/* $NetBSD: hd64570.c,v 1.7 1999/10/23 22:20:11 erh Exp $ */ /* * Copyright (c) 1998 Vixie Enterprises * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Vixie Enterprises nor the names * of its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY VIXIE ENTERPRISES AND * CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL VIXIE ENTERPRISES OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This software has been written for Vixie Enterprises by Michael Graff * . To learn more about Vixie Enterprises, see * ``http://www.vix.com''. */ /* * hd64570: * From the hitachi docs: * The HD64570 serial communications adaptor (SCA) peripheral chip enables * a host microprocessor to perform asynchronous, byte-synchronous, or * bit-synchronous serial communication. Its two full-duplex, * multiprotocol serial channels support a wide variety of protocols, * including frame relay, LAPB, LAPD, bisync and DDCMP. Its build-in * direct memory access controller (DMAC) is equipped with a 32-stage * FIFO and can execure chained-block transfers. Due to its DMAC and * 16-bit bus interface, the SCA supports serial data transfer rates up * to 12 Mbits/s without monopolizing the bus, even in full-duplex * communication. Other on-chip features of the SCA, including four * types of MPU interfaces, a bus arbiter, timers, and an interrupt * controller, provide added functionality in a wide range of * applications, such as frame relay exchanges/system multiplexes, private * branch exchanges, computer networks, workstations, ISDN terminals, * and facsimile. * * For more info: http://semiconductor.hitachi.com * ---- * * This driver not only talks to the HD64570 chip, but also implements * a version of the HDLC protocol that includes the CISCO keepalive * protocol. It publishes itself as a network interface that can * handle IP traffic only. */ /* * TODO: * * o teach the receive logic about errors, and about long frames that * span more than one input buffer. (Right now, receive/transmit is * limited to one descriptor's buffer space, which is MTU + 4 bytes. * This is currently 1504, which is large enough to hold the HDLC * header and the packet itself. Packets which are too long are * silently dropped on transmit and silently dropped on receive. * o write code to handle the msci interrupts, needed only for CD * and CTS changes. * o consider switching back to a "queue tx with DMA active" model which * should help sustain outgoing traffic * o through clever use of bus_dma*() functions, it should be possible * to map the mbuf's data area directly into a descriptor transmit * buffer, removing the need to allocate extra memory. If, however, * we run out of descriptors for this, we will need to then allocate * one large mbuf, copy the fragmented chain into it, and put it onto * a single descriptor. * o use bus_dmamap_sync() with the right offset and lengths, rather * than cheating and always sync'ing the whole region. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #define SCA_DEBUG_RX 0x0001 #define SCA_DEBUG_TX 0x0002 #define SCA_DEBUG_CISCO 0x0004 #define SCA_DEBUG_DMA 0x0008 #define SCA_DEBUG_RXPKT 0x0010 #define SCA_DEBUG_TXPKT 0x0020 #define SCA_DEBUG_INTR 0x0040 #if 0 #define SCA_DEBUG_LEVEL ( SCA_DEBUG_TX ) #else #define SCA_DEBUG_LEVEL 0 #endif u_int32_t sca_debug = SCA_DEBUG_LEVEL; #if SCA_DEBUG_LEVEL > 0 #define SCA_DPRINTF(l, x) do { \ if ((l) & sca_debug) \ printf x;\ } while (0) #else #define SCA_DPRINTF(l, x) #endif #define SCA_MTU 1500 /* hard coded */ /* * buffers per tx and rx channels, per port, and the size of each. * Don't use these constants directly, as they are really only hints. * Use the calculated values stored in struct sca_softc instead. * * Each must be at least 2, receive would be better at around 20 or so. * * XXX Due to a damned near impossible to track down bug, transmit buffers * MUST be 2, no more, no less. */ #ifndef SCA_NtxBUFS #define SCA_NtxBUFS 2 #endif #ifndef SCA_NrxBUFS #define SCA_NrxBUFS 20 #endif #ifndef SCA_BSIZE #define SCA_BSIZE (SCA_MTU + 4) /* room for HDLC as well */ #endif #if 0 #define SCA_USE_FASTQ /* use a split queue, one for fast traffic */ #endif static inline void sca_write_1(struct sca_softc *, u_int, u_int8_t); static inline void sca_write_2(struct sca_softc *, u_int, u_int16_t); static inline u_int8_t sca_read_1(struct sca_softc *, u_int); static inline u_int16_t sca_read_2(struct sca_softc *, u_int); static inline void msci_write_1(sca_port_t *, u_int, u_int8_t); static inline u_int8_t msci_read_1(sca_port_t *, u_int); static inline void dmac_write_1(sca_port_t *, u_int, u_int8_t); static inline void dmac_write_2(sca_port_t *, u_int, u_int16_t); static inline u_int8_t dmac_read_1(sca_port_t *, u_int); static inline u_int16_t dmac_read_2(sca_port_t *, u_int); static int sca_alloc_dma(struct sca_softc *); static void sca_setup_dma_memory(struct sca_softc *); static void sca_msci_init(struct sca_softc *, sca_port_t *); static void sca_dmac_init(struct sca_softc *, sca_port_t *); static void sca_dmac_rxinit(sca_port_t *); static int sca_dmac_intr(sca_port_t *, u_int8_t); static int sca_msci_intr(struct sca_softc *, u_int8_t); static void sca_get_packets(sca_port_t *); static void sca_frame_process(sca_port_t *, sca_desc_t *, u_int8_t *); static int sca_frame_avail(sca_port_t *, int *); static void sca_frame_skip(sca_port_t *, int); static void sca_port_starttx(sca_port_t *); static void sca_port_up(sca_port_t *); static void sca_port_down(sca_port_t *); static int sca_output __P((struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *)); static int sca_ioctl __P((struct ifnet *, u_long, caddr_t)); static void sca_start __P((struct ifnet *)); static void sca_watchdog __P((struct ifnet *)); static struct mbuf *sca_mbuf_alloc(caddr_t, u_int); #if SCA_DEBUG_LEVEL > 0 static void sca_frame_print(sca_port_t *, sca_desc_t *, u_int8_t *); #endif static inline void sca_write_1(struct sca_softc *sc, u_int reg, u_int8_t val) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, SCADDR(reg), val); } static inline void sca_write_2(struct sca_softc *sc, u_int reg, u_int16_t val) { bus_space_write_2(sc->sc_iot, sc->sc_ioh, SCADDR(reg), val); } static inline u_int8_t sca_read_1(struct sca_softc *sc, u_int reg) { return bus_space_read_1(sc->sc_iot, sc->sc_ioh, SCADDR(reg)); } static inline u_int16_t sca_read_2(struct sca_softc *sc, u_int reg) { return bus_space_read_2(sc->sc_iot, sc->sc_ioh, SCADDR(reg)); } static inline void msci_write_1(sca_port_t *scp, u_int reg, u_int8_t val) { sca_write_1(scp->sca, scp->msci_off + reg, val); } static inline u_int8_t msci_read_1(sca_port_t *scp, u_int reg) { return sca_read_1(scp->sca, scp->msci_off + reg); } static inline void dmac_write_1(sca_port_t *scp, u_int reg, u_int8_t val) { sca_write_1(scp->sca, scp->dmac_off + reg, val); } static inline void dmac_write_2(sca_port_t *scp, u_int reg, u_int16_t val) { sca_write_2(scp->sca, scp->dmac_off + reg, val); } static inline u_int8_t dmac_read_1(sca_port_t *scp, u_int reg) { return sca_read_1(scp->sca, scp->dmac_off + reg); } static inline u_int16_t dmac_read_2(sca_port_t *scp, u_int reg) { return sca_read_2(scp->sca, scp->dmac_off + reg); } int sca_init(struct sca_softc *sc, u_int nports) { /* * Do a little sanity check: check number of ports. */ if (nports < 1 || nports > 2) return 1; /* * remember the details */ sc->sc_numports = nports; /* * allocate the memory and chop it into bits. */ if (sca_alloc_dma(sc) != 0) return 1; sca_setup_dma_memory(sc); /* * disable DMA and MSCI interrupts */ sca_write_1(sc, SCA_DMER, 0); sca_write_1(sc, SCA_IER0, 0); sca_write_1(sc, SCA_IER1, 0); sca_write_1(sc, SCA_IER2, 0); /* * configure interrupt system */ sca_write_1(sc, SCA_ITCR, 0); /* use ivr, no int ack */ sca_write_1(sc, SCA_IVR, 0x40); sca_write_1(sc, SCA_IMVR, 0x40); /* * set wait control register to zero wait states */ sca_write_1(sc, SCA_PABR0, 0); sca_write_1(sc, SCA_PABR1, 0); sca_write_1(sc, SCA_WCRL, 0); sca_write_1(sc, SCA_WCRM, 0); sca_write_1(sc, SCA_WCRH, 0); /* * disable DMA and reset status */ sca_write_1(sc, SCA_PCR, SCA_PCR_PR2); /* * disable transmit DMA for all channels */ sca_write_1(sc, SCA_DSR0 + SCA_DMAC_OFF_0, 0); sca_write_1(sc, SCA_DCR0 + SCA_DMAC_OFF_0, SCA_DCR_ABRT); sca_write_1(sc, SCA_DSR1 + SCA_DMAC_OFF_0, 0); sca_write_1(sc, SCA_DCR1 + SCA_DMAC_OFF_0, SCA_DCR_ABRT); sca_write_1(sc, SCA_DSR0 + SCA_DMAC_OFF_1, 0); sca_write_1(sc, SCA_DCR0 + SCA_DMAC_OFF_1, SCA_DCR_ABRT); sca_write_1(sc, SCA_DSR1 + SCA_DMAC_OFF_1, 0); sca_write_1(sc, SCA_DCR1 + SCA_DMAC_OFF_1, SCA_DCR_ABRT); /* * enable DMA based on channel enable flags for each channel */ sca_write_1(sc, SCA_DMER, SCA_DMER_EN); /* * Should check to see if the chip is responding, but for now * assume it is. */ return 0; } /* * initialize the port and attach it to the networking layer */ void sca_port_attach(struct sca_softc *sc, u_int port) { sca_port_t *scp = &sc->sc_ports[port]; struct ifnet *ifp; static u_int ntwo_unit = 0; scp->sca = sc; /* point back to the parent */ scp->sp_port = port; if (port == 0) { scp->msci_off = SCA_MSCI_OFF_0; scp->dmac_off = SCA_DMAC_OFF_0; if(sc->parent != NULL) ntwo_unit=sc->parent->dv_unit * 2 + 0; else ntwo_unit = 0; /* XXX */ } else { scp->msci_off = SCA_MSCI_OFF_1; scp->dmac_off = SCA_DMAC_OFF_1; if(sc->parent != NULL) ntwo_unit=sc->parent->dv_unit * 2 + 1; else ntwo_unit = 1; /* XXX */ } sca_msci_init(sc, scp); sca_dmac_init(sc, scp); /* * attach to the network layer */ ifp = &scp->sp_if; sprintf(ifp->if_xname, "ntwo%d", ntwo_unit); ifp->if_softc = scp; ifp->if_mtu = SCA_MTU; ifp->if_flags = IFF_POINTOPOINT | IFF_MULTICAST; ifp->if_type = IFT_OTHER; /* Should be HDLC, but... */ ifp->if_hdrlen = HDLC_HDRLEN; ifp->if_ioctl = sca_ioctl; ifp->if_output = sca_output; ifp->if_watchdog = sca_watchdog; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; scp->linkq.ifq_maxlen = 5; /* if we exceed this we are hosed already */ #ifdef SCA_USE_FASTQ scp->fastq.ifq_maxlen = IFQ_MAXLEN; #endif if_attach(ifp); #if NBPFILTER > 0 bpfattach(&scp->sp_bpf, ifp, DLT_HDLC, HDLC_HDRLEN); #endif if (sc->parent == NULL) printf("%s: port %d\n", ifp->if_xname, port); else printf("%s at %s port %d\n", ifp->if_xname, sc->parent->dv_xname, port); /* * reset the last seen times on the cisco keepalive protocol */ scp->cka_lasttx = time.tv_usec; scp->cka_lastrx = 0; } /* * initialize the port's MSCI */ static void sca_msci_init(struct sca_softc *sc, sca_port_t *scp) { msci_write_1(scp, SCA_CMD0, SCA_CMD_RESET); msci_write_1(scp, SCA_MD00, ( SCA_MD0_CRC_1 | SCA_MD0_CRC_CCITT | SCA_MD0_CRC_ENABLE | SCA_MD0_MODE_HDLC)); msci_write_1(scp, SCA_MD10, SCA_MD1_NOADDRCHK); msci_write_1(scp, SCA_MD20, (SCA_MD2_DUPLEX | SCA_MD2_NRZ)); /* * reset the port (and lower RTS) */ msci_write_1(scp, SCA_CMD0, SCA_CMD_RXRESET); msci_write_1(scp, SCA_CTL0, (SCA_CTL_IDLPAT | SCA_CTL_UDRNC | SCA_CTL_RTS)); msci_write_1(scp, SCA_CMD0, SCA_CMD_TXRESET); /* * select the RX clock as the TX clock, and set for external * clock source. */ msci_write_1(scp, SCA_RXS0, 0); msci_write_1(scp, SCA_TXS0, 0); /* * XXX don't pay attention to CTS or CD changes right now. I can't * simulate one, and the transmitter will try to transmit even if * CD isn't there anyway, so nothing bad SHOULD happen. */ msci_write_1(scp, SCA_IE00, 0); msci_write_1(scp, SCA_IE10, 0); /* 0x0c == CD and CTS changes only */ msci_write_1(scp, SCA_IE20, 0); msci_write_1(scp, SCA_FIE0, 0); msci_write_1(scp, SCA_SA00, 0); msci_write_1(scp, SCA_SA10, 0); msci_write_1(scp, SCA_IDL0, 0x7e); msci_write_1(scp, SCA_RRC0, 0x0e); msci_write_1(scp, SCA_TRC00, 0x10); msci_write_1(scp, SCA_TRC10, 0x1f); } /* * Take the memory for the port and construct two circular linked lists of * descriptors (one tx, one rx) and set the pointers in these descriptors * to point to the buffer space for this port. */ static void sca_dmac_init(struct sca_softc *sc, sca_port_t *scp) { sca_desc_t *desc; u_int32_t desc_p; u_int32_t buf_p; int i; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmam, 0, sc->sc_allocsize, BUS_DMASYNC_PREWRITE); desc = scp->txdesc; desc_p = scp->txdesc_p; buf_p = scp->txbuf_p; scp->txcur = 0; scp->txinuse = 0; for (i = 0 ; i < SCA_NtxBUFS ; i++) { /* * desc_p points to the physcial address of the NEXT desc */ desc_p += sizeof(sca_desc_t); desc->cp = desc_p & 0x0000ffff; desc->bp = buf_p & 0x0000ffff; desc->bpb = (buf_p & 0x00ff0000) >> 16; desc->len = SCA_BSIZE; desc->stat = 0; desc++; /* point to the next descriptor */ buf_p += SCA_BSIZE; } /* * "heal" the circular list by making the last entry point to the * first. */ desc--; desc->cp = scp->txdesc_p & 0x0000ffff; /* * Now, initialize the transmit DMA logic * * CPB == chain pointer base address */ dmac_write_1(scp, SCA_DSR1, 0); dmac_write_1(scp, SCA_DCR1, SCA_DCR_ABRT); dmac_write_1(scp, SCA_DMR1, SCA_DMR_TMOD | SCA_DMR_NF); dmac_write_1(scp, SCA_DIR1, (SCA_DIR_EOT | SCA_DIR_BOF | SCA_DIR_COF)); dmac_write_1(scp, SCA_CPB1, (u_int8_t)((scp->txdesc_p & 0x00ff0000) >> 16)); /* * now, do the same thing for receive descriptors */ desc = scp->rxdesc; desc_p = scp->rxdesc_p; buf_p = scp->rxbuf_p; scp->rxstart = 0; scp->rxend = SCA_NrxBUFS - 1; for (i = 0 ; i < SCA_NrxBUFS ; i++) { /* * desc_p points to the physcial address of the NEXT desc */ desc_p += sizeof(sca_desc_t); desc->cp = desc_p & 0x0000ffff; desc->bp = buf_p & 0x0000ffff; desc->bpb = (buf_p & 0x00ff0000) >> 16; desc->len = SCA_BSIZE; desc->stat = 0x00; desc++; /* point to the next descriptor */ buf_p += SCA_BSIZE; } /* * "heal" the circular list by making the last entry point to the * first. */ desc--; desc->cp = scp->rxdesc_p & 0x0000ffff; sca_dmac_rxinit(scp); bus_dmamap_sync(sc->sc_dmat, sc->sc_dmam, 0, sc->sc_allocsize, BUS_DMASYNC_POSTWRITE); } /* * reset and reinitialize the receive DMA logic */ static void sca_dmac_rxinit(sca_port_t *scp) { /* * ... and the receive DMA logic ... */ dmac_write_1(scp, SCA_DSR0, 0); /* disable DMA */ dmac_write_1(scp, SCA_DCR0, SCA_DCR_ABRT); dmac_write_1(scp, SCA_DMR0, SCA_DMR_TMOD | SCA_DMR_NF); dmac_write_2(scp, SCA_BFLL0, SCA_BSIZE); /* * CPB == chain pointer base * CDA == current descriptor address * EDA == error descriptor address (overwrite position) */ dmac_write_1(scp, SCA_CPB0, (u_int8_t)((scp->rxdesc_p & 0x00ff0000) >> 16)); dmac_write_2(scp, SCA_CDAL0, (u_int16_t)(scp->rxdesc_p & 0xffff)); dmac_write_2(scp, SCA_EDAL0, (u_int16_t)(scp->rxdesc_p + sizeof(sca_desc_t) * SCA_NrxBUFS)); /* * enable receiver DMA */ dmac_write_1(scp, SCA_DIR0, (SCA_DIR_EOT | SCA_DIR_EOM | SCA_DIR_BOF | SCA_DIR_COF)); dmac_write_1(scp, SCA_DSR0, SCA_DSR_DE); } static int sca_alloc_dma(struct sca_softc *sc) { u_int allocsize; int err; int rsegs; u_int bpp; SCA_DPRINTF(SCA_DEBUG_DMA, ("sizeof sca_desc_t: %d bytes\n", sizeof (sca_desc_t))); bpp = sc->sc_numports * (SCA_NtxBUFS + SCA_NrxBUFS); allocsize = bpp * (SCA_BSIZE + sizeof (sca_desc_t)); /* * sanity checks: * * Check the total size of the data buffers, and so on. The total * DMAable space needs to fit within a single 16M region, and the * descriptors need to fit within a 64K region. */ if (allocsize > 16 * 1024 * 1024) return 1; if (bpp * sizeof (sca_desc_t) > 64 * 1024) return 1; sc->sc_allocsize = allocsize; /* * Allocate one huge chunk of memory. */ if (bus_dmamem_alloc(sc->sc_dmat, allocsize, SCA_DMA_ALIGNMENT, SCA_DMA_BOUNDRY, &sc->sc_seg, 1, &rsegs, BUS_DMA_NOWAIT) != 0) { printf("Could not allocate DMA memory\n"); return 1; } SCA_DPRINTF(SCA_DEBUG_DMA, ("DMA memory allocated: %d bytes\n", allocsize)); if (bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, allocsize, &sc->sc_dma_addr, BUS_DMA_NOWAIT) != 0) { printf("Could not map DMA memory into kernel space\n"); return 1; } SCA_DPRINTF(SCA_DEBUG_DMA, ("DMA memory mapped\n")); if (bus_dmamap_create(sc->sc_dmat, allocsize, 2, allocsize, SCA_DMA_BOUNDRY, BUS_DMA_NOWAIT, &sc->sc_dmam) != 0) { printf("Could not create DMA map\n"); return 1; } SCA_DPRINTF(SCA_DEBUG_DMA, ("DMA map created\n")); err = bus_dmamap_load(sc->sc_dmat, sc->sc_dmam, sc->sc_dma_addr, allocsize, NULL, BUS_DMA_NOWAIT); if (err != 0) { printf("Could not load DMA segment: %d\n", err); return 1; } SCA_DPRINTF(SCA_DEBUG_DMA, ("DMA map loaded\n")); return 0; } /* * Take the memory allocated with sca_alloc_dma() and divide it among the * two ports. */ static void sca_setup_dma_memory(struct sca_softc *sc) { sca_port_t *scp0, *scp1; u_int8_t *vaddr0; u_int32_t paddr0; u_long addroff; /* * remember the physical address to 24 bits only, since the upper * 8 bits is programed into the device at a different layer. */ paddr0 = (sc->sc_dmam->dm_segs[0].ds_addr & 0x00ffffff); vaddr0 = sc->sc_dma_addr; /* * if we have only one port it gets the full range. If we have * two we need to do a little magic to divide things up. * * The descriptors will all end up in the front of the area, while * the remainder of the buffer is used for transmit and receive * data. * * -------------------- start of memory * tx desc port 0 * rx desc port 0 * tx desc port 1 * rx desc port 1 * tx buffer port 0 * rx buffer port 0 * tx buffer port 1 * rx buffer port 1 * -------------------- end of memory */ scp0 = &sc->sc_ports[0]; scp1 = &sc->sc_ports[1]; scp0->txdesc_p = paddr0; scp0->txdesc = (sca_desc_t *)vaddr0; addroff = sizeof(sca_desc_t) * SCA_NtxBUFS; /* * point to the range following the tx descriptors, and * set the rx descriptors there. */ scp0->rxdesc_p = paddr0 + addroff; scp0->rxdesc = (sca_desc_t *)(vaddr0 + addroff); addroff += sizeof(sca_desc_t) * SCA_NrxBUFS; if (sc->sc_numports == 2) { scp1->txdesc_p = paddr0 + addroff; scp1->txdesc = (sca_desc_t *)(vaddr0 + addroff); addroff += sizeof(sca_desc_t) * SCA_NtxBUFS; scp1->rxdesc_p = paddr0 + addroff; scp1->rxdesc = (sca_desc_t *)(vaddr0 + addroff); addroff += sizeof(sca_desc_t) * SCA_NrxBUFS; } /* * point to the memory following the descriptors, and set the * transmit buffer there. */ scp0->txbuf_p = paddr0 + addroff; scp0->txbuf = vaddr0 + addroff; addroff += SCA_BSIZE * SCA_NtxBUFS; /* * lastly, skip over the transmit buffer and set up pointers into * the receive buffer. */ scp0->rxbuf_p = paddr0 + addroff; scp0->rxbuf = vaddr0 + addroff; addroff += SCA_BSIZE * SCA_NrxBUFS; if (sc->sc_numports == 2) { scp1->txbuf_p = paddr0 + addroff; scp1->txbuf = vaddr0 + addroff; addroff += SCA_BSIZE * SCA_NtxBUFS; scp1->rxbuf_p = paddr0 + addroff; scp1->rxbuf = vaddr0 + addroff; addroff += SCA_BSIZE * SCA_NrxBUFS; } /* * as a consistancy check, addroff should be equal to the allocation * size. */ if (sc->sc_allocsize != addroff) printf("ERROR: sc_allocsize != addroff: %lu != %lu\n", sc->sc_allocsize, addroff); } /* * Queue the packet for our start routine to transmit */ static int sca_output(ifp, m, dst, rt0) struct ifnet *ifp; struct mbuf *m; struct sockaddr *dst; struct rtentry *rt0; { int error; int s; u_int16_t protocol; hdlc_header_t *hdlc; struct ifqueue *ifq; #ifdef SCA_USE_FASTQ struct ip *ip; sca_port_t *scp = ifp->if_softc; int highpri; #endif error = 0; ifp->if_lastchange = time; if ((ifp->if_flags & IFF_UP) != IFF_UP) { error = ENETDOWN; goto bad; } #ifdef SCA_USE_FASTQ highpri = 0; #endif /* * determine address family, and priority for this packet */ switch (dst->sa_family) { case AF_INET: protocol = HDLC_PROTOCOL_IP; #ifdef SCA_USE_FASTQ ip = mtod(m, struct ip *); if ((ip->ip_tos & IPTOS_LOWDELAY) == IPTOS_LOWDELAY) highpri = 1; #endif break; default: printf("%s: address family %d unsupported\n", ifp->if_xname, dst->sa_family); error = EAFNOSUPPORT; goto bad; } if (M_LEADINGSPACE(m) < HDLC_HDRLEN) { m = m_prepend(m, HDLC_HDRLEN, M_DONTWAIT); if (m == NULL) { error = ENOBUFS; goto bad; } m->m_len = 0; } else { m->m_data -= HDLC_HDRLEN; } hdlc = mtod(m, hdlc_header_t *); if ((m->m_flags & (M_BCAST | M_MCAST)) != 0) hdlc->addr = CISCO_MULTICAST; else hdlc->addr = CISCO_UNICAST; hdlc->control = 0; hdlc->protocol = htons(protocol); m->m_len += HDLC_HDRLEN; /* * queue the packet. If interactive, use the fast queue. */ s = splnet(); #ifdef SCA_USE_FASTQ ifq = (highpri == 1 ? &scp->fastq : &ifp->if_snd); #else ifq = &ifp->if_snd; #endif if (IF_QFULL(ifq)) { IF_DROP(ifq); ifp->if_oerrors++; ifp->if_collisions++; error = ENOBUFS; splx(s); goto bad; } ifp->if_obytes += m->m_pkthdr.len; IF_ENQUEUE(ifq, m); ifp->if_lastchange = time; if (m->m_flags & M_MCAST) ifp->if_omcasts++; sca_start(ifp); splx(s); return (error); bad: if (m) m_freem(m); return (error); } static int sca_ioctl(ifp, cmd, addr) struct ifnet *ifp; u_long cmd; caddr_t addr; { struct ifreq *ifr; struct ifaddr *ifa; int error; int s; s = splnet(); ifr = (struct ifreq *)addr; ifa = (struct ifaddr *)addr; error = 0; switch (cmd) { case SIOCSIFADDR: if (ifa->ifa_addr->sa_family == AF_INET) sca_port_up(ifp->if_softc); else error = EAFNOSUPPORT; break; case SIOCSIFDSTADDR: if (ifa->ifa_addr->sa_family != AF_INET) error = EAFNOSUPPORT; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifr == 0) { error = EAFNOSUPPORT; /* XXX */ break; } switch (ifr->ifr_addr.sa_family) { #ifdef INET case AF_INET: break; #endif default: error = EAFNOSUPPORT; break; } break; case SIOCSIFFLAGS: if (ifr->ifr_flags & IFF_UP) sca_port_up(ifp->if_softc); else sca_port_down(ifp->if_softc); break; default: error = EINVAL; } splx(s); return error; } /* * start packet transmission on the interface * * MUST BE CALLED AT splnet() */ static void sca_start(ifp) struct ifnet *ifp; { sca_port_t *scp = ifp->if_softc; struct sca_softc *sc = scp->sca; struct mbuf *m, *mb_head; sca_desc_t *desc; u_int8_t *buf; u_int32_t buf_p; int nexttx; int trigger_xmit; /* * can't queue when we are full or transmitter is busy */ if ((scp->txinuse >= (SCA_NtxBUFS - 1)) || ((ifp->if_flags & IFF_OACTIVE) == IFF_OACTIVE)) return; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmam, 0, sc->sc_allocsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); trigger_xmit = 0; txloop: IF_DEQUEUE(&scp->linkq, mb_head); if (mb_head == NULL) #ifdef SCA_USE_FASTQ IF_DEQUEUE(&scp->fastq, mb_head); if (mb_head == NULL) #endif IF_DEQUEUE(&ifp->if_snd, mb_head); if (mb_head == NULL) goto start_xmit; if (scp->txinuse != 0) { /* Kill EOT interrupts on the previous descriptor. */ desc = &scp->txdesc[scp->txcur]; desc->stat &= ~SCA_DESC_EOT; /* Figure out what the next free descriptor is. */ if ((scp->txcur + 1) == SCA_NtxBUFS) nexttx = 0; else nexttx = scp->txcur + 1; } else nexttx = 0; desc = &scp->txdesc[nexttx]; buf = scp->txbuf + SCA_BSIZE * nexttx; buf_p = scp->txbuf_p + SCA_BSIZE * nexttx; desc->bp = (u_int16_t)(buf_p & 0x0000ffff); desc->bpb = (u_int8_t)((buf_p & 0x00ff0000) >> 16); desc->stat = SCA_DESC_EOT | SCA_DESC_EOM; /* end of frame and xfer */ desc->len = 0; /* * Run through the chain, copying data into the descriptor as we * go. If it won't fit in one transmission block, drop the packet. * No, this isn't nice, but most of the time it _will_ fit. */ for (m = mb_head ; m != NULL ; m = m->m_next) { if (m->m_len != 0) { desc->len += m->m_len; if (desc->len > SCA_BSIZE) { m_freem(mb_head); goto txloop; } bcopy(mtod(m, u_int8_t *), buf, m->m_len); buf += m->m_len; } } ifp->if_opackets++; #if NBPFILTER > 0 /* * Pass packet to bpf if there is a listener. */ if (scp->sp_bpf) bpf_mtap(scp->sp_bpf, mb_head); #endif m_freem(mb_head); if (scp->txinuse != 0) { scp->txcur++; if (scp->txcur == SCA_NtxBUFS) scp->txcur = 0; } scp->txinuse++; trigger_xmit = 1; SCA_DPRINTF(SCA_DEBUG_TX, ("TX: inuse %d index %d\n", scp->txinuse, scp->txcur)); if (scp->txinuse < (SCA_NtxBUFS - 1)) goto txloop; start_xmit: bus_dmamap_sync(sc->sc_dmat, sc->sc_dmam, 0, sc->sc_allocsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (trigger_xmit != 0) sca_port_starttx(scp); } static void sca_watchdog(ifp) struct ifnet *ifp; { } int sca_hardintr(struct sca_softc *sc) { u_int8_t isr0, isr1, isr2; int ret; ret = 0; /* non-zero means we processed at least one interrupt */ while (1) { /* * read SCA interrupts */ isr0 = sca_read_1(sc, SCA_ISR0); isr1 = sca_read_1(sc, SCA_ISR1); isr2 = sca_read_1(sc, SCA_ISR2); if (isr0 == 0 && isr1 == 0 && isr2 == 0) break; SCA_DPRINTF(SCA_DEBUG_INTR, ("isr0 = %02x, isr1 = %02x, isr2 = %02x\n", isr0, isr1, isr2)); /* * check DMA interrupt */ if (isr1 & 0x0f) ret += sca_dmac_intr(&sc->sc_ports[0], isr1 & 0x0f); if (isr1 & 0xf0) ret += sca_dmac_intr(&sc->sc_ports[1], (isr1 & 0xf0) >> 4); if (isr0) ret += sca_msci_intr(sc, isr0); #if 0 /* We don't GET timer interrupts, we have them disabled (msci IE20) */ if (isr2) ret += sca_timer_intr(sc, isr2); #endif } return (ret); } static int sca_dmac_intr(sca_port_t *scp, u_int8_t isr) { u_int8_t dsr; int ret; ret = 0; /* * Check transmit channel */ if (isr & 0x0c) { SCA_DPRINTF(SCA_DEBUG_INTR, ("TX INTERRUPT port %d\n", scp->sp_port)); dsr = 1; while (dsr != 0) { ret++; /* * reset interrupt */ dsr = dmac_read_1(scp, SCA_DSR1); dmac_write_1(scp, SCA_DSR1, dsr | SCA_DSR_DEWD); /* * filter out the bits we don't care about */ dsr &= ( SCA_DSR_COF | SCA_DSR_BOF | SCA_DSR_EOT); if (dsr == 0) break; /* * check for counter overflow */ if (dsr & SCA_DSR_COF) { printf("%s: TXDMA counter overflow\n", scp->sp_if.if_xname); scp->sp_if.if_flags &= ~IFF_OACTIVE; scp->txcur = 0; scp->txinuse = 0; } /* * check for buffer overflow */ if (dsr & SCA_DSR_BOF) { printf("%s: TXDMA buffer overflow, cda 0x%04x, eda 0x%04x, cpb 0x%02x\n", scp->sp_if.if_xname, dmac_read_2(scp, SCA_CDAL1), dmac_read_2(scp, SCA_EDAL1), dmac_read_1(scp, SCA_CPB1)); /* * Yikes. Arrange for a full * transmitter restart. */ scp->sp_if.if_flags &= ~IFF_OACTIVE; scp->txcur = 0; scp->txinuse = 0; } /* * check for end of transfer, which is not * an error. It means that all data queued * was transmitted, and we mark ourself as * not in use and stop the watchdog timer. */ if (dsr & SCA_DSR_EOT) { SCA_DPRINTF(SCA_DEBUG_TX, ("Transmit completed.\n")); scp->sp_if.if_flags &= ~IFF_OACTIVE; scp->txcur = 0; scp->txinuse = 0; /* * check for more packets */ sca_start(&scp->sp_if); } } } /* * receive channel check */ if (isr & 0x03) { SCA_DPRINTF(SCA_DEBUG_INTR, ("RX INTERRUPT port %d\n", mch)); dsr = 1; while (dsr != 0) { ret++; dsr = dmac_read_1(scp, SCA_DSR0); dmac_write_1(scp, SCA_DSR0, dsr | SCA_DSR_DEWD); /* * filter out the bits we don't care about */ dsr &= (SCA_DSR_EOM | SCA_DSR_COF | SCA_DSR_BOF | SCA_DSR_EOT); if (dsr == 0) break; /* * End of frame */ if (dsr & SCA_DSR_EOM) { SCA_DPRINTF(SCA_DEBUG_RX, ("Got a frame!\n")); sca_get_packets(scp); } /* * check for counter overflow */ if (dsr & SCA_DSR_COF) { printf("%s: RXDMA counter overflow\n", scp->sp_if.if_xname); sca_dmac_rxinit(scp); } /* * check for end of transfer, which means we * ran out of descriptors to receive into. * This means the line is much faster than * we can handle. */ if (dsr & (SCA_DSR_BOF | SCA_DSR_EOT)) { printf("%s: RXDMA buffer overflow\n", scp->sp_if.if_xname); sca_dmac_rxinit(scp); } } } return ret; } static int sca_msci_intr(struct sca_softc *sc, u_int8_t isr) { printf("Got msci interrupt XXX\n"); return 0; } static void sca_get_packets(sca_port_t *scp) { int descidx; sca_desc_t *desc; u_int8_t *buf; bus_dmamap_sync(scp->sca->sc_dmat, scp->sca->sc_dmam, 0, scp->sca->sc_allocsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Loop while there are packets to receive. After each is processed, * call sca_frame_skip() to update the DMA registers to the new * state. */ while (sca_frame_avail(scp, &descidx)) { desc = &scp->rxdesc[descidx]; buf = scp->rxbuf + SCA_BSIZE * descidx; sca_frame_process(scp, desc, buf); #if SCA_DEBUG_LEVEL > 0 if (sca_debug & SCA_DEBUG_RXPKT) sca_frame_print(scp, desc, buf); #endif sca_frame_skip(scp, descidx); } bus_dmamap_sync(scp->sca->sc_dmat, scp->sca->sc_dmam, 0, scp->sca->sc_allocsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } /* * Starting with the first descriptor we wanted to read into, up to but * not including the current SCA read descriptor, look for a packet. */ static int sca_frame_avail(sca_port_t *scp, int *descindx) { u_int16_t cda; int cdaidx; u_int32_t desc_p; /* physical address (lower 16 bits) */ sca_desc_t *desc; u_int8_t rxstat; /* * Read the current descriptor from the SCA. */ cda = dmac_read_2(scp, SCA_CDAL0); /* * calculate the index of the current descriptor */ desc_p = cda - (u_int16_t)(scp->rxdesc_p & 0x0000ffff); cdaidx = desc_p / sizeof(sca_desc_t); if (cdaidx >= SCA_NrxBUFS) return 0; for (;;) { /* * if the SCA is reading into the first descriptor, we somehow * got this interrupt incorrectly. Just return that there are * no packets ready. */ if (cdaidx == scp->rxstart) return 0; /* * We might have a valid descriptor. Set up a pointer * to the kva address for it so we can more easily examine * the contents. */ desc = &scp->rxdesc[scp->rxstart]; rxstat = desc->stat; /* * check for errors */ if (rxstat & SCA_DESC_ERRORS) goto nextpkt; /* * full packet? Good. */ if (rxstat & SCA_DESC_EOM) { *descindx = scp->rxstart; return 1; } /* * increment the rxstart address, since this frame is * somehow damaged. Skip over it in later calls. * XXX This breaks multidescriptor receives, so each * frame HAS to fit within one descriptor's buffer * space now... */ nextpkt: scp->rxstart++; if (scp->rxstart == SCA_NrxBUFS) scp->rxstart = 0; } return 0; } /* * Pass the packet up to the kernel if it is a packet we want to pay * attention to. * * MUST BE CALLED AT splnet() */ static void sca_frame_process(sca_port_t *scp, sca_desc_t *desc, u_int8_t *p) { hdlc_header_t *hdlc; cisco_pkt_t *cisco, *ncisco; u_int16_t len; struct mbuf *m; u_int8_t *nbuf; u_int32_t t = (time.tv_sec - boottime.tv_sec) * 1000; struct ifqueue *ifq; len = desc->len; /* * skip packets that are too short */ if (len < sizeof(hdlc_header_t)) return; #if NBPFILTER > 0 if (scp->sp_bpf) bpf_tap(scp->sp_bpf, p, len); #endif /* * read and then strip off the HDLC information */ hdlc = (hdlc_header_t *)p; scp->sp_if.if_ipackets++; scp->sp_if.if_lastchange = time; switch (ntohs(hdlc->protocol)) { case HDLC_PROTOCOL_IP: SCA_DPRINTF(SCA_DEBUG_RX, ("Received IP packet\n")); m = sca_mbuf_alloc(p, len); if (m == NULL) { scp->sp_if.if_iqdrops++; return; } m->m_pkthdr.rcvif = &scp->sp_if; if (IF_QFULL(&ipintrq)) { IF_DROP(&ipintrq); scp->sp_if.if_ierrors++; scp->sp_if.if_iqdrops++; m_freem(m); } else { /* * strip off the HDLC header and hand off to IP stack */ m->m_pkthdr.len -= HDLC_HDRLEN; m->m_data += HDLC_HDRLEN; m->m_len -= HDLC_HDRLEN; IF_ENQUEUE(&ipintrq, m); schednetisr(NETISR_IP); } break; case CISCO_KEEPALIVE: SCA_DPRINTF(SCA_DEBUG_CISCO, ("Received CISCO keepalive packet\n")); if (len < CISCO_PKT_LEN) { SCA_DPRINTF(SCA_DEBUG_CISCO, ("short CISCO packet %d, wanted %d\n", len, CISCO_PKT_LEN)); return; } /* * allocate an mbuf and copy the important bits of data * into it. */ m = sca_mbuf_alloc(p, HDLC_HDRLEN + CISCO_PKT_LEN); if (m == NULL) return; nbuf = mtod(m, u_int8_t *); ncisco = (cisco_pkt_t *)(nbuf + HDLC_HDRLEN); m->m_pkthdr.rcvif = &scp->sp_if; cisco = (cisco_pkt_t *)(p + HDLC_HDRLEN); switch (ntohl(cisco->type)) { case CISCO_ADDR_REQ: printf("Got CISCO addr_req, ignoring\n"); m_freem(m); break; case CISCO_ADDR_REPLY: printf("Got CISCO addr_reply, ignoring\n"); m_freem(m); break; case CISCO_KEEPALIVE_REQ: SCA_DPRINTF(SCA_DEBUG_CISCO, ("Received KA, mseq %d," " yseq %d, rel 0x%04x, t0" " %04x, t1 %04x\n", ntohl(cisco->par1), ntohl(cisco->par2), ntohs(cisco->rel), ntohs(cisco->time0), ntohs(cisco->time1))); scp->cka_lastrx = ntohl(cisco->par1); scp->cka_lasttx++; /* * schedule the transmit right here. */ ncisco->par2 = cisco->par1; ncisco->par1 = htonl(scp->cka_lasttx); ncisco->time0 = htons((u_int16_t)(t >> 16)); ncisco->time1 = htons((u_int16_t)(t & 0x0000ffff)); ifq = &scp->linkq; if (IF_QFULL(ifq)) { IF_DROP(ifq); m_freem(m); return; } IF_ENQUEUE(ifq, m); sca_start(&scp->sp_if); break; default: m_freem(m); SCA_DPRINTF(SCA_DEBUG_CISCO, ("Unknown CISCO keepalive protocol 0x%04x\n", ntohl(cisco->type))); return; } break; default: SCA_DPRINTF(SCA_DEBUG_RX, ("Unknown/unexpected ethertype 0x%04x\n", ntohs(hdlc->protocol))); } } #if SCA_DEBUG_LEVEL > 0 /* * do a hex dump of the packet received into descriptor "desc" with * data buffer "p" */ static void sca_frame_print(sca_port_t *scp, sca_desc_t *desc, u_int8_t *p) { int i; int nothing_yet = 1; printf("descriptor va %p: cp 0x%x bpb 0x%0x bp 0x%0x stat 0x%0x len %d\n", desc, desc->cp, desc->bpb, desc->bp, desc->stat, desc->len); for (i = 0 ; i < desc->len ; i++) { if (nothing_yet == 1 && *p == 0) { p++; continue; } nothing_yet = 0; if (i % 16 == 0) printf("\n"); printf("%02x ", *p++); } if (i % 16 != 1) printf("\n"); } #endif /* * skip all frames before the descriptor index "indx" -- we do this by * moving the rxstart pointer to the index following this one, and * setting the end descriptor to this index. */ static void sca_frame_skip(sca_port_t *scp, int indx) { u_int32_t desc_p; scp->rxstart++; if (scp->rxstart == SCA_NrxBUFS) scp->rxstart = 0; desc_p = scp->rxdesc_p * sizeof(sca_desc_t) * indx; dmac_write_2(scp, SCA_EDAL0, (u_int16_t)(desc_p & 0x0000ffff)); } /* * set a port to the "up" state */ static void sca_port_up(sca_port_t *scp) { struct sca_softc *sc = scp->sca; /* * reset things */ #if 0 msci_write_1(scp, SCA_CMD0, SCA_CMD_TXRESET); msci_write_1(scp, SCA_CMD0, SCA_CMD_RXRESET); #endif /* * clear in-use flag */ scp->sp_if.if_flags &= ~IFF_OACTIVE; /* * raise DTR */ sc->dtr_callback(sc->dtr_aux, scp->sp_port, 1); /* * raise RTS */ msci_write_1(scp, SCA_CTL0, msci_read_1(scp, SCA_CTL0) & ~SCA_CTL_RTS); /* * enable interrupts */ if (scp->sp_port == 0) { sca_write_1(sc, SCA_IER0, sca_read_1(sc, SCA_IER0) | 0x0f); sca_write_1(sc, SCA_IER1, sca_read_1(sc, SCA_IER1) | 0x0f); } else { sca_write_1(sc, SCA_IER0, sca_read_1(sc, SCA_IER0) | 0xf0); sca_write_1(sc, SCA_IER1, sca_read_1(sc, SCA_IER1) | 0xf0); } /* * enable transmit and receive */ msci_write_1(scp, SCA_CMD0, SCA_CMD_TXENABLE); msci_write_1(scp, SCA_CMD0, SCA_CMD_RXENABLE); /* * reset internal state */ scp->txinuse = 0; scp->txcur = 0; scp->cka_lasttx = time.tv_usec; scp->cka_lastrx = 0; } /* * set a port to the "down" state */ static void sca_port_down(sca_port_t *scp) { struct sca_softc *sc = scp->sca; /* * lower DTR */ sc->dtr_callback(sc->dtr_aux, scp->sp_port, 0); /* * lower RTS */ msci_write_1(scp, SCA_CTL0, msci_read_1(scp, SCA_CTL0) | SCA_CTL_RTS); /* * disable interrupts */ if (scp->sp_port == 0) { sca_write_1(sc, SCA_IER0, sca_read_1(sc, SCA_IER0) & 0xf0); sca_write_1(sc, SCA_IER1, sca_read_1(sc, SCA_IER1) & 0xf0); } else { sca_write_1(sc, SCA_IER0, sca_read_1(sc, SCA_IER0) & 0x0f); sca_write_1(sc, SCA_IER1, sca_read_1(sc, SCA_IER1) & 0x0f); } /* * disable transmit and receive */ msci_write_1(scp, SCA_CMD0, SCA_CMD_RXDISABLE); msci_write_1(scp, SCA_CMD0, SCA_CMD_TXDISABLE); /* * no, we're not in use anymore */ scp->sp_if.if_flags &= ~IFF_OACTIVE; } /* * disable all DMA and interrupts for all ports at once. */ void sca_shutdown(struct sca_softc *sca) { /* * disable DMA and interrupts */ sca_write_1(sca, SCA_DMER, 0); sca_write_1(sca, SCA_IER0, 0); sca_write_1(sca, SCA_IER1, 0); } /* * If there are packets to transmit, start the transmit DMA logic. */ static void sca_port_starttx(sca_port_t *scp) { struct sca_softc *sc; u_int32_t startdesc_p, enddesc_p; int enddesc; sc = scp->sca; if (((scp->sp_if.if_flags & IFF_OACTIVE) == IFF_OACTIVE) || scp->txinuse == 0) return; scp->sp_if.if_flags |= IFF_OACTIVE; /* * We have something to do, since we have at least one packet * waiting, and we are not already marked as active. */ enddesc = scp->txcur; enddesc++; if (enddesc == SCA_NtxBUFS) enddesc = 0; startdesc_p = scp->txdesc_p; enddesc_p = scp->txdesc_p + sizeof(sca_desc_t) * enddesc; dmac_write_2(scp, SCA_EDAL1, (u_int16_t)(enddesc_p & 0x0000ffff)); dmac_write_2(scp, SCA_CDAL1, (u_int16_t)(startdesc_p & 0x0000ffff)); /* * enable the DMA */ dmac_write_1(scp, SCA_DSR1, SCA_DSR_DE); } /* * allocate an mbuf at least long enough to hold "len" bytes. * If "p" is non-NULL, copy "len" bytes from it into the new mbuf, * otherwise let the caller handle copying the data in. */ static struct mbuf * sca_mbuf_alloc(caddr_t p, u_int len) { struct mbuf *m; /* * allocate an mbuf and copy the important bits of data * into it. If the packet won't fit in the header, * allocate a cluster for it and store it there. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return NULL; if (len > MHLEN) { if (len > MCLBYTES) { m_freem(m); return NULL; } MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return NULL; } } if (p != NULL) bcopy(p, mtod(m, caddr_t), len); m->m_len = len; m->m_pkthdr.len = len; return (m); }