/* $NetBSD: svr4_32_misc.c,v 1.29 2004/09/17 14:11:24 skrll Exp $ */ /*- * Copyright (c) 1994 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Christos Zoulas. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * SVR4 compatibility module. * * SVR4 system calls that are implemented differently in BSD are * handled here. */ #include __KERNEL_RCSID(0, "$NetBSD: svr4_32_misc.c,v 1.29 2004/09/17 14:11:24 skrll Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int svr4_to_bsd_mmap_flags __P((int)); static __inline clock_t timeval_to_clock_t __P((struct timeval *)); static int svr4_32_setinfo __P((struct proc *, int, svr4_32_siginfo_tp)); struct svr4_32_hrtcntl_args; static int svr4_32_hrtcntl __P((struct proc *, struct svr4_32_hrtcntl_args *, register_t *)); static void bsd_statvfs_to_svr4_32_statvfs __P((const struct statvfs *, struct svr4_32_statvfs *)); static void bsd_statvfs_to_svr4_32_statvfs64 __P((const struct statvfs *, struct svr4_32_statvfs64 *)); #define svr4_32_pfind(pid) p_find((pid), PFIND_UNLOCK | PFIND_ZOMBIE) static int svr4_32_mknod __P((struct lwp *, register_t *, const char *, svr4_32_mode_t, svr4_32_dev_t)); int svr4_32_sys_wait(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_wait_args *uap = v; struct proc *p = l->l_proc; struct sys_wait4_args w4; int error; size_t sz = sizeof(*SCARG(&w4, status)); int st, sig; SCARG(&w4, rusage) = NULL; SCARG(&w4, options) = 0; if (SCARG(uap, status) == 0) { caddr_t sg = stackgap_init(p, 0); SCARG(&w4, status) = stackgap_alloc(p, &sg, sz); } else SCARG(&w4, status) = (int *)(u_long)SCARG(uap, status); SCARG(&w4, pid) = WAIT_ANY; if ((error = sys_wait4(l, &w4, retval)) != 0) return error; if ((error = copyin(SCARG(&w4, status), &st, sizeof(st))) != 0) return error; if (WIFSIGNALED(st)) { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0177) | native_to_svr4_signo[sig]; } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0xff00) | (native_to_svr4_signo[sig] << 8); } /* * It looks like wait(2) on svr4/solaris/2.4 returns * the status in retval[1], and the pid on retval[0]. */ retval[1] = st; if (SCARG(uap, status)) if ((error = copyout(&st, (caddr_t)(u_long)SCARG(uap, status), sizeof(st))) != 0) return error; return 0; } int svr4_32_sys_execv(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_execv_args /* { syscallarg(char *) path; syscallarg(char **) argv; } */ *uap = v; struct netbsd32_execve_args_noconst { syscallarg(netbsd32_charp) path; syscallarg(netbsd32_charpp) argp; syscallarg(netbsd32_charpp) envp; } ap; SCARG(&ap, path) = SCARG(uap, path); SCARG(&ap, argp) = SCARG(uap, argp); SCARG(&ap, envp) = 0; return netbsd32_execve(l, &ap, retval); } #if 0 int svr4_32_sys_execve(p, v, retval) struct proc *p; void *v; register_t *retval; { struct svr4_32_sys_execve_args /* { syscallarg(const char *) path; syscallarg(char **) argv; syscallarg(char **) envp; } */ *uap = v; struct sys_execve_args ap; caddr_t sg; sg = stackgap_init(p, 0); SCARG(&ap, path) = (const char *)(u_long)SCARG(uap, path); CHECK_ALT_EXIST(p, &sg, SCARG(&ap, path)); SCARG(&ap, argp) = (char **)(u_long)SCARG(uap, argp); SCARG(&ap, envp) = (char **)(u_long)SCARG(uap, envp); return netbsd32_execve(p, &ap, retval); } #endif int svr4_32_sys_time(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_time_args *uap = v; int error = 0; struct timeval tv; struct netbsd32_timeval ntv; microtime(&tv); ntv.tv_sec = tv.tv_sec; ntv.tv_usec = tv.tv_usec; if (SCARG(uap, t)) error = copyout(&ntv.tv_sec, (caddr_t)(u_long)SCARG(uap, t), sizeof(ntv.tv_sec)); *retval = (int) ntv.tv_sec; return error; } /* * Read SVR4-style directory entries. We suck them into kernel space so * that they can be massaged before being copied out to user code. Like * SunOS, we squish out `empty' entries. * * This is quite ugly, but what do you expect from compatibility code? */ int svr4_32_sys_getdents64(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_getdents64_args *uap = v; struct proc *p = l->l_proc; struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4_32_reclen; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; struct svr4_32_dirent64 idb; off_t off; /* true file offset */ int buflen, error, eofflag; off_t *cookiebuf = NULL, *cookie; int ncookies; /* getvnode() will use the descriptor for us */ if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) { error = EBADF; goto out1; } vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) { error = EINVAL; goto out1; } buflen = min(MAXBSIZE, SCARG(uap, nbytes)); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); off = fp->f_offset; again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_procp = NULL; auio.uio_resid = buflen; auio.uio_offset = off; /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, &ncookies); if (error) goto out; inp = buf; outp = (char *)(u_long) SCARG(uap, dp); resid = SCARG(uap, nbytes); if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = bdp->d_reclen; if (reclen & 3) panic("svr4_32_getdents64: bad reclen"); if (bdp->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ off = *cookie++; continue; } svr4_32_reclen = SVR4_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < svr4_32_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } off = *cookie++; /* each entry points to the next */ /* * Massage in place to make a SVR4-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = (svr4_32_ino64_t)bdp->d_fileno; idb.d_off = (svr4_32_off64_t)off; idb.d_reclen = (u_short)svr4_32_reclen; strlcpy(idb.d_name, bdp->d_name, sizeof(idb.d_name)); if ((error = copyout((caddr_t)&idb, outp, svr4_32_reclen))) goto out; /* advance past this real entry */ inp += reclen; /* advance output past SVR4-shaped entry */ outp += svr4_32_reclen; resid -= svr4_32_reclen; } /* if we squished out the whole block, try again */ if (outp == (char *)(u_long) SCARG(uap, dp)) goto again; fp->f_offset = off; /* update the vnode offset */ eof: *retval = SCARG(uap, nbytes) - resid; out: VOP_UNLOCK(vp, 0); if (cookiebuf) free(cookiebuf, M_TEMP); free(buf, M_TEMP); out1: FILE_UNUSE(fp, p); return error; } int svr4_32_sys_getdents(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_getdents_args *uap = v; struct proc *p = l->l_proc; struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4_reclen; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; struct svr4_32_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag; off_t *cookiebuf = NULL, *cookie; int ncookies; /* getvnode() will use the descriptor for us */ if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) { error = EBADF; goto out1; } vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) { error = EINVAL; goto out1; } buflen = min(MAXBSIZE, SCARG(uap, nbytes)); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); off = fp->f_offset; again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_procp = NULL; auio.uio_resid = buflen; auio.uio_offset = off; /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, &ncookies); if (error) goto out; inp = buf; outp = (caddr_t)(u_long)SCARG(uap, buf); resid = SCARG(uap, nbytes); if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = bdp->d_reclen; if (reclen & 3) panic("svr4_32_getdents: bad reclen"); off = *cookie++; /* each entry points to the next */ if ((off >> 32) != 0) { compat_offseterr(vp, "svr4_32_getdents"); error = EINVAL; goto out; } if (bdp->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ continue; } svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < svr4_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a SVR4-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = (svr4_32_ino_t)bdp->d_fileno; idb.d_off = (svr4_32_off_t)off; idb.d_reclen = (u_short)svr4_reclen; strlcpy(idb.d_name, bdp->d_name, sizeof(idb.d_name)); if ((error = copyout((caddr_t)&idb, outp, svr4_reclen))) goto out; /* advance past this real entry */ inp += reclen; /* advance output past SVR4-shaped entry */ outp += svr4_reclen; resid -= svr4_reclen; } /* if we squished out the whole block, try again */ if (outp == (caddr_t)(u_long)SCARG(uap, buf)) goto again; fp->f_offset = off; /* update the vnode offset */ eof: *retval = SCARG(uap, nbytes) - resid; out: VOP_UNLOCK(vp, 0); if (cookiebuf) free(cookiebuf, M_TEMP); free(buf, M_TEMP); out1: FILE_UNUSE(fp, p); return error; } static int svr4_to_bsd_mmap_flags(f) int f; { int type = f & SVR4_MAP_TYPE; int nf; if (type != MAP_PRIVATE && type != MAP_SHARED) return -1; nf = f & SVR4_MAP_COPYFLAGS; if (f & SVR4_MAP_ANON) nf |= MAP_ANON; return nf; } int svr4_32_sys_mmap(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_mmap_args *uap = v; struct sys_mmap_args mm; int error; /* * Verify the arguments. */ if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (SCARG(uap, len) == 0) return EINVAL; if ((SCARG(&mm, flags) = svr4_to_bsd_mmap_flags(SCARG(uap, flags))) == -1) return EINVAL; SCARG(&mm, prot) = SCARG(uap, prot); SCARG(&mm, len) = SCARG(uap, len); SCARG(&mm, fd) = SCARG(uap, fd); SCARG(&mm, addr) = (void *)(u_long)SCARG(uap, addr); SCARG(&mm, pos) = SCARG(uap, pos); error = sys_mmap(l, &mm, retval); if ((u_long)*retval > (u_long)UINT_MAX) { printf("svr4_32_mmap: retval out of range: 0x%lx", (u_long)*retval); /* Should try to recover and return an error here. */ } return (error); } int svr4_32_sys_mmap64(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_mmap64_args *uap = v; struct sys_mmap_args mm; int error; /* * Verify the arguments. */ if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (SCARG(uap, len) == 0) return EINVAL; if ((SCARG(&mm, flags) = svr4_to_bsd_mmap_flags(SCARG(uap, flags))) == -1) return EINVAL; SCARG(&mm, prot) = SCARG(uap, prot); SCARG(&mm, len) = SCARG(uap, len); SCARG(&mm, fd) = SCARG(uap, fd); SCARG(&mm, addr) = (void *)(u_long)SCARG(uap, addr); SCARG(&mm, pos) = SCARG(uap, pos); error = sys_mmap(l, &mm, retval); if ((u_long)*retval > (u_long)UINT_MAX) { printf("svr4_32_mmap64: retval out of range: 0x%lx", (u_long)*retval); /* Should try to recover and return an error here. */ } return (error); } static int svr4_32_mknod(l, retval, path, mode, dev) struct lwp *l; register_t *retval; const char *path; svr4_32_mode_t mode; svr4_32_dev_t dev; { caddr_t sg = stackgap_init(l->l_proc, 0); CHECK_ALT_CREAT(l->l_proc, &sg, path); if (S_ISFIFO(mode)) { struct sys_mkfifo_args ap; SCARG(&ap, path) = path; SCARG(&ap, mode) = mode; return sys_mkfifo(l, &ap, retval); } else { struct sys_mknod_args ap; SCARG(&ap, path) = path; SCARG(&ap, mode) = mode; SCARG(&ap, dev) = dev; return sys_mknod(l, &ap, retval); } } int svr4_32_sys_mknod(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_mknod_args *uap = v; return svr4_32_mknod(l, retval, (caddr_t)(u_long)SCARG(uap, path), SCARG(uap, mode), svr4_32_to_bsd_odev_t(SCARG(uap, dev))); } int svr4_32_sys_xmknod(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_xmknod_args *uap = v; return svr4_32_mknod(l, retval, (caddr_t)(u_long)SCARG(uap, path), SCARG(uap, mode), svr4_32_to_bsd_dev_t(SCARG(uap, dev))); } int svr4_32_sys_vhangup(l, v, retval) struct lwp *l; void *v; register_t *retval; { return 0; } int svr4_32_sys_sysconfig(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_sysconfig_args *uap = v; extern int maxfiles; switch (SCARG(uap, name)) { case SVR4_CONFIG_NGROUPS: *retval = NGROUPS_MAX; break; case SVR4_CONFIG_CHILD_MAX: *retval = maxproc; break; case SVR4_CONFIG_OPEN_FILES: *retval = maxfiles; break; case SVR4_CONFIG_POSIX_VER: *retval = 198808; break; case SVR4_CONFIG_PAGESIZE: *retval = PAGE_SIZE; break; case SVR4_CONFIG_CLK_TCK: *retval = 60; /* should this be `hz', ie. 100? */ break; case SVR4_CONFIG_XOPEN_VER: *retval = 2; /* XXX: What should that be? */ break; case SVR4_CONFIG_PROF_TCK: *retval = 60; /* XXX: What should that be? */ break; case SVR4_CONFIG_NPROC_CONF: *retval = 1; /* Only one processor for now */ break; case SVR4_CONFIG_NPROC_ONLN: *retval = 1; /* And it better be online */ break; case SVR4_CONFIG_AIO_LISTIO_MAX: case SVR4_CONFIG_AIO_MAX: case SVR4_CONFIG_AIO_PRIO_DELTA_MAX: *retval = 0; /* No aio support */ break; case SVR4_CONFIG_DELAYTIMER_MAX: *retval = 0; /* No delaytimer support */ break; case SVR4_CONFIG_MQ_OPEN_MAX: #ifdef SYSVMSG *retval = msginfo.msgmni; #else *retval = 0; #endif break; case SVR4_CONFIG_MQ_PRIO_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_RTSIG_MAX: *retval = 0; break; case SVR4_CONFIG_SEM_NSEMS_MAX: #ifdef SYSVSEM *retval = seminfo.semmni; #else *retval = 0; #endif break; case SVR4_CONFIG_SEM_VALUE_MAX: #ifdef SYSVSEM *retval = seminfo.semvmx; #else *retval = 0; #endif break; case SVR4_CONFIG_SIGQUEUE_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_SIGRT_MIN: case SVR4_CONFIG_SIGRT_MAX: *retval = 0; /* No real time signals */ break; case SVR4_CONFIG_TIMER_MAX: *retval = 3; /* XXX: real, virtual, profiling */ break; case SVR4_CONFIG_PHYS_PAGES: *retval = uvmexp.free; /* XXX: free instead of total */ break; case SVR4_CONFIG_AVPHYS_PAGES: *retval = uvmexp.active; /* XXX: active instead of avg */ break; case SVR4_CONFIG_COHERENCY: *retval = 0; /* XXX */ break; case SVR4_CONFIG_SPLIT_CACHE: *retval = 0; /* XXX */ break; case SVR4_CONFIG_ICACHESZ: *retval = 256; /* XXX */ break; case SVR4_CONFIG_DCACHESZ: *retval = 256; /* XXX */ break; case SVR4_CONFIG_ICACHELINESZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_DCACHELINESZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_ICACHEBLKSZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_DCACHEBLKSZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_DCACHETBLKSZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_ICACHE_ASSOC: *retval = 1; /* XXX */ break; case SVR4_CONFIG_DCACHE_ASSOC: *retval = 1; /* XXX */ break; case SVR4_CONFIG_MAXPID: *retval = PID_MAX; break; case SVR4_CONFIG_STACK_PROT: *retval = PROT_READ|PROT_WRITE|PROT_EXEC; break; default: return EINVAL; } return 0; } /* ARGSUSED */ int svr4_32_sys_break(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_break_args *uap = v; struct proc *p = l->l_proc; struct vmspace *vm = p->p_vmspace; vaddr_t new, old; int error; old = (vaddr_t) vm->vm_daddr; new = round_page((vaddr_t)SCARG(uap, nsize)); if (new - old > p->p_rlimit[RLIMIT_DATA].rlim_cur && new > old) return ENOMEM; old = round_page(old + ctob(vm->vm_dsize)); DPRINTF(("break(2): dsize = %x ctob %x\n", vm->vm_dsize, ctob(vm->vm_dsize))); if (new > old) { error = uvm_map(&vm->vm_map, &old, new - old, NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_COPY, UVM_ADV_NORMAL, UVM_FLAG_AMAPPAD|UVM_FLAG_FIXED| UVM_FLAG_OVERLAY|UVM_FLAG_COPYONW)); if (error) { uprintf("sbrk: grow failed, return = %d\n", error); return error; } vm->vm_dsize += btoc(new - old); } else if (new < old) { uvm_deallocate(&vm->vm_map, new, old - new); vm->vm_dsize -= btoc(old - new); } return 0; } static __inline clock_t timeval_to_clock_t(tv) struct timeval *tv; { return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz); } int svr4_32_sys_times(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_times_args *uap = v; struct proc *p = l->l_proc; int error; struct tms tms; struct timeval t; struct rusage *ru; struct rusage r; struct sys_getrusage_args ga; caddr_t sg = stackgap_init(p, 0); ru = stackgap_alloc(p, &sg, sizeof(struct rusage)); SCARG(&ga, who) = RUSAGE_SELF; SCARG(&ga, rusage) = ru; error = sys_getrusage(l, &ga, retval); if (error) return error; if ((error = copyin(ru, &r, sizeof r)) != 0) return error; tms.tms_utime = timeval_to_clock_t(&r.ru_utime); tms.tms_stime = timeval_to_clock_t(&r.ru_stime); SCARG(&ga, who) = RUSAGE_CHILDREN; error = sys_getrusage(l, &ga, retval); if (error) return error; if ((error = copyin(ru, &r, sizeof r)) != 0) return error; tms.tms_cutime = timeval_to_clock_t(&r.ru_utime); tms.tms_cstime = timeval_to_clock_t(&r.ru_stime); microtime(&t); *retval = timeval_to_clock_t(&t); return copyout(&tms, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tms)); } int svr4_32_sys_ulimit(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_ulimit_args *uap = v; struct proc *p = l->l_proc; switch (SCARG(uap, cmd)) { case SVR4_GFILLIM: *retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur / 512; if (*retval == -1) *retval = 0x7fffffff; return 0; case SVR4_SFILLIM: { int error; struct sys_setrlimit_args srl; struct rlimit krl; caddr_t sg = stackgap_init(p, 0); struct rlimit *url = (struct rlimit *) stackgap_alloc(p, &sg, sizeof *url); krl.rlim_cur = SCARG(uap, newlimit) * 512; krl.rlim_max = p->p_rlimit[RLIMIT_FSIZE].rlim_max; error = copyout(&krl, url, sizeof(*url)); if (error) return error; SCARG(&srl, which) = RLIMIT_FSIZE; SCARG(&srl, rlp) = url; error = sys_setrlimit(l, &srl, retval); if (error) return error; *retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur; if (*retval == -1) *retval = 0x7fffffff; return 0; } case SVR4_GMEMLIM: { struct vmspace *vm = p->p_vmspace; register_t r = p->p_rlimit[RLIMIT_DATA].rlim_cur; if (r == -1) r = 0x7fffffff; r += (long) vm->vm_daddr; if (r < 0) r = 0x7fffffff; *retval = r; return 0; } case SVR4_GDESLIM: *retval = p->p_rlimit[RLIMIT_NOFILE].rlim_cur; if (*retval == -1) *retval = 0x7fffffff; return 0; default: return EINVAL; } } int svr4_32_sys_pgrpsys(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_pgrpsys_args *uap = v; struct proc *p = l->l_proc; switch (SCARG(uap, cmd)) { case 1: /* setpgrp() */ /* * SVR4 setpgrp() (which takes no arguments) has the * semantics that the session ID is also created anew, so * in almost every sense, setpgrp() is identical to * setsid() for SVR4. (Under BSD, the difference is that * a setpgid(0,0) will not create a new session.) */ sys_setsid(l, NULL, retval); /*FALLTHROUGH*/ case 0: /* getpgrp() */ *retval = p->p_pgrp->pg_id; return 0; case 2: /* getsid(pid) */ if (SCARG(uap, pid) != 0 && (p = svr4_32_pfind(SCARG(uap, pid))) == NULL) return ESRCH; /* * This has already been initialized to the pid of * the session leader. */ *retval = (register_t) p->p_session->s_sid; return 0; case 3: /* setsid() */ return sys_setsid(l, NULL, retval); case 4: /* getpgid(pid) */ if (SCARG(uap, pid) != 0 && (p = svr4_32_pfind(SCARG(uap, pid))) == NULL) return ESRCH; *retval = (int) p->p_pgrp->pg_id; return 0; case 5: /* setpgid(pid, pgid); */ { struct sys_setpgid_args sa; SCARG(&sa, pid) = SCARG(uap, pid); SCARG(&sa, pgid) = SCARG(uap, pgid); return sys_setpgid(l, &sa, retval); } default: return EINVAL; } } struct svr4_32_hrtcntl_args { syscallarg(int) cmd; syscallarg(int) fun; syscallarg(int) clk; syscallarg(svr4_32_hrt_interval_tp) iv; syscallarg(svr4_32_hrt_time_tp) ti; }; static int svr4_32_hrtcntl(p, uap, retval) struct proc *p; struct svr4_32_hrtcntl_args *uap; register_t *retval; { switch (SCARG(uap, fun)) { case SVR4_HRT_CNTL_RES: DPRINTF(("htrcntl(RES)\n")); *retval = SVR4_HRT_USEC; return 0; case SVR4_HRT_CNTL_TOFD: DPRINTF(("htrcntl(TOFD)\n")); { struct timeval tv; svr4_hrt_time_t t; if (SCARG(uap, clk) != SVR4_HRT_CLK_STD) { DPRINTF(("clk == %d\n", SCARG(uap, clk))); return EINVAL; } if (SCARG(uap, ti) == 0) { DPRINTF(("ti NULL\n")); return EINVAL; } microtime(&tv); t.h_sec = tv.tv_sec; t.h_rem = tv.tv_usec; t.h_res = SVR4_HRT_USEC; return copyout(&t, (caddr_t)(u_long)SCARG(uap, ti), sizeof(t)); } case SVR4_HRT_CNTL_START: DPRINTF(("htrcntl(START)\n")); return ENOSYS; case SVR4_HRT_CNTL_GET: DPRINTF(("htrcntl(GET)\n")); return ENOSYS; default: DPRINTF(("Bad htrcntl command %d\n", SCARG(uap, fun))); return ENOSYS; } } int svr4_32_sys_hrtsys(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_hrtsys_args *uap = v; switch (SCARG(uap, cmd)) { case SVR4_HRT_CNTL: return svr4_32_hrtcntl(l->l_proc, (struct svr4_32_hrtcntl_args *) uap, retval); case SVR4_HRT_ALRM: DPRINTF(("hrtalarm\n")); return ENOSYS; case SVR4_HRT_SLP: DPRINTF(("hrtsleep\n")); return ENOSYS; case SVR4_HRT_CAN: DPRINTF(("hrtcancel\n")); return ENOSYS; default: DPRINTF(("Bad hrtsys command %d\n", SCARG(uap, cmd))); return EINVAL; } } static int svr4_32_setinfo(p, st, si) struct proc *p; int st; svr4_32_siginfo_tp si; { svr4_32_siginfo_t *s = (svr4_32_siginfo_t *)(u_long)si; svr4_32_siginfo_t i; int sig; memset(&i, 0, sizeof(i)); i.si_signo = SVR4_SIGCHLD; i.si_errno = 0; /* XXX? */ if (p) { i.si_pid = p->p_pid; if (p->p_stat == SZOMB) { i.si_stime = p->p_ru->ru_stime.tv_sec; i.si_utime = p->p_ru->ru_utime.tv_sec; } else { i.si_stime = p->p_stats->p_ru.ru_stime.tv_sec; i.si_utime = p->p_stats->p_ru.ru_utime.tv_sec; } } if (WIFEXITED(st)) { i.si_status = WEXITSTATUS(st); i.si_code = SVR4_CLD_EXITED; } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) i.si_status = native_to_svr4_signo[sig]; if (i.si_status == SVR4_SIGCONT) i.si_code = SVR4_CLD_CONTINUED; else i.si_code = SVR4_CLD_STOPPED; } else { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) i.si_status = native_to_svr4_signo[sig]; if (WCOREDUMP(st)) i.si_code = SVR4_CLD_DUMPED; else i.si_code = SVR4_CLD_KILLED; } DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n", i.si_pid, i.si_signo, i.si_code, i.si_errno, i.si_status)); return copyout(&i, s, sizeof(i)); } int svr4_32_sys_waitsys(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_waitsys_args *uap = v; struct proc *parent = l->l_proc; int options, error; struct proc *child; switch (SCARG(uap, grp)) { case SVR4_P_PID: break; case SVR4_P_PGID: SCARG(uap, id) = -parent->p_pgid; break; case SVR4_P_ALL: SCARG(uap, id) = WAIT_ANY; break; default: return EINVAL; } DPRINTF(("waitsys(%d, %d, %p, %x)\n", SCARG(uap, grp), SCARG(uap, id), SCARG(uap, info), SCARG(uap, options))); /* Translate options */ options = 0; if (SCARG(uap, options) & SVR4_WNOWAIT) options |= WNOWAIT; if (SCARG(uap, options) & SVR4_WNOHANG) options |= WNOHANG; if ((SCARG(uap, options) & (SVR4_WEXITED|SVR4_WTRAPPED)) == 0) options |= WNOZOMBIE; if (SCARG(uap, options) & (SVR4_WSTOPPED|SVR4_WCONTINUED)) options |= WUNTRACED; error = find_stopped_child(parent, SCARG(uap, id), options, &child); if (error != 0) return error; *retval = 0; if (child == NULL) return svr4_32_setinfo(NULL, 0, SCARG(uap, info)); if (child->p_stat == SZOMB) { DPRINTF(("found %d\n", child->p_pid)); error = svr4_32_setinfo(child, child->p_xstat, SCARG(uap,info)); if (error) return error; if ((SCARG(uap, options) & SVR4_WNOWAIT)) { DPRINTF(("Don't wait\n")); return 0; } proc_free(child); return 0; } DPRINTF(("jobcontrol %d\n", child->p_pid)); return svr4_32_setinfo(child, W_STOPCODE(child->p_xstat), SCARG(uap, info)); } static void bsd_statvfs_to_svr4_32_statvfs(bfs, sfs) const struct statvfs *bfs; struct svr4_32_statvfs *sfs; { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsidx.__fsid_val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flag & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flag & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = MAXNAMLEN; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } static void bsd_statvfs_to_svr4_32_statvfs64(bfs, sfs) const struct statvfs *bfs; struct svr4_32_statvfs64 *sfs; { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsidx.__fsid_val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flag & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flag & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = MAXNAMLEN; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } int svr4_32_sys_statvfs(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_statvfs_args *uap = v; struct proc *p = l->l_proc; struct sys_statvfs1_args fs_args; caddr_t sg = stackgap_init(p, 0); struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs)); struct statvfs bfs; struct svr4_32_statvfs sfs; int error; SCARG(&fs_args, path) = (caddr_t)(u_long)SCARG(uap, path); CHECK_ALT_EXIST(p, &sg, SCARG(&fs_args, path)); SCARG(&fs_args, buf) = fs; SCARG(&fs_args, flags) = ST_WAIT; if ((error = sys_statvfs1(l, &fs_args, retval)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statvfs_to_svr4_32_statvfs(&bfs, &sfs); return copyout(&sfs, (caddr_t)(u_long)SCARG(uap, fs), sizeof(sfs)); } int svr4_32_sys_fstatvfs(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_fstatvfs_args *uap = v; struct proc *p = l->l_proc; struct sys_fstatvfs1_args fs_args; caddr_t sg = stackgap_init(p, 0); struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs)); struct statvfs bfs; struct svr4_32_statvfs sfs; int error; SCARG(&fs_args, fd) = SCARG(uap, fd); SCARG(&fs_args, buf) = fs; SCARG(&fs_args, flags) = ST_WAIT; if ((error = sys_fstatvfs1(l, &fs_args, retval)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statvfs_to_svr4_32_statvfs(&bfs, &sfs); return copyout(&sfs, (caddr_t)(u_long)SCARG(uap, fs), sizeof(sfs)); } int svr4_32_sys_statvfs64(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_statvfs64_args *uap = v; struct sys_statvfs1_args fs_args; struct proc *p = l->l_proc; caddr_t sg = stackgap_init(p, 0); struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs)); struct statvfs bfs; struct svr4_32_statvfs64 sfs; int error; SCARG(&fs_args, path) = (caddr_t)(u_long)SCARG(uap, path); CHECK_ALT_EXIST(p, &sg, SCARG(&fs_args, path)); SCARG(&fs_args, buf) = fs; SCARG(&fs_args, flags) = ST_WAIT; if ((error = sys_statvfs1(l, &fs_args, retval)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statvfs_to_svr4_32_statvfs64(&bfs, &sfs); return copyout(&sfs, (caddr_t)(u_long)SCARG(uap, fs), sizeof(sfs)); } int svr4_32_sys_fstatvfs64(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_fstatvfs64_args *uap = v; struct proc *p = l->l_proc; struct sys_fstatvfs1_args fs_args; caddr_t sg = stackgap_init(p, 0); struct statvfs *fs = stackgap_alloc(p, &sg, sizeof(struct statvfs)); struct statvfs bfs; struct svr4_32_statvfs64 sfs; int error; SCARG(&fs_args, fd) = SCARG(uap, fd); SCARG(&fs_args, buf) = fs; SCARG(&fs_args, flags) = ST_WAIT; if ((error = sys_fstatvfs1(l, &fs_args, retval)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statvfs_to_svr4_32_statvfs64(&bfs, &sfs); return copyout(&sfs, (caddr_t)(u_long)SCARG(uap, fs), sizeof(sfs)); } int svr4_32_sys_alarm(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_alarm_args *uap = v; struct proc *p = l->l_proc; int error; struct itimerval *ntp, *otp, tp; struct sys_setitimer_args sa; caddr_t sg = stackgap_init(p, 0); ntp = stackgap_alloc(p, &sg, sizeof(struct itimerval)); otp = stackgap_alloc(p, &sg, sizeof(struct itimerval)); timerclear(&tp.it_interval); tp.it_value.tv_sec = SCARG(uap, sec); tp.it_value.tv_usec = 0; if ((error = copyout(&tp, ntp, sizeof(tp))) != 0) return error; SCARG(&sa, which) = ITIMER_REAL; SCARG(&sa, itv) = ntp; SCARG(&sa, oitv) = otp; if ((error = sys_setitimer(l, &sa, retval)) != 0) return error; if ((error = copyin(otp, &tp, sizeof(tp))) != 0) return error; if (tp.it_value.tv_usec) tp.it_value.tv_sec++; *retval = (register_t) tp.it_value.tv_sec; return 0; } int svr4_32_sys_gettimeofday(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_gettimeofday_args *uap = v; if (SCARG(uap, tp)) { struct timeval atv; microtime(&atv); return copyout(&atv, (caddr_t)(u_long)SCARG(uap, tp), sizeof (atv)); } return 0; } int svr4_32_sys_facl(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_facl_args *uap = v; *retval = 0; switch (SCARG(uap, cmd)) { case SVR4_SYS_SETACL: /* We don't support acls on any filesystem */ return ENOSYS; case SVR4_SYS_GETACL: return copyout(retval, &SCARG(uap, num), sizeof(SCARG(uap, num))); case SVR4_SYS_GETACLCNT: return 0; default: return EINVAL; } } int svr4_32_sys_acl(l, v, retval) struct lwp *l; void *v; register_t *retval; { return svr4_32_sys_facl(l, v, retval); /* XXX: for now the same */ } int svr4_32_sys_auditsys(l, v, retval) struct lwp *l; void *v; register_t *retval; { /* * XXX: Big brother is *not* watching. */ return 0; } int svr4_32_sys_memcntl(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_memcntl_args *uap = v; switch (SCARG(uap, cmd)) { case SVR4_MC_SYNC: { struct sys___msync13_args msa; SCARG(&msa, addr) = (void *)(u_long)SCARG(uap, addr); SCARG(&msa, len) = SCARG(uap, len); SCARG(&msa, flags) = (int)(u_long)SCARG(uap, arg); return sys___msync13(l, &msa, retval); } case SVR4_MC_ADVISE: { struct sys_madvise_args maa; SCARG(&maa, addr) = (void *)(u_long)SCARG(uap, addr); SCARG(&maa, len) = SCARG(uap, len); SCARG(&maa, behav) = (int)(u_long)SCARG(uap, arg); return sys_madvise(l, &maa, retval); } case SVR4_MC_LOCK: case SVR4_MC_UNLOCK: case SVR4_MC_LOCKAS: case SVR4_MC_UNLOCKAS: return EOPNOTSUPP; default: return ENOSYS; } } int svr4_32_sys_nice(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_nice_args *uap = v; struct sys_setpriority_args ap; int error; SCARG(&ap, which) = PRIO_PROCESS; SCARG(&ap, who) = 0; SCARG(&ap, prio) = SCARG(uap, prio); if ((error = sys_setpriority(l, &ap, retval)) != 0) return error; if ((error = sys_getpriority(l, &ap, retval)) != 0) return error; return 0; } int svr4_32_sys_resolvepath(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct svr4_32_sys_resolvepath_args *uap = v; struct proc *p = l->l_proc; struct nameidata nd; int error; size_t len; NDINIT(&nd, LOOKUP, NOFOLLOW | SAVENAME, UIO_USERSPACE, (const char *)(u_long)SCARG(uap, path), p); if ((error = namei(&nd)) != 0) return error; if ((error = copyoutstr(nd.ni_cnd.cn_pnbuf, (caddr_t)(u_long)SCARG(uap, buf), SCARG(uap, bufsiz), &len)) != 0) goto bad; *retval = len; bad: vrele(nd.ni_vp); PNBUF_PUT(nd.ni_cnd.cn_pnbuf); return error; }