.\" $NetBSD: openssl_dsa.3,v 1.8 2003/07/24 14:16:51 itojun Exp $ .\" .\" Automatically generated by Pod::Man version 1.02 .\" Thu Jul 24 13:08:06 2003 .\" .\" Standard preamble: .\" ====================================================================== .de Sh \" Subsection heading .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Ip \" List item .br .ie \\n(.$>=3 .ne \\$3 .el .ne 3 .IP "\\$1" \\$2 .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. | will give a .\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used .\" to do unbreakable dashes and therefore won't be available. \*(C` and .\" \*(C' expand to `' in nroff, nothing in troff, for use with C<> .tr \(*W-|\(bv\*(Tr .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` ` . ds C' ' 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\} .\" .\" If the F register is turned on, we'll generate index entries on stderr .\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and .\" index entries marked with X<> in POD. Of course, you'll have to process .\" the output yourself in some meaningful fashion. .if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" . . . nr % 0 . rr F .\} .\" .\" For nroff, turn off justification. Always turn off hyphenation; it .\" makes way too many mistakes in technical documents. .hy 0 .if n .na .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. .bd B 3 . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ====================================================================== .\" .IX Title "dsa 3" .TH dsa 3 "0.9.7b" "2002-08-06" "OpenSSL" .UC .SH "NAME" dsa \- Digital Signature Algorithm .SH "LIBRARY" libcrypto, -lcrypto .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 2 \& #include \& #include .Ve .Vb 2 \& DSA * DSA_new(void); \& void DSA_free(DSA *dsa); .Ve .Vb 1 \& int DSA_size(const DSA *dsa); .Ve .Vb 3 \& DSA * DSA_generate_parameters(int bits, unsigned char *seed, \& int seed_len, int *counter_ret, unsigned long *h_ret, \& void (*callback)(int, int, void *), void *cb_arg); .Ve .Vb 1 \& DH * DSA_dup_DH(const DSA *r); .Ve .Vb 1 \& int DSA_generate_key(DSA *dsa); .Ve .Vb 6 \& int DSA_sign(int dummy, const unsigned char *dgst, int len, \& unsigned char *sigret, unsigned int *siglen, DSA *dsa); \& int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp, \& BIGNUM **rp); \& int DSA_verify(int dummy, const unsigned char *dgst, int len, \& const unsigned char *sigbuf, int siglen, DSA *dsa); .Ve .Vb 5 \& void DSA_set_default_method(const DSA_METHOD *meth); \& const DSA_METHOD *DSA_get_default_method(void); \& int DSA_set_method(DSA *dsa, const DSA_METHOD *meth); \& DSA *DSA_new_method(ENGINE *engine); \& const DSA_METHOD *DSA_OpenSSL(void); .Ve .Vb 4 \& int DSA_get_ex_new_index(long argl, char *argp, int (*new_func)(), \& int (*dup_func)(), void (*free_func)()); \& int DSA_set_ex_data(DSA *d, int idx, char *arg); \& char *DSA_get_ex_data(DSA *d, int idx); .Ve .Vb 4 \& DSA_SIG *DSA_SIG_new(void); \& void DSA_SIG_free(DSA_SIG *a); \& int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp); \& DSA_SIG *d2i_DSA_SIG(DSA_SIG **v, unsigned char **pp, long length); .Ve .Vb 3 \& DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa); \& int DSA_do_verify(const unsigned char *dgst, int dgst_len, \& DSA_SIG *sig, DSA *dsa); .Ve .Vb 6 \& DSA * d2i_DSAPublicKey(DSA **a, unsigned char **pp, long length); \& DSA * d2i_DSAPrivateKey(DSA **a, unsigned char **pp, long length); \& DSA * d2i_DSAparams(DSA **a, unsigned char **pp, long length); \& int i2d_DSAPublicKey(const DSA *a, unsigned char **pp); \& int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp); \& int i2d_DSAparams(const DSA *a,unsigned char **pp); .Ve .Vb 4 \& int DSAparams_print(BIO *bp, const DSA *x); \& int DSAparams_print_fp(FILE *fp, const DSA *x); \& int DSA_print(BIO *bp, const DSA *x, int off); \& int DSA_print_fp(FILE *bp, const DSA *x, int off); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" These functions implement the Digital Signature Algorithm (\s-1DSA\s0). The generation of shared \s-1DSA\s0 parameters is described in DSA_generate_parameters(3); DSA_generate_key(3) describes how to generate a signature key. Signature generation and verification are described in DSA_sign(3). .PP The \fB\s-1DSA\s0\fR structure consists of several \s-1BIGNUM\s0 components. .PP .Vb 10 \& struct \& { \& BIGNUM *p; // prime number (public) \& BIGNUM *q; // 160-bit subprime, q | p-1 (public) \& BIGNUM *g; // generator of subgroup (public) \& BIGNUM *priv_key; // private key x \& BIGNUM *pub_key; // public key y = g^x \& // ... \& } \& DSA; .Ve In public keys, \fBpriv_key\fR is \s-1NULL\s0. .PP Note that \s-1DSA\s0 keys may use non-standard \fB\s-1DSA_METHOD\s0\fR implementations, either directly or by the use of \fB\s-1ENGINE\s0\fR modules. In some cases (eg. an \&\s-1ENGINE\s0 providing support for hardware-embedded keys), these \s-1BIGNUM\s0 values will not be used by the implementation or may be used for alternative data storage. For this reason, applications should generally avoid using \s-1DSA\s0 structure elements directly and instead use \s-1API\s0 functions to query or modify keys. .SH "CONFORMING TO" .IX Header "CONFORMING TO" \&\s-1US\s0 Federal Information Processing Standard \s-1FIPS\s0 186 (Digital Signature Standard, \s-1DSS\s0), \s-1ANSI\s0 X9.30 .SH "SEE ALSO" .IX Header "SEE ALSO" openssl_bn(3), openssl_dh(3), openssl_err(3), openssl_rand(3), openssl_rsa(3), openssl_sha(3), engine(3), DSA_new(3), DSA_size(3), DSA_generate_parameters(3), DSA_dup_DH(3), DSA_generate_key(3), DSA_sign(3), DSA_set_method(3), DSA_get_ex_new_index(3), RSA_print(3)