struct tty *tp; register int unit, line; int error; unit = DZ_I2C(minor(dev)); line = DZ_PORT(minor(dev)); sc = dz_cd.cd_devs[unit]; tp = sc->sc_dz[line].dz_tty; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); switch (cmd) { case TIOCSBRK: (void) dzmctl(sc, line, DML_BRK, DMBIS); break; case TIOCCBRK: (void) dzmctl(sc, line, DML_BRK, DMBIC); break; case TIOCSDTR: (void) dzmctl(sc, line, DML_DTR, DMBIS); break; case TIOCCDTR: (void) dzmctl(sc, line, DML_DTR, DMBIC); break; case TIOCMSET: (void) dzmctl(sc, line, *(int *)data, DMSET); break; case TIOCMBIS: (void) dzmctl(sc, line, *(int *)data, DMBIS); break; case TIOCMBIC: (void) dzmctl(sc, line, *(int *)data, DMBIC); break; case TIOCMGET: *(int *)data = (dzmctl(sc, line, 0, DMGET) & ~DML_BRK); break; default: return (ENOTTY); } return (0); } struct tty * dztty (dev) dev_t dev; { struct dz_softc *sc = dz_cd.cd_devs[DZ_I2C(minor(dev))]; struct tty *tp = sc->sc_dz[DZ_PORT(minor(dev))].dz_tty; return (tp); } /*ARGSUSED*/ void dzstop(tp, flag) register struct tty *tp; { register struct dz_softc *sc; int unit, line, s; unit = DZ_I2C(minor(tp->t_dev)); line = DZ_PORT(minor(tp->t_dev)); sc = dz_cd.cd_devs[unit]; s = spltty(); if (tp->t_state & TS_BUSY) { sc->sc_dz[line].dz_end = sc->sc_dz[line].dz_mem; if (!(tp->t_state & TS_TTSTOP)) tp->t_state |= TS_FLUSH; } (void) splx(s); } static void dzstart (tp) register struct tty *tp; { register struct dz_softc *sc; register dzregs *dzaddr; register int unit, line; register int cc; int s; unit = DZ_I2C(minor(tp->t_dev)); line = DZ_PORT(minor(tp->t_dev)); sc = dz_cd.cd_devs[unit]; s = spltty(); if (tp->t_state & (TS_TIMEOUT|TS_BUSY|TS_TTSTOP)) goto out; if (tp->t_outq.c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)&tp->t_outq); } selwakeup(&tp->t_wsel); } if (tp->t_outq.c_cc == 0) goto out; cc = ndqb(&tp->t_outq, 0); if (cc == 0) goto out; tp->t_state |= TS_BUSY; dzaddr = sc->sc_addr; sc->sc_dz[line].dz_end = sc->sc_dz[line].dz_mem = tp->t_outq.c_cf; sc->sc_dz[line].dz_end += cc; dzaddr->dz_tcr |= (1 << line); /* Enable this TX port */ out: (void) splx(s); return; } static int dzparam(tp, t) register struct tty *tp; register struct termios *t; { struct dz_softc *sc; register dzregs *dzaddr; register int cflag = t->c_cflag; int unit, line; int ispeed = ttspeedtab(t->c_ispeed, dzspeedtab); int ospeed = ttspeedtab(t->c_ospeed, dzspeedtab); register unsigned lpr; int s; unit = DZ_I2C(minor(tp->t_dev)); line = DZ_PORT(minor(tp->t_dev)); sc = dz_cd.cd_devs[unit]; /* check requested parameters */ if (ospeed < 0 || ispeed < 0 || ispeed != ospeed) return (EINVAL); tp->t_ispeed = t->c_ispeed; tp->t_ospeed = t->c_ospeed; tp->t_cflag = cflag; if (ospeed == 0) { (void) dzmctl(sc, line, 0, DMSET); /* hang up line */ return (0); } s = spltty(); dzaddr = sc->sc_addr; lpr = DZ_LPR_RX_ENABLE | ((ispeed&0xF)<<8) | line; switch (cflag & CSIZE) { case CS5: lpr |= DZ_LPR_5_BIT_CHAR; break; case CS6: lpr |= DZ_LPR_6_BIT_CHAR; break; case CS7: lpr |= DZ_LPR_7_BIT_CHAR; break; default: lpr |= DZ_LPR_8_BIT_CHAR; break; } if (cflag & PARENB) lpr |= DZ_LPR_PARENB; if (cflag & PARODD) lpr |= DZ_LPR_OPAR; if (cflag & CSTOPB) lpr |= DZ_LPR_2_STOP; dzaddr->dz_lpr = lpr; (void) splx(s); return (0); } static unsigned dzmctl(sc, line, bits, how) register struct dz_softc *sc; int line, bits, how; { register dzregs *dzaddr; register unsigned status; register unsigned mbits; register unsigned bit; int s; s = spltty(); dzaddr = sc->sc_addr; mbits = 0; bit = (1 << line); /* external signals as seen from the port */ status = dzaddr->dz_dcd; if (status & bit) mbits |= DML_DCD; status = dzaddr->dz_ring; if (status & bit) mbits |= DML_RI; /* internal signals/state delivered to port */ status = dzaddr->dz_dtr; if (status & bit) mbits |= DML_DTR; if (sc->sc_brk & bit) mbits |= DML_BRK; switch (how) { case DMSET: mbits = bits; break; case DMBIS: mbits |= bits; break; case DMBIC: mbits &= ~bits; break; case DMGET: (void) splx(s); return (mbits); } if (mbits & DML_DTR) dzaddr->dz_dtr |= bit; else dzaddr->dz_dtr &= ~bit; if (mbits & DML_BRK) dzaddr->dz_break = (sc->sc_brk |= bit); else dzaddr->dz_break = (sc->sc_brk &= ~bit); (void) splx(s); return (mbits); } /* * This is called by timeout() periodically. * Check to see if modem status bits have changed. */ static void dzscan(arg) void *arg; { register dzregs *dzaddr; register struct dz_softc *sc; register struct tty *tp; register int n, bit, port; unsigned csr; int s; s = spltty(); for (n = 0; n < dz_cd.cd_ndevs; n++) { if (dz_cd.cd_devs[n] == NULL) continue; sc = dz_cd.cd_devs[n]; for (port = 0; port < sc->sc_type; port++) { dzaddr = sc->sc_addr; tp = sc->sc_dz[port].dz_tty; bit = (1 << port); if (dzaddr->dz_dcd & bit) { /* carrier present */ if (!(tp->t_state & TS_CARR_ON)) (void)(*linesw[tp->t_line].l_modem) (tp, 1); } else if ((tp->t_state & TS_CARR_ON) && (*linesw[tp->t_line].l_modem)(tp, 0) == 0) dzaddr->dz_tcr &= ~bit; } /* * If the RX interrupt rate is this high, switch * the controller to Silo Alarm - which means don't * interrupt until the RX silo has 16 characters in * it (the silo is 64 characters in all). * Avoid oscillating SA on and off by not turning * if off unless the rate is appropriately low. */ dzaddr = sc->sc_addr; csr = dzaddr->dz_csr; if (sc->sc_rxint > (16*10)) { if ((csr & DZ_CSR_SAE) == 0) dzaddr->dz_csr = (csr | DZ_CSR_SAE); } else if ((csr & DZ_CSR_SAE) != 0) if (sc->sc_rxint < 10) dzaddr->dz_csr = (csr & ~(DZ_CSR_SAE)); sc->sc_rxint = 0; } (void) splx(s); timeout(dzscan, (void *)0, hz); return; }