/* $NetBSD: pthread_mutex2.c,v 1.10 2007/10/04 01:46:49 ad Exp $ */ /*- * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __RCSID("$NetBSD: pthread_mutex2.c,v 1.10 2007/10/04 01:46:49 ad Exp $"); #include #include #include #include #include #include "pthread.h" #include "pthread_int.h" #ifdef PTHREAD__HAVE_ATOMIC /* * Note that it's important to use the address of ptm_waiters as * the list head in order for the hint arguments to _lwp_park / * _lwp_unpark_all to match. */ #define pt_nextwaiter pt_sleep.ptqe_next #define ptm_waiters ptm_blocked.ptqh_first #define ptm_errorcheck ptm_blocked.ptqh_last #define MUTEX_WAITERS_BIT (0x01UL) #define MUTEX_RECURSIVE_BIT (0x02UL) #define MUTEX_THREAD (-16L) #define MUTEX_DEFERRED(x) (*(char *)&(x)->ptm_lock) #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT) #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT) #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD) #define MUTEX_GET_RECURSE(ptm) ((intptr_t)(ptm)->ptm_private) #define MUTEX_SET_RECURSE(ptm, delta) \ ((ptm)->ptm_private = (void *)((intptr_t)(ptm)->ptm_private + delta)) #if __GNUC_PREREQ__(3, 0) #define NOINLINE __attribute ((noinline)) #else #define NOINLINE /* nothing */ #endif static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *); static int pthread__mutex_lock_slow(pthread_mutex_t *); static int pthread__mutex_unlock_slow(pthread_mutex_t *); static void pthread__mutex_pause(void); __strong_alias(__libc_mutex_init,pthread_mutex_init) __strong_alias(__libc_mutex_lock,pthread_mutex_lock) __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock) __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock) __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy) __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init) __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy) __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype) __strong_alias(__libc_thr_once,pthread_once) static inline int mutex_cas(volatile void *ptr, void **old, void *new) { return pthread__atomic_cas_ptr(ptr, old, new); } int pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr) { intptr_t type; if (attr == NULL) type = PTHREAD_MUTEX_NORMAL; else type = (intptr_t)attr->ptma_private; switch (type) { case PTHREAD_MUTEX_ERRORCHECK: ptm->ptm_errorcheck = (void *)1; ptm->ptm_owner = NULL; break; case PTHREAD_MUTEX_RECURSIVE: ptm->ptm_errorcheck = NULL; ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT; break; default: ptm->ptm_errorcheck = NULL; ptm->ptm_owner = NULL; break; } ptm->ptm_magic = _PT_MUTEX_MAGIC; ptm->ptm_waiters = NULL; ptm->ptm_private = NULL; MUTEX_DEFERRED(ptm) = 0; return 0; } int pthread_mutex_destroy(pthread_mutex_t *ptm) { pthread__error(EINVAL, "Invalid mutex", ptm->ptm_magic == _PT_MUTEX_MAGIC); pthread__error(EBUSY, "Destroying locked mutex", MUTEX_OWNER(ptm->ptm_owner) == 0); ptm->ptm_magic = _PT_MUTEX_DEAD; return 0; } /* * Note regarding memory visibility: Pthreads has rules about memory * visibility and mutexes. Very roughly: Memory a thread can see when * it unlocks a mutex can be seen by another thread that locks the * same mutex. * * A memory barrier after a lock and before an unlock will provide * this behavior. This code relies on mutex_cas() to issue a barrier * after obtaining a lock, and on pthread__simple_unlock() to issue * a barrier before releasing a lock. */ int pthread_mutex_lock(pthread_mutex_t *ptm) { void *owner; pthread_t self; owner = NULL; self = pthread__self(); if (__predict_true(mutex_cas(&ptm->ptm_owner, &owner, self))) return 0; return pthread__mutex_lock_slow(ptm); } /* We want function call overhead. */ NOINLINE static void pthread__mutex_pause(void) { pthread__smt_pause(); } NOINLINE static int pthread__mutex_lock_slow(pthread_mutex_t *ptm) { void *waiters, *new, *owner; pthread_t self; int count; pthread__error(EINVAL, "Invalid mutex", ptm->ptm_magic == _PT_MUTEX_MAGIC); owner = ptm->ptm_owner; self = pthread__self(); /* Recursive or errorcheck? */ if (MUTEX_OWNER(owner) == (uintptr_t)self) { if (MUTEX_RECURSIVE(owner)) { if (MUTEX_GET_RECURSE(ptm) == INT_MAX) return EAGAIN; MUTEX_SET_RECURSE(ptm, +1); return 0; } if (ptm->ptm_errorcheck) return EDEADLK; } /* Spin for a while. */ count = pthread__nspins; while (MUTEX_OWNER(owner) != 0 && --count > 0) { pthread__mutex_pause(); owner = ptm->ptm_owner; } for (;; owner = ptm->ptm_owner) { /* If it has become free, try to acquire it again. */ while (MUTEX_OWNER(owner) == 0) { new = (void *)((uintptr_t)self | (uintptr_t)owner); if (mutex_cas(&ptm->ptm_owner, &owner, new)) return 0; } /* * Nope, still held. Add thread to the list of waiters. * Issue a memory barrier to ensure sleeponq/nextwaiter * are visible before we enter the waiters list. */ self->pt_sleeponq = 1; for (waiters = ptm->ptm_waiters;;) { self->pt_nextwaiter = waiters; pthread__membar_producer(); if (mutex_cas(&ptm->ptm_waiters, &waiters, self)) break; } /* * Set the waiters bit and block. * * Note that the mutex can become unlocked before we set * the waiters bit. If that happens it's not safe to sleep * as we may never be awoken: we must remove the current * thread from the waiters list and try again. * * Because we are doing this atomically, we can't remove * one waiter: we must remove all waiters and awken them, * then sleep in _lwp_park() until we have been awoken. * * Issue a memory barrier to ensure that we are reading * the value of ptm_owner/pt_sleeponq after we have entered * the waiters list (the CAS itself must be atomic). */ pthread__membar_consumer(); for (owner = ptm->ptm_owner;;) { if (MUTEX_HAS_WAITERS(owner)) break; if (MUTEX_OWNER(owner) == 0) { pthread__mutex_wakeup(self, ptm); break; } new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT); if (mutex_cas(&ptm->ptm_owner, &owner, new)) break; } /* * We may be awoken by this thread, or some other thread. * The key requirement is that we must not proceed until * told that we are no longer waiting (via pt_sleeponq * being set to zero), Otherwise it is unsafe to re-enter * the thread onto the waiters list. */ while (self->pt_sleeponq) { (void)_lwp_park(NULL, 0, &ptm->ptm_waiters, NULL); } } } int pthread_mutex_trylock(pthread_mutex_t *ptm) { pthread_t self; void *value; self = pthread__self(); value = NULL; if (mutex_cas(&ptm->ptm_owner, &value, self)) return 0; if (MUTEX_OWNER(value) == (uintptr_t)self && MUTEX_RECURSIVE(value)) { if (MUTEX_GET_RECURSE(ptm) == INT_MAX) return EAGAIN; MUTEX_SET_RECURSE(ptm, +1); return 0; } return EBUSY; } NOINLINE int pthread__mutex_catchup(pthread_mutex_t *ptm) { pthread_t self; self = pthread__self(); if (self->pt_nwaiters == 1) { /* * If the calling thread is about to block, defer * unparking the target until _lwp_park() is called. */ if (self->pt_willpark && self->pt_unpark == 0) { self->pt_unpark = self->pt_waiters[0]; self->pt_unparkhint = &ptm->ptm_waiters; } else { (void)_lwp_unpark(self->pt_waiters[0], &ptm->ptm_waiters); } } else { (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters, &ptm->ptm_waiters); } self->pt_nwaiters = 0; return 0; } int pthread_mutex_unlock(pthread_mutex_t *ptm) { void *owner; pthread_t self; char deferred; self = pthread__self(); owner = self; deferred = MUTEX_DEFERRED(ptm); MUTEX_DEFERRED(ptm) = 0; if (__predict_false(!mutex_cas(&ptm->ptm_owner, &owner, NULL))) return pthread__mutex_unlock_slow(ptm); /* * There were no waiters, but we may have deferred waking * other threads until mutex unlock - we must wake them now. */ if (deferred) return pthread__mutex_catchup(ptm); return 0; } NOINLINE static int pthread__mutex_unlock_slow(pthread_mutex_t *ptm) { pthread_t self, owner, new; int weown, error; pthread__error(EINVAL, "Invalid mutex", ptm->ptm_magic == _PT_MUTEX_MAGIC); self = pthread_self(); owner = ptm->ptm_owner; weown = (MUTEX_OWNER(owner) == (uintptr_t)self); error = 0; if (ptm->ptm_errorcheck) { if (!weown) { error = EPERM; new = owner; } else { new = NULL; } } else if (MUTEX_RECURSIVE(owner)) { if (!weown) { error = EPERM; new = owner; } else if (MUTEX_GET_RECURSE(ptm) != 0) { MUTEX_SET_RECURSE(ptm, -1); new = owner; } else { new = (pthread_t)MUTEX_RECURSIVE_BIT; } } else { pthread__error(EPERM, "Unlocking unlocked mutex", (owner != NULL)); pthread__error(EPERM, "Unlocking mutex owned by another thread", weown); new = NULL; } /* * Release the mutex. If there appear to be waiters, then * wake them up. */ if (new != owner) { owner = pthread__atomic_swap_ptr(&ptm->ptm_owner, new); if (MUTEX_HAS_WAITERS(owner) != 0) { pthread__mutex_wakeup(self, ptm); return 0; } } /* * There were no waiters, but we may have deferred waking * other threads until mutex unlock - we must wake them now. */ if (self->pt_nwaiters != 0) return pthread__mutex_catchup(ptm); return error; } static void pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm) { pthread_t thread, next; ssize_t n, rv; /* * Take ownership of the current set of waiters. No * need for a memory barrier following this, all loads * are dependent upon 'thread'. */ thread = pthread__atomic_swap_ptr(&ptm->ptm_waiters, NULL); for (;; n = 0) { /* * Pull waiters from the queue and add to our list. * Use a memory barrier to ensure that we safely * read the value of pt_nextwaiter before 'thread' * sees pt_sleeponq being cleared. */ for (n = self->pt_nwaiters, self->pt_nwaiters = 0; n < pthread__unpark_max && thread != NULL; thread = next) { next = thread->pt_nextwaiter; self->pt_waiters[n++] = thread->pt_lid; pthread__membar_full(); thread->pt_sleeponq = 0; /* No longer safe to touch 'thread' */ } switch (n) { case 0: return; case 1: /* * If the calling thread is about to block, * defer unparking the target until _lwp_park() * is called. */ if (self->pt_willpark && self->pt_unpark == 0) { self->pt_unpark = self->pt_waiters[0]; self->pt_unparkhint = &ptm->ptm_waiters; return; } rv = (ssize_t)_lwp_unpark(self->pt_waiters[0], &ptm->ptm_waiters); if (rv != 0 && errno != EALREADY && errno != EINTR) { pthread__errorfunc(__FILE__, __LINE__, __func__, "_lwp_unpark failed"); } return; default: rv = _lwp_unpark_all(self->pt_waiters, (size_t)n, &ptm->ptm_waiters); if (rv != 0 && errno != EINTR) { pthread__errorfunc(__FILE__, __LINE__, __func__, "_lwp_unpark_all failed"); } break; } } } int pthread_mutexattr_init(pthread_mutexattr_t *attr) { attr->ptma_magic = _PT_MUTEXATTR_MAGIC; attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT; return 0; } int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) { pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); return 0; } int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep) { pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); *typep = (int)(intptr_t)attr->ptma_private; return 0; } int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) { pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); switch (type) { case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_RECURSIVE: attr->ptma_private = (void *)(intptr_t)type; return 0; default: return EINVAL; } } static void once_cleanup(void *closure) { pthread_mutex_unlock((pthread_mutex_t *)closure); } int pthread_once(pthread_once_t *once_control, void (*routine)(void)) { if (once_control->pto_done == 0) { pthread_mutex_lock(&once_control->pto_mutex); pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex); if (once_control->pto_done == 0) { routine(); once_control->pto_done = 1; } pthread_cleanup_pop(1); } return 0; } int pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm) { if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread) return 0; MUTEX_DEFERRED(ptm) = 1; return 1; } #endif /* PTHREAD__HAVE_ATOMIC */