/* $NetBSD: gtpci.c,v 1.15 2007/01/29 01:52:44 hubertf Exp $ */ /* * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Allegro Networks, Inc., and Wasabi Systems, Inc. * 4. The name of Allegro Networks, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * 5. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC. * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: gtpci.c,v 1.15 2007/01/29 01:52:44 hubertf Exp $"); #include "opt_marvell.h" #include #include #include #include #include #define _BUS_SPACE_PRIVATE #define _BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include static int gtpci_error_intr(void *); static void gtpci_bus_init(struct gtpci_chipset *); static void gtpci_bus_attach_hook(struct device *, struct device *, struct pcibus_attach_args *); static int gtpci_bus_maxdevs(pci_chipset_tag_t, int); static const char * gtpci_intr_string(pci_chipset_tag_t, pci_intr_handle_t); static const struct evcnt * gtpci_intr_evcnt(pci_chipset_tag_t, pci_intr_handle_t); static void *gtpci_intr_establish(pci_chipset_tag_t, pci_intr_handle_t, int, int (*)(void *), void *); static void gtpci_intr_disestablish(pci_chipset_tag_t, void *); #ifdef DEBUG int gtpci_debug = 0; #endif struct gtpci_softc { struct device gtpci_dev; struct gtpci_chipset gtpci_gtpc; }; static int gtpci_cfprint(void *, const char *); static int gtpci_match(struct device *, struct cfdata *, void *); static void gtpci_attach(struct device *, struct device *, void *); CFATTACH_DECL(gtpci, sizeof(struct gtpci_softc), gtpci_match, gtpci_attach, NULL, NULL); extern struct cfdriver gtpci_cd; const struct pci_chipset_functions gtpci_functions = { gtpci_bus_attach_hook, gtpci_bus_maxdevs, gtpci_md_bus_devorder, gtpci_make_tag, gtpci_decompose_tag, gtpci_conf_read, gtpci_conf_write, gtpci_md_conf_hook, gtpci_md_conf_interrupt, gtpci_md_intr_map, gtpci_intr_string, gtpci_intr_evcnt, gtpci_intr_establish, gtpci_intr_disestablish }; static const int pci_irqs[2][3] = { { IRQ_PCI0_0, IRQ_PCI0_1, IRQ_PCI0_2 }, { IRQ_PCI1_0, IRQ_PCI1_1, IRQ_PCI1_2 }, }; static const struct pci_init { int bar_regno; u_int32_t bar_enable; bus_addr_t low_decode; bus_addr_t high_decode; bus_addr_t barsize; bus_addr_t accctl_high; bus_addr_t accctl_low; bus_addr_t accctl_top; } pci_initinfo[2][4] = { { { 0x10, PCI_BARE_SCS0En, GT_SCS0_Low_Decode, GT_SCS0_High_Decode, PCI_SCS0_BAR_SIZE(0), PCI_ACCESS_CONTROL_BASE_HIGH(0, 0), PCI_ACCESS_CONTROL_BASE_LOW(0, 0), PCI_ACCESS_CONTROL_TOP(0, 0), }, { 0x14, PCI_BARE_SCS1En, GT_SCS1_Low_Decode, GT_SCS1_High_Decode, PCI_SCS1_BAR_SIZE(0), PCI_ACCESS_CONTROL_BASE_HIGH(0, 1), PCI_ACCESS_CONTROL_BASE_LOW(0, 1), PCI_ACCESS_CONTROL_TOP(0, 1), }, { 0x18, PCI_BARE_SCS2En, GT_SCS2_Low_Decode, GT_SCS2_High_Decode, PCI_SCS2_BAR_SIZE(0), PCI_ACCESS_CONTROL_BASE_HIGH(0, 2), PCI_ACCESS_CONTROL_BASE_LOW(0, 2), PCI_ACCESS_CONTROL_TOP(0, 2), }, { 0x1c, PCI_BARE_SCS3En, GT_SCS3_Low_Decode, GT_SCS3_High_Decode, PCI_SCS3_BAR_SIZE(0), PCI_ACCESS_CONTROL_BASE_HIGH(0, 3), PCI_ACCESS_CONTROL_BASE_LOW(0, 3), PCI_ACCESS_CONTROL_TOP(0, 3), }, }, { { 0x10, PCI_BARE_SCS0En, GT_SCS0_Low_Decode, GT_SCS0_High_Decode, PCI_SCS0_BAR_SIZE(1), PCI_ACCESS_CONTROL_BASE_HIGH(1, 0), PCI_ACCESS_CONTROL_BASE_LOW(1, 0), PCI_ACCESS_CONTROL_TOP(1, 0), }, { 0x14, PCI_BARE_SCS1En, GT_SCS1_Low_Decode, GT_SCS1_High_Decode, PCI_SCS1_BAR_SIZE(1), PCI_ACCESS_CONTROL_BASE_HIGH(1, 1), PCI_ACCESS_CONTROL_BASE_LOW(1, 1), PCI_ACCESS_CONTROL_TOP(1, 1), }, { 0x18, PCI_BARE_SCS2En, GT_SCS2_Low_Decode, GT_SCS2_High_Decode, PCI_SCS2_BAR_SIZE(1), PCI_ACCESS_CONTROL_BASE_HIGH(1, 2), PCI_ACCESS_CONTROL_BASE_LOW(1, 2), PCI_ACCESS_CONTROL_TOP(1, 2), }, { 0x1c, PCI_BARE_SCS3En, GT_SCS3_Low_Decode, GT_SCS3_High_Decode, PCI_SCS3_BAR_SIZE(1), PCI_ACCESS_CONTROL_BASE_HIGH(1, 3), PCI_ACCESS_CONTROL_BASE_LOW(1, 3), PCI_ACCESS_CONTROL_TOP(1, 3), }, } }; int gtpci_match(struct device *parent, struct cfdata *self, void *aux) { struct gt_softc * const gt = device_private(parent); struct gt_attach_args * const ga = aux; return GT_PCIOK(gt, ga, >pci_cd); } int gtpci_cfprint(void *aux, const char *pnp) { struct pcibus_attach_args *pba = (struct pcibus_attach_args *) aux; if (pnp) aprint_normal("pci at %s", pnp); aprint_normal(" bus %d", pba->pba_bus); return (UNCONF); } void gtpci_attach(struct device *parent, struct device *self, void *aux) { struct pcibus_attach_args pba; struct gt_attach_args * const ga = aux; struct gt_softc * const gt = device_private(parent); struct gtpci_softc * const gtp = device_private(self); struct gtpci_chipset * const gtpc = >p->gtpci_gtpc; struct pci_chipset * const pc = >pc->gtpc_pc; const int busno = ga->ga_unit; uint32_t data; GT_PCIFOUND(gt, ga); pc->pc_funcs = >pci_functions; pc->pc_parent = self; gtpc->gtpc_busno = busno; gtpc->gtpc_cfgaddr = PCI_CONFIG_ADDR(busno); gtpc->gtpc_cfgdata = PCI_CONFIG_DATA(busno); gtpc->gtpc_syncreg = PCI_SYNC_REG(busno); gtpc->gtpc_gt_memt = ga->ga_memt; gtpc->gtpc_gt_memh = ga->ga_memh; /* * Let's find out where we are located. */ data = gtpci_read(gtpc, PCI_P2P_CONFIGURATION(gtpc->gtpc_busno)); gtpc->gtpc_self = gtpci_make_tag(>pc->gtpc_pc, PCI_P2PCFG_BusNum_GET(data), PCI_P2PCFG_DevNum_GET(data), 0); switch (busno) { case 0: gtpc->gtpc_io_bs = gt->gt_pci0_iot; gtpc->gtpc_mem_bs = gt->gt_pci0_memt; gtpc->gtpc_host = gt->gt_pci0_host; break; case 1: gtpc->gtpc_io_bs = gt->gt_pci1_iot; gtpc->gtpc_mem_bs = gt->gt_pci1_memt; gtpc->gtpc_host = gt->gt_pci1_host; break; default: break; } /* * If no bus_spaces exist, then it's been disabled. */ if (gtpc->gtpc_io_bs == NULL && gtpc->gtpc_mem_bs == NULL) { aprint_normal(": disabled\n"); return; } aprint_normal("\n"); /* * clear any pre-existing error interrupt(s) * clear latched pci error registers * establish ISRs for PCI errors * enable PCI error interrupts */ gtpci_write(gtpc, PCI_ERROR_MASK(gtpc->gtpc_busno), 0); gtpci_write(gtpc, PCI_ERROR_CAUSE(gtpc->gtpc_busno), 0); (void)gtpci_read(gtpc, PCI_ERROR_DATA_LOW(gtpc->gtpc_busno)); (void)gtpci_read(gtpc, PCI_ERROR_DATA_HIGH(gtpc->gtpc_busno)); (void)gtpci_read(gtpc, PCI_ERROR_COMMAND(gtpc->gtpc_busno)); (void)gtpci_read(gtpc, PCI_ERROR_ADDRESS_HIGH(gtpc->gtpc_busno)); (void)gtpci_read(gtpc, PCI_ERROR_ADDRESS_LOW(gtpc->gtpc_busno)); if (gtpc->gtpc_host) { intr_establish(pci_irqs[gtpc->gtpc_busno][0], IST_LEVEL, IPL_GTERR, gtpci_error_intr, pc); intr_establish(pci_irqs[gtpc->gtpc_busno][1], IST_LEVEL, IPL_GTERR, gtpci_error_intr, pc); intr_establish(pci_irqs[gtpc->gtpc_busno][2], IST_LEVEL, IPL_GTERR, gtpci_error_intr, pc); aprint_normal("%s: %s%d error interrupts at irqs %s, %s, %s\n", pc->pc_parent->dv_xname, "pci", busno, intr_string(pci_irqs[gtpc->gtpc_busno][0]), intr_string(pci_irqs[gtpc->gtpc_busno][1]), intr_string(pci_irqs[gtpc->gtpc_busno][2])); gtpci_write(gtpc, PCI_ERROR_MASK(gtpc->gtpc_busno), PCI_SERRMSK_ALL_ERRS); } /* * Fill in the pci_bus_attach_args */ pba.pba_pc = pc; pba.pba_bus = 0; pba.pba_iot = gtpc->gtpc_io_bs; pba.pba_memt = gtpc->gtpc_mem_bs; pba.pba_dmat = gt->gt_dmat; pba.pba_flags = 0; if (pba.pba_iot != NULL) pba.pba_flags |= PCI_FLAGS_IO_ENABLED; if (pba.pba_memt != NULL) pba.pba_flags |= PCI_FLAGS_MEM_ENABLED; data = gtpci_read(gtpc, PCI_COMMAND(gtpc->gtpc_busno)); if (data & PCI_CMD_MRdMul) pba.pba_flags |= PCI_FLAGS_MRM_OKAY; if (data & PCI_CMD_MRdLine) pba.pba_flags |= PCI_FLAGS_MRL_OKAY; pba.pba_flags |= PCI_FLAGS_MWI_OKAY; gt_watchdog_service(); /* * Configure the pci bus. */ config_found_ia(self, "pcibus", &pba, gtpci_cfprint); gt_watchdog_service(); } void gtpci_bus_init(struct gtpci_chipset *gtpc) { const struct pci_init *pi; uint32_t data, datal, datah; pcireg_t pcidata; int i; /* * disable all BARs to start. */ gtpci_write(gtpc, PCI_BASE_ADDR_REGISTERS_ENABLE(gtpc->gtpc_busno), 0xffffffff); #ifndef GT_PCI0_EXT_ARBITER #define GT_PCI0_EXT_ARBITER 0 #endif #ifndef GT_PCI1_EXT_ARBITER #define GT_PCI1_EXT_ARBITER 0 #endif if (gtpc->gtpc_host && ((!GT_PCI0_EXT_ARBITER && gtpc->gtpc_busno == 0) || (!GT_PCI1_EXT_ARBITER && gtpc->gtpc_busno == 1))) { /* * Enable internal arbiter */ data = gtpci_read(gtpc, PCI_ARBITER_CONTROL(gtpc->gtpc_busno)); data |= PCI_ARBCTL_EN; gtpci_write(gtpc, PCI_ARBITER_CONTROL(gtpc->gtpc_busno), data); } else { /* * Make sure the internal arbiter is disabled */ gtpci_write(gtpc, PCI_ARBITER_CONTROL(gtpc->gtpc_busno), 0); } /* * Make the GT reflects reality. * We always enable internal memory. */ if (gtpc->gtpc_host) { pcidata = gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, 0x20) & 0xfff; gtpci_conf_write(>pc->gtpc_pc, gtpc->gtpc_self, 0x20, GT_LowAddr_GET(gtpci_read(gtpc, GT_Internal_Decode)) | pcidata); } data = PCI_BARE_IntMemEn; for (i = 0, pi = pci_initinfo[gtpc->gtpc_busno]; i < 4; i++, pi++) gtpci_write(gtpc, pi->barsize, 0); if (gtpc->gtpc_host) { /* * Enable bus master access (needed for config access). */ pcidata = gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, PCI_COMMAND_STATUS_REG); pcidata |= PCI_COMMAND_MASTER_ENABLE; gtpci_conf_write(>pc->gtpc_pc, gtpc->gtpc_self, PCI_COMMAND_STATUS_REG, pcidata); } /* * Map each SCS BAR to correspond to each SDRAM decode register. */ for (i = 0, pi = pci_initinfo[gtpc->gtpc_busno]; i < 4; i++, pi++) { datal = gtpci_read(gtpc, pi->low_decode); datah = gtpci_read(gtpc, pi->high_decode); pcidata = gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, pi->bar_regno); gtpci_write(gtpc, pi->accctl_high, 0); if (datal < datah) { datal &= 0xfff; pcidata &= 0xfff; pcidata |= datal << 20; data |= pi->bar_enable; datah -= datal; datal |= PCI_ACCCTLBASEL_PrefetchEn| PCI_ACCCTLBASEL_RdPrefetch| PCI_ACCCTLBASEL_RdLinePrefetch| PCI_ACCCTLBASEL_RdMulPrefetch| PCI_ACCCTLBASEL_WBurst_8_QW| PCI_ACCCTLBASEL_PCISwap_NoSwap; gtpci_write(gtpc, pi->accctl_low, datal); } else { pcidata &= 0xfff; datal = 0xfff|PCI_ACCCTLBASEL_PCISwap_NoSwap; datah = 0; } gtpci_write(gtpc, pi->barsize, datah ? ((datah << 20) | 0xff000) : 0); if (gtpc->gtpc_host) { gtpci_conf_write(>pc->gtpc_pc, gtpc->gtpc_self, pi->bar_regno, pcidata); } gtpci_write(gtpc, pi->accctl_low, datal); gtpci_write(gtpc, pi->accctl_top, datah); } /* * Now re-enable those BARs that are real. */ gtpci_write(gtpc, PCI_BASE_ADDR_REGISTERS_ENABLE(gtpc->gtpc_busno), ~data); if (gtpc->gtpc_host) { /* * Enable I/O and memory (bus master is already enabled) access. */ pcidata = gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, PCI_COMMAND_STATUS_REG); pcidata |= PCI_COMMAND_IO_ENABLE|PCI_COMMAND_MEM_ENABLE; gtpci_conf_write(>pc->gtpc_pc, gtpc->gtpc_self, PCI_COMMAND_STATUS_REG, pcidata); } } void gtpci_bus_attach_hook(struct device *parent, struct device *self, struct pcibus_attach_args *pba) { struct gtpci_chipset *gtpc = (struct gtpci_chipset *) pba->pba_pc; uint32_t data; #if defined(DEBUG) pcitag_t tag; int bus, dev; int i; #endif if (gtpc->gtpc_pc.pc_parent != parent) return; data = gtpci_read(gtpc, PCI_MODE(gtpc->gtpc_busno)); aprint_normal(": id %d%s%s%s%s%s%s%s%s", PCI_MODE_PciID_GET(data), (data & PCI_MODE_Pci64) ? ", 64bit" : "", (data & PCI_MODE_ExpRom) ? ", Expansion Rom" : "", (data & PCI_MODE_VPD) ? ", VPD" : "", (data & PCI_MODE_MSI) ? ", MSI" : "", (data & PCI_MODE_PMG) ? ", PMG" : "", (data & PCI_MODE_HotSwap) ? ", HotSwap" : "", (data & PCI_MODE_BIST) ? ", BIST" : "", (data & PCI_MODE_PRst) ? "" : ", PRst"); #if 0 while ((data & PCI_MODE_PRst) == 0) { DELAY(10); data = gtpci_read(gtpc, PCI_MODE(gtpc->gtpc_busno)); aprint_normal("."); } #endif gtpci_bus_init(gtpc); gtpci_bus_configure(gtpc); data = gtpci_read(gtpc, PCI_COMMAND(gtpc->gtpc_busno)); if (data & (PCI_CMD_MSwapEn|PCI_CMD_SSwapEn)) { aprint_normal("\n%s: ", self->dv_xname); if (data & PCI_CMD_MSwapEn) { switch (data & (PCI_CMD_MWordSwap|PCI_CMD_MByteSwap)) { case PCI_CMD_MWordSwap: aprint_normal(" mswap=w"); break; case PCI_CMD_MByteSwap: aprint_normal(" mswap=b"); break; case PCI_CMD_MWordSwap|PCI_CMD_MByteSwap: aprint_normal(" mswap=b+w"); break; case 0: aprint_normal(" mswap=none"); break; } } if (data & PCI_CMD_SSwapEn) { switch (data & (PCI_CMD_SWordSwap|PCI_CMD_SByteSwap)) { case PCI_CMD_SWordSwap: aprint_normal(" sswap=w"); break; case PCI_CMD_SByteSwap: aprint_normal(" sswap=b"); break; case PCI_CMD_SWordSwap|PCI_CMD_SByteSwap: aprint_normal(" sswap=b+w"); break; case 0: aprint_normal(" sswap=none"); break; } } } #if defined(DEBUG) if (gtpci_debug == 0) return; data = gtpci_read(gtpc, PCI_BASE_ADDR_REGISTERS_ENABLE(gtpc->gtpc_busno)); aprint_normal("\n%s: BARs enabled: %#x", self->dv_xname, data); aprint_normal("\n%s: 0:0:0\n", self->dv_xname); aprint_normal(" %sSCS0=%#010x", (data & 1) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, 0x10)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_SCS0_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_SCS0_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sSCS1=%#010x", (data & 2) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, 0x14)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_SCS1_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_SCS1_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sSCS2=%#010x", (data & 4) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, 0x18)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_SCS2_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_SCS2_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sSCS3=%#010x", (data & 8) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, 0x1c)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_SCS3_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_SCS3_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sIMem=%#010x", (data & PCI_BARE_IntMemEn) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, 0x20)); aprint_normal("\n"); aprint_normal(" %sIIO=%#010x", (data & PCI_BARE_IntIOEn) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, gtpc->gtpc_self, 0x24)); aprint_normal("\n"); gtpci_decompose_tag(>pc->gtpc_pc, gtpc->gtpc_self, &bus, &dev, NULL); tag = gtpci_make_tag(>pc->gtpc_pc, bus, dev, 1); aprint_normal(" %sCS0=%#010x", (data & PCI_BARE_CS0En) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x10)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_CS0_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_CS0_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sCS1=%#010x", (data & PCI_BARE_CS1En) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x14)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_CS1_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_CS1_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sCS2=%#010x", (data & PCI_BARE_CS2En) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x18)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_CS2_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_CS2_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sCS3=%#010x", (data & PCI_BARE_CS3En) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x1c)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_CS3_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_CS3_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sBootCS=%#010x", (data & PCI_BARE_BootCSEn) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x20)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_BOOTCS_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_BOOTCS_ADDR_REMAP(gtpc->gtpc_busno))); tag = gtpci_make_tag(>pc->gtpc_pc, bus, tag, 2); aprint_normal(" %sP2PM0=%#010x", (data & PCI_BARE_P2PMem0En) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x10)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_P2P_MEM0_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x.%#010x\n", gtpci_read(gtpc, PCI_P2P_MEM0_BASE_ADDR_REMAP_HIGH(gtpc->gtpc_busno)), gtpci_read(gtpc, PCI_P2P_MEM0_BASE_ADDR_REMAP_LOW(gtpc->gtpc_busno))); aprint_normal(" %sP2PM1=%#010x", (data & PCI_BARE_P2PMem1En) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x14)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_P2P_MEM1_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x.%#010x\n", gtpci_read(gtpc, PCI_P2P_MEM1_BASE_ADDR_REMAP_HIGH(gtpc->gtpc_busno)), gtpci_read(gtpc, PCI_P2P_MEM1_BASE_ADDR_REMAP_LOW(gtpc->gtpc_busno))); aprint_normal(" %sP2PIO=%#010x", (data & PCI_BARE_P2PIOEn) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x18)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_P2P_IO_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_P2P_IO_BASE_ADDR_REMAP(gtpc->gtpc_busno))); aprint_normal(" %sCPU=%#010x", (data & PCI_BARE_CPUEn) ? "-" : "+", gtpci_conf_read(>pc->gtpc_pc, tag, 0x1c)); aprint_normal("/%#010x", gtpci_read(gtpc, PCI_CPU_BAR_SIZE(gtpc->gtpc_busno))); aprint_normal(" remap %#010x\n", gtpci_read(gtpc, PCI_CPU_BASE_ADDR_REMAP(gtpc->gtpc_busno))); for (i = 0; i < 8; i++) { aprint_normal("\n%s: Access Control %d: ", self->dv_xname, i); data = gtpci_read(gtpc, PCI_ACCESS_CONTROL_BASE_HIGH(gtpc->gtpc_busno, i)); if (data) aprint_normal("base=0x%08x.", data); else aprint_normal("base=0x"); data = gtpci_read(gtpc, PCI_ACCESS_CONTROL_BASE_LOW(gtpc->gtpc_busno, i)); printf("%08x cfg=0x%08x", data << 20, data & ~0xfff); aprint_normal(" top=0x%03x00000", gtpci_read(gtpc, PCI_ACCESS_CONTROL_TOP(gtpc->gtpc_busno, i))); } #endif } static const char * const gtpci_error_strings[] = PCI_IC_SEL_Strings; int gtpci_error_intr(void *arg) { pci_chipset_tag_t pc = arg; struct gtpci_chipset *gtpc = (struct gtpci_chipset *)pc; uint32_t cause, mask, errmask; u_int32_t alo, ahi, dlo, dhi, cmd; int i; cause = gtpci_read(gtpc, PCI_ERROR_CAUSE(gtpc->gtpc_busno)); errmask = gtpci_read(gtpc, PCI_ERROR_MASK(gtpc->gtpc_busno)); cause &= errmask | 0xf8000000; gtpci_write(gtpc, PCI_ERROR_CAUSE(gtpc->gtpc_busno), ~cause); printf("%s: pci%d error: cause=%#x mask=%#x", pc->pc_parent->dv_xname, gtpc->gtpc_busno, cause, errmask); if ((cause & 0xf8000000) == 0) { printf(" ?\n"); return 0; } for (i = 0, mask = 1; i <= 26; i++, mask += mask) if (mask & cause) printf(" %s", gtpci_error_strings[i]); /* * "no new data is latched until the PCI Error Low Address * register is read. This means that PCI Error Low Address * register must be the last register read by the interrupt * handler." */ dlo = gtpci_read(gtpc, PCI_ERROR_DATA_LOW(gtpc->gtpc_busno)); dhi = gtpci_read(gtpc, PCI_ERROR_DATA_HIGH(gtpc->gtpc_busno)); cmd = gtpci_read(gtpc, PCI_ERROR_COMMAND(gtpc->gtpc_busno)); ahi = gtpci_read(gtpc, PCI_ERROR_ADDRESS_HIGH(gtpc->gtpc_busno)); alo = gtpci_read(gtpc, PCI_ERROR_ADDRESS_LOW(gtpc->gtpc_busno)); printf("\n%s: pci%d error: %s cmd=%#x", pc->pc_parent->dv_xname, gtpc->gtpc_busno, gtpci_error_strings[PCI_IC_SEL_GET(cause)], cmd); if (dhi == 0) printf(" data=%08x", dlo); else printf(" data=%08x.%08x", dhi, dlo); if (ahi == 0) printf(" address=%08x\n", alo); else printf(" address=%08x.%08x\n", ahi, alo); #if defined(DEBUG) && defined(DDB) if (gtpci_debug > 1) Debugger(); #endif return 1; } #if 0 void gtpci_bs_region_add(pci_chipset_tag_t pc, struct discovery_bus_space *bs, struct gt_softc *gt, bus_addr_t lo, bus_addr_t hi) { /* See how I/O space is configured. Read the base and top * registers. */ paddr_t pbasel, pbaseh; uint32_t datal, datah; datal = gtpci_read(gtpc, lo); datah = gtpci_read(gtpc, hi); pbasel = GT_LowAddr_GET(datal); pbaseh = GT_HighAddr_GET(datah); /* * If the start is greater than the end, ignore the region. */ if (pbaseh < pbasel) return; if ((pbasel & gt->gt_iobat_mask) == gt->gt_iobat_pbase && (pbaseh & gt->gt_iobat_mask) == gt->gt_iobat_pbase) { bs->bs_regions[bs->bs_nregion].br_vbase = gt->gt_iobat_vbase + (pbasel & ~gt->gt_iobat_mask); } bs->bs_regions[bs->bs_nregion].br_pbase = pbasel; if (bs->bs_flags & _BUS_SPACE_RELATIVE) { bs->bs_regions[bs->bs_nregion].br_start = 0; bs->bs_regions[bs->bs_nregion].br_end = pbaseh - pbasel; } else { bs->bs_regions[bs->bs_nregion].br_start = pbasel; bs->bs_regions[bs->bs_nregion].br_end = pbaseh; } bs->bs_nregion++; } #endif /* * Internal functions. */ int gtpci_bus_maxdevs(pci_chipset_tag_t pc, int busno) { return 32; } pcitag_t gtpci_make_tag(pci_chipset_tag_t pc, int busno, int devno, int funcno) { return PCI_CFG_MAKE_TAG(busno, devno, funcno, 0); } void gtpci_decompose_tag(pci_chipset_tag_t pc, pcitag_t tag, int *bp, int *dp, int *fp) { if (bp != NULL) *bp = PCI_CFG_GET_BUSNO(tag); if (dp != NULL) *dp = PCI_CFG_GET_DEVNO(tag); if (fp != NULL) *fp = PCI_CFG_GET_FUNCNO(tag); } pcireg_t gtpci_conf_read(pci_chipset_tag_t pc, pcitag_t tag, int regno) { struct gtpci_chipset *gtpc = (struct gtpci_chipset *)pc; #ifdef DIAGNOSTIC if ((regno & 3) || (regno & ~0xff)) panic("gtpci_conf_read: bad regno %#x\n", regno); #endif gtpci_write(gtpc, gtpc->gtpc_cfgaddr, (int) tag | regno); return gtpci_read(gtpc, gtpc->gtpc_cfgdata); } void gtpci_conf_write(pci_chipset_tag_t pc, pcitag_t tag, int regno, pcireg_t data) { struct gtpci_chipset *gtpc = (struct gtpci_chipset *)pc; #ifdef DIAGNOSTIC if ((regno & 3) || (regno & ~0xff)) panic("gtpci_conf_write: bad regno %#x\n", regno); #endif gtpci_write(gtpc, gtpc->gtpc_cfgaddr, (int) tag | regno); gtpci_write(gtpc, gtpc->gtpc_cfgdata, data); } const char * gtpci_intr_string(pci_chipset_tag_t pc, pci_intr_handle_t pih) { return intr_string(pih); } const struct evcnt * gtpci_intr_evcnt(pci_chipset_tag_t pc, pci_intr_handle_t pih) { return intr_evcnt(pih); } void * gtpci_intr_establish(pci_chipset_tag_t pc, pci_intr_handle_t pih, int ipl, int (*handler)(void *), void *arg) { return intr_establish(pih, IST_LEVEL, ipl, handler, arg); } void gtpci_intr_disestablish(pci_chipset_tag_t pc, void *cookie) { intr_disestablish(cookie); }