/* $NetBSD: kern_resource.c,v 1.86 2004/10/01 16:30:54 yamt Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 */ #include __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.86 2004/10/01 16:30:54 yamt Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Maximum process data and stack limits. * They are variables so they are patchable. */ rlim_t maxdmap = MAXDSIZ; rlim_t maxsmap = MAXSSIZ; struct uihashhead *uihashtbl; u_long uihash; /* size of hash table - 1 */ static struct uidinfo *getuidinfo(uid_t); static void freeuidinfo(struct uidinfo *); static struct uidinfo *allocuidinfo(uid_t); /* * Resource controls and accounting. */ int sys_getpriority(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct sys_getpriority_args /* { syscallarg(int) which; syscallarg(id_t) who; } */ *uap = v; struct proc *curp = l->l_proc, *p; int low = NZERO + PRIO_MAX + 1; switch (SCARG(uap, which)) { case PRIO_PROCESS: if (SCARG(uap, who) == 0) p = curp; else p = pfind(SCARG(uap, who)); if (p == 0) break; low = p->p_nice; break; case PRIO_PGRP: { struct pgrp *pg; if (SCARG(uap, who) == 0) pg = curp->p_pgrp; else if ((pg = pgfind(SCARG(uap, who))) == NULL) break; LIST_FOREACH(p, &pg->pg_members, p_pglist) { if (p->p_nice < low) low = p->p_nice; } break; } case PRIO_USER: if (SCARG(uap, who) == 0) SCARG(uap, who) = curp->p_ucred->cr_uid; proclist_lock_read(); PROCLIST_FOREACH(p, &allproc) { if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who) && p->p_nice < low) low = p->p_nice; } proclist_unlock_read(); break; default: return (EINVAL); } if (low == NZERO + PRIO_MAX + 1) return (ESRCH); *retval = low - NZERO; return (0); } /* ARGSUSED */ int sys_setpriority(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct sys_setpriority_args /* { syscallarg(int) which; syscallarg(id_t) who; syscallarg(int) prio; } */ *uap = v; struct proc *curp = l->l_proc, *p; int found = 0, error = 0; switch (SCARG(uap, which)) { case PRIO_PROCESS: if (SCARG(uap, who) == 0) p = curp; else p = pfind(SCARG(uap, who)); if (p == 0) break; error = donice(curp, p, SCARG(uap, prio)); found++; break; case PRIO_PGRP: { struct pgrp *pg; if (SCARG(uap, who) == 0) pg = curp->p_pgrp; else if ((pg = pgfind(SCARG(uap, who))) == NULL) break; LIST_FOREACH(p, &pg->pg_members, p_pglist) { error = donice(curp, p, SCARG(uap, prio)); found++; } break; } case PRIO_USER: if (SCARG(uap, who) == 0) SCARG(uap, who) = curp->p_ucred->cr_uid; proclist_lock_read(); PROCLIST_FOREACH(p, &allproc) { if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who)) { error = donice(curp, p, SCARG(uap, prio)); found++; } } proclist_unlock_read(); break; default: return (EINVAL); } if (found == 0) return (ESRCH); return (error); } int donice(curp, chgp, n) struct proc *curp, *chgp; int n; { struct pcred *pcred = curp->p_cred; int s; if (pcred->pc_ucred->cr_uid && pcred->p_ruid && pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid && pcred->p_ruid != chgp->p_ucred->cr_uid) return (EPERM); if (n > PRIO_MAX) n = PRIO_MAX; if (n < PRIO_MIN) n = PRIO_MIN; n += NZERO; if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag)) return (EACCES); chgp->p_nice = n; SCHED_LOCK(s); (void)resetprocpriority(chgp); SCHED_UNLOCK(s); return (0); } /* ARGSUSED */ int sys_setrlimit(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct sys_setrlimit_args /* { syscallarg(int) which; syscallarg(const struct rlimit *) rlp; } */ *uap = v; struct proc *p = l->l_proc; int which = SCARG(uap, which); struct rlimit alim; int error; error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); if (error) return (error); return (dosetrlimit(p, p->p_cred, which, &alim)); } int dosetrlimit(p, cred, which, limp) struct proc *p; struct pcred *cred; int which; struct rlimit *limp; { struct rlimit *alimp; struct plimit *oldplim; int error; if ((u_int)which >= RLIM_NLIMITS) return (EINVAL); if (limp->rlim_cur < 0 || limp->rlim_max < 0) return (EINVAL); alimp = &p->p_rlimit[which]; /* if we don't change the value, no need to limcopy() */ if (limp->rlim_cur == alimp->rlim_cur && limp->rlim_max == alimp->rlim_max) return 0; if (limp->rlim_cur > limp->rlim_max) { /* * This is programming error. According to SUSv2, we should * return error in this case. */ return (EINVAL); } if (limp->rlim_max > alimp->rlim_max && (error = suser(cred->pc_ucred, &p->p_acflag)) != 0) return (error); if (p->p_limit->p_refcnt > 1 && (p->p_limit->p_lflags & PL_SHAREMOD) == 0) { p->p_limit = limcopy(oldplim = p->p_limit); limfree(oldplim); alimp = &p->p_rlimit[which]; } switch (which) { case RLIMIT_DATA: if (limp->rlim_cur > maxdmap) limp->rlim_cur = maxdmap; if (limp->rlim_max > maxdmap) limp->rlim_max = maxdmap; break; case RLIMIT_STACK: if (limp->rlim_cur > maxsmap) limp->rlim_cur = maxsmap; if (limp->rlim_max > maxsmap) limp->rlim_max = maxsmap; /* * Return EINVAL if the new stack size limit is lower than * current usage. Otherwise, the process would get SIGSEGV the * moment it would try to access anything on it's current stack. * This conforms to SUSv2. */ if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) return (EINVAL); /* * Stack is allocated to the max at exec time with * only "rlim_cur" bytes accessible (In other words, * allocates stack dividing two contiguous regions at * "rlim_cur" bytes boundary). * * Since allocation is done in terms of page, roundup * "rlim_cur" (otherwise, contiguous regions * overlap). If stack limit is going up make more * accessible, if going down make inaccessible. */ limp->rlim_cur = round_page(limp->rlim_cur); if (limp->rlim_cur != alimp->rlim_cur) { vaddr_t addr; vsize_t size; vm_prot_t prot; if (limp->rlim_cur > alimp->rlim_cur) { prot = VM_PROT_READ | VM_PROT_WRITE; size = limp->rlim_cur - alimp->rlim_cur; addr = USRSTACK - limp->rlim_cur; } else { prot = VM_PROT_NONE; size = alimp->rlim_cur - limp->rlim_cur; addr = USRSTACK - alimp->rlim_cur; } (void) uvm_map_protect(&p->p_vmspace->vm_map, addr, addr+size, prot, FALSE); } break; case RLIMIT_NOFILE: if (limp->rlim_cur > maxfiles) limp->rlim_cur = maxfiles; if (limp->rlim_max > maxfiles) limp->rlim_max = maxfiles; break; case RLIMIT_NPROC: if (limp->rlim_cur > maxproc) limp->rlim_cur = maxproc; if (limp->rlim_max > maxproc) limp->rlim_max = maxproc; break; } *alimp = *limp; return (0); } /* ARGSUSED */ int sys_getrlimit(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct sys_getrlimit_args /* { syscallarg(int) which; syscallarg(struct rlimit *) rlp; } */ *uap = v; struct proc *p = l->l_proc; int which = SCARG(uap, which); if ((u_int)which >= RLIM_NLIMITS) return (EINVAL); return (copyout(&p->p_rlimit[which], SCARG(uap, rlp), sizeof(struct rlimit))); } /* * Transform the running time and tick information in proc p into user, * system, and interrupt time usage. */ void calcru(p, up, sp, ip) struct proc *p; struct timeval *up; struct timeval *sp; struct timeval *ip; { u_quad_t u, st, ut, it, tot; unsigned long sec; long usec; int s; struct timeval tv; struct lwp *l; s = splstatclock(); st = p->p_sticks; ut = p->p_uticks; it = p->p_iticks; splx(s); sec = p->p_rtime.tv_sec; usec = p->p_rtime.tv_usec; LIST_FOREACH(l, &p->p_lwps, l_sibling) { if (l->l_stat == LSONPROC) { struct schedstate_percpu *spc; KDASSERT(l->l_cpu != NULL); spc = &l->l_cpu->ci_schedstate; /* * Adjust for the current time slice. This is * actually fairly important since the error * here is on the order of a time quantum, * which is much greater than the sampling * error. */ microtime(&tv); sec += tv.tv_sec - spc->spc_runtime.tv_sec; usec += tv.tv_usec - spc->spc_runtime.tv_usec; } } tot = st + ut + it; u = sec * 1000000ull + usec; if (tot == 0) { /* No ticks, so can't use to share time out, split 50-50 */ st = ut = u / 2; } else { st = (u * st) / tot; ut = (u * ut) / tot; } sp->tv_sec = st / 1000000; sp->tv_usec = st % 1000000; up->tv_sec = ut / 1000000; up->tv_usec = ut % 1000000; if (ip != NULL) { if (it != 0) it = (u * it) / tot; ip->tv_sec = it / 1000000; ip->tv_usec = it % 1000000; } } /* ARGSUSED */ int sys_getrusage(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct sys_getrusage_args /* { syscallarg(int) who; syscallarg(struct rusage *) rusage; } */ *uap = v; struct rusage *rup; struct proc *p = l->l_proc; switch (SCARG(uap, who)) { case RUSAGE_SELF: rup = &p->p_stats->p_ru; calcru(p, &rup->ru_utime, &rup->ru_stime, NULL); break; case RUSAGE_CHILDREN: rup = &p->p_stats->p_cru; break; default: return (EINVAL); } return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage))); } void ruadd(ru, ru2) struct rusage *ru, *ru2; { long *ip, *ip2; int i; timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); if (ru->ru_maxrss < ru2->ru_maxrss) ru->ru_maxrss = ru2->ru_maxrss; ip = &ru->ru_first; ip2 = &ru2->ru_first; for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) *ip++ += *ip2++; } /* * Make a copy of the plimit structure. * We share these structures copy-on-write after fork, * and copy when a limit is changed. */ struct plimit * limcopy(lim) struct plimit *lim; { struct plimit *newlim; size_t l = 0; simple_lock(&lim->p_slock); if (lim->pl_corename != defcorename) l = strlen(lim->pl_corename) + 1; simple_unlock(&lim->p_slock); newlim = pool_get(&plimit_pool, PR_WAITOK); simple_lock_init(&newlim->p_slock); newlim->p_lflags = 0; newlim->p_refcnt = 1; newlim->pl_corename = (l != 0) ? malloc(l, M_TEMP, M_WAITOK) : defcorename; simple_lock(&lim->p_slock); memcpy(newlim->pl_rlimit, lim->pl_rlimit, sizeof(struct rlimit) * RLIM_NLIMITS); if (l != 0) strlcpy(newlim->pl_corename, lim->pl_corename, l); simple_unlock(&lim->p_slock); return (newlim); } void limfree(lim) struct plimit *lim; { int n; simple_lock(&lim->p_slock); n = --lim->p_refcnt; simple_unlock(&lim->p_slock); if (n > 0) return; #ifdef DIAGNOSTIC if (n < 0) panic("limfree"); #endif if (lim->pl_corename != defcorename) free(lim->pl_corename, M_TEMP); pool_put(&plimit_pool, lim); } struct pstats * pstatscopy(ps) struct pstats *ps; { struct pstats *newps; newps = pool_get(&pstats_pool, PR_WAITOK); memset(&newps->pstat_startzero, 0, (unsigned) ((caddr_t)&newps->pstat_endzero - (caddr_t)&newps->pstat_startzero)); memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy, ((caddr_t)&newps->pstat_endcopy - (caddr_t)&newps->pstat_startcopy)); return (newps); } void pstatsfree(ps) struct pstats *ps; { pool_put(&pstats_pool, ps); } /* * sysctl interface in five parts */ /* * a routine for sysctl proc subtree helpers that need to pick a valid * process by pid. */ static int sysctl_proc_findproc(struct proc *p, struct proc **p2, pid_t pid) { struct proc *ptmp; int i, error = 0; if (pid == PROC_CURPROC) ptmp = p; else if ((ptmp = pfind(pid)) == NULL) error = ESRCH; else { /* * suid proc of ours or proc not ours */ if (p->p_cred->p_ruid != ptmp->p_cred->p_ruid || p->p_cred->p_ruid != ptmp->p_cred->p_svuid) error = suser(p->p_ucred, &p->p_acflag); /* * sgid proc has sgid back to us temporarily */ else if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid) error = suser(p->p_ucred, &p->p_acflag); /* * our rgid must be in target's group list (ie, * sub-processes started by a sgid process) */ else { for (i = 0; i < p->p_ucred->cr_ngroups; i++) { if (p->p_ucred->cr_groups[i] == ptmp->p_cred->p_rgid) break; } if (i == p->p_ucred->cr_ngroups) error = suser(p->p_ucred, &p->p_acflag); } } *p2 = ptmp; return (error); } /* * sysctl helper routine for setting a process's specific corefile * name. picks the process based on the given pid and checks the * correctness of the new value. */ static int sysctl_proc_corename(SYSCTLFN_ARGS) { struct proc *ptmp, *p; struct plimit *lim; int error = 0, len; char cname[MAXPATHLEN], *tmp; struct sysctlnode node; /* * is this all correct? */ if (namelen != 0) return (EINVAL); if (name[-1] != PROC_PID_CORENAME) return (EINVAL); /* * whom are we tweaking? */ p = l->l_proc; error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]); if (error) return (error); /* * let them modify a temporary copy of the core name */ node = *rnode; strlcpy(cname, ptmp->p_limit->pl_corename, sizeof(cname)); node.sysctl_data = cname; error = sysctl_lookup(SYSCTLFN_CALL(&node)); /* * if that failed, or they have nothing new to say, or we've * heard it before... */ if (error || newp == NULL || strcmp(cname, ptmp->p_limit->pl_corename) == 0) return (error); /* * no error yet and cname now has the new core name in it. * let's see if it looks acceptable. it must be either "core" * or end in ".core" or "/core". */ len = strlen(cname); if (len < 4) return (EINVAL); if (strcmp(cname + len - 4, "core") != 0) return (EINVAL); if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') return (EINVAL); /* * hmm...looks good. now...where do we put it? */ tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL); if (tmp == NULL) return (ENOMEM); strlcpy(tmp, cname, len + 1); lim = ptmp->p_limit; if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) { ptmp->p_limit = limcopy(lim); limfree(lim); lim = ptmp->p_limit; } if (lim->pl_corename != defcorename) free(lim->pl_corename, M_TEMP); lim->pl_corename = tmp; return (error); } /* * sysctl helper routine for checking/setting a process's stop flags, * one for fork and one for exec. */ static int sysctl_proc_stop(SYSCTLFN_ARGS) { struct proc *p, *ptmp; int i, f, error = 0; struct sysctlnode node; if (namelen != 0) return (EINVAL); p = l->l_proc; error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]); if (error) return (error); switch (rnode->sysctl_num) { case PROC_PID_STOPFORK: f = P_STOPFORK; break; case PROC_PID_STOPEXEC: f = P_STOPEXEC; break; case PROC_PID_STOPEXIT: f = P_STOPEXIT; break; default: return (EINVAL); } i = (ptmp->p_flag & f) ? 1 : 0; node = *rnode; node.sysctl_data = &i; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (i) ptmp->p_flag |= f; else ptmp->p_flag &= ~f; return (0); } /* * sysctl helper routine for a process's rlimits as exposed by sysctl. */ static int sysctl_proc_plimit(SYSCTLFN_ARGS) { struct proc *ptmp, *p; u_int limitno; int which, error = 0; struct rlimit alim; struct sysctlnode node; if (namelen != 0) return (EINVAL); which = name[-1]; if (which != PROC_PID_LIMIT_TYPE_SOFT && which != PROC_PID_LIMIT_TYPE_HARD) return (EINVAL); limitno = name[-2] - 1; if (limitno >= RLIM_NLIMITS) return (EINVAL); if (name[-3] != PROC_PID_LIMIT) return (EINVAL); p = l->l_proc; error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-4]); if (error) return (error); node = *rnode; memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim)); if (which == PROC_PID_LIMIT_TYPE_HARD) node.sysctl_data = &alim.rlim_max; else node.sysctl_data = &alim.rlim_cur; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); return (dosetrlimit(ptmp, p->p_cred, limitno, &alim)); } /* * and finally, the actually glue that sticks it to the tree */ SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "proc", NULL, NULL, 0, NULL, 0, CTL_PROC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, CTLTYPE_NODE, "curproc", SYSCTL_DESCR("Per-process settings"), NULL, 0, NULL, 0, CTL_PROC, PROC_CURPROC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY2|CTLFLAG_ANYWRITE, CTLTYPE_STRING, "corename", SYSCTL_DESCR("Core file name"), sysctl_proc_corename, 0, NULL, MAXPATHLEN, CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "rlimit", SYSCTL_DESCR("Process limits"), NULL, 0, NULL, 0, CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); #define create_proc_plimit(s, n) do { \ sysctl_createv(clog, 0, NULL, NULL, \ CTLFLAG_PERMANENT, \ CTLTYPE_NODE, s, \ SYSCTL_DESCR("Process " s " limits"), \ NULL, 0, NULL, 0, \ CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ CTL_EOL); \ sysctl_createv(clog, 0, NULL, NULL, \ CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ CTLTYPE_QUAD, "soft", \ SYSCTL_DESCR("Process soft " s " limit"), \ sysctl_proc_plimit, 0, NULL, 0, \ CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ sysctl_createv(clog, 0, NULL, NULL, \ CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ CTLTYPE_QUAD, "hard", \ SYSCTL_DESCR("Process hard " s " limit"), \ sysctl_proc_plimit, 0, NULL, 0, \ CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ } while (0/*CONSTCOND*/) create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); #undef create_proc_plimit sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, CTLTYPE_INT, "stopfork", SYSCTL_DESCR("Stop process at fork(2)"), sysctl_proc_stop, 0, NULL, 0, CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, CTLTYPE_INT, "stopexec", SYSCTL_DESCR("Stop process at execve(2)"), sysctl_proc_stop, 0, NULL, 0, CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, CTLTYPE_INT, "stopexit", SYSCTL_DESCR("Stop process before completing exit"), sysctl_proc_stop, 0, NULL, 0, CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); } static struct uidinfo * getuidinfo(uid_t uid) { struct uidinfo *uip; struct uihashhead *uipp; uipp = UIHASH(uid); LIST_FOREACH(uip, uipp, ui_hash) if (uip->ui_uid == uid) return uip; return NULL; } static void freeuidinfo(struct uidinfo *uip) { LIST_REMOVE(uip, ui_hash); FREE(uip, M_PROC); } static struct uidinfo * allocuidinfo(uid_t uid) { struct uidinfo *uip; struct uihashhead *uipp; uipp = UIHASH(uid); MALLOC(uip, struct uidinfo *, sizeof(*uip), M_PROC, M_WAITOK); LIST_INSERT_HEAD(uipp, uip, ui_hash); uip->ui_uid = uid; uip->ui_proccnt = 0; uip->ui_sbsize = 0; return uip; } /* * Change the count associated with number of processes * a given user is using. */ int chgproccnt(uid_t uid, int diff) { struct uidinfo *uip; if (diff == 0) return 0; if ((uip = getuidinfo(uid)) != NULL) { uip->ui_proccnt += diff; KASSERT(uip->ui_proccnt >= 0); if (uip->ui_proccnt > 0) return uip->ui_proccnt; else { if (uip->ui_sbsize == 0) freeuidinfo(uip); return 0; } } else { if (diff < 0) panic("chgproccnt: lost user %lu", (unsigned long)uid); uip = allocuidinfo(uid); uip->ui_proccnt = diff; return uip->ui_proccnt; } } int chgsbsize(uid_t uid, u_long *hiwat, u_long to, rlim_t max) { *hiwat = to; return 1; #ifdef notyet struct uidinfo *uip; rlim_t nsb; int rv = 0; if ((uip = getuidinfo(uid)) == NULL) uip = allocuidinfo(uid); nsb = uip->ui_sbsize + to - *hiwat; if (to > *hiwat && nsb > max) goto done; *hiwat = to; uip->ui_sbsize = nsb; rv = 1; KASSERT(uip->ui_sbsize >= 0); done: if (uip->ui_sbsize == 0 && uip->ui_proccnt == 0) freeuidinfo(uip); return rv; #endif }