/* $NetBSD: tcp_input.c,v 1.31 1997/07/28 22:07:38 thorpej Exp $ */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94 */ /* * TODO list for SYN cache stuff: * * (a) The definition of "struct syn_cache" says: * * This structure should not exceeed 32 bytes. * * but it's 40 bytes on the Alpha. Can reduce memory use one * of two ways: * * (1) Use a dynamically-sized hash table, and handle * collisions by rehashing. Then sc_next is unnecessary. * * (2) Allocate syn_cache structures in pages (or some other * large chunk). This would probably be desirable for * maintaining locality of reference anyway. * * If you do this, you can change sc_next to a page/index * value, and make it a 32-bit (or maybe even 16-bit) * integer, thus partly obviating the need for the previous * hack. * * It's also worth noting this this is necessary for IPv6, as well, * where we use 32 bytes just for the IP addresses, so eliminating * wastage is going to become more important. (BTW, has anyone * integreated these changes with one fo the IPv6 status that are * available?) * * (b) Find room for a "state" field, which is needed to keep a * compressed state for TIME_WAIT TCBs. It's been noted already * that this is fairly important for very high-volume web and * mail servers, which use a large number of short-lived * connections. */ #ifndef TUBA_INCLUDE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int tcprexmtthresh = 3; struct tcpiphdr tcp_saveti; extern u_long sb_max; #endif /* TUBA_INCLUDE */ #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ) /* for modulo comparisons of timestamps */ #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0) #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0) /* * Insert segment ti into reassembly queue of tcp with * control block tp. Return TH_FIN if reassembly now includes * a segment with FIN. The macro form does the common case inline * (segment is the next to be received on an established connection, * and the queue is empty), avoiding linkage into and removal * from the queue and repetition of various conversions. * Set DELACK for segments received in order, but ack immediately * when segments are out of order (so fast retransmit can work). */ #define TCP_REASS(tp, ti, m, so, flags) { \ if ((ti)->ti_seq == (tp)->rcv_nxt && \ (tp)->segq.lh_first == NULL && \ (tp)->t_state == TCPS_ESTABLISHED) { \ if ((ti)->ti_flags & TH_PUSH) \ tp->t_flags |= TF_ACKNOW; \ else \ tp->t_flags |= TF_DELACK; \ (tp)->rcv_nxt += (ti)->ti_len; \ flags = (ti)->ti_flags & TH_FIN; \ tcpstat.tcps_rcvpack++;\ tcpstat.tcps_rcvbyte += (ti)->ti_len;\ sbappend(&(so)->so_rcv, (m)); \ sorwakeup(so); \ } else { \ (flags) = tcp_reass((tp), (ti), (m)); \ tp->t_flags |= TF_ACKNOW; \ } \ } #ifndef TUBA_INCLUDE int tcp_reass(tp, ti, m) register struct tcpcb *tp; register struct tcpiphdr *ti; struct mbuf *m; { register struct ipqent *p, *q, *nq, *tiqe; struct socket *so = tp->t_inpcb->inp_socket; int flags; /* * Call with ti==0 after become established to * force pre-ESTABLISHED data up to user socket. */ if (ti == 0) goto present; /* * Allocate a new queue entry, before we throw away any data. * If we can't, just drop the packet. XXX */ MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT); if (tiqe == NULL) { tcpstat.tcps_rcvmemdrop++; m_freem(m); return (0); } /* * Find a segment which begins after this one does. */ for (p = NULL, q = tp->segq.lh_first; q != NULL; p = q, q = q->ipqe_q.le_next) if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq)) break; /* * If there is a preceding segment, it may provide some of * our data already. If so, drop the data from the incoming * segment. If it provides all of our data, drop us. */ if (p != NULL) { register struct tcpiphdr *phdr = p->ipqe_tcp; register int i; /* conversion to int (in i) handles seq wraparound */ i = phdr->ti_seq + phdr->ti_len - ti->ti_seq; if (i > 0) { if (i >= ti->ti_len) { tcpstat.tcps_rcvduppack++; tcpstat.tcps_rcvdupbyte += ti->ti_len; m_freem(m); FREE(tiqe, M_IPQ); return (0); } m_adj(m, i); ti->ti_len -= i; ti->ti_seq += i; } } tcpstat.tcps_rcvoopack++; tcpstat.tcps_rcvoobyte += ti->ti_len; /* * While we overlap succeeding segments trim them or, * if they are completely covered, dequeue them. */ for (; q != NULL; q = nq) { register struct tcpiphdr *qhdr = q->ipqe_tcp; register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq; if (i <= 0) break; if (i < qhdr->ti_len) { qhdr->ti_seq += i; qhdr->ti_len -= i; m_adj(q->ipqe_m, i); break; } nq = q->ipqe_q.le_next; m_freem(q->ipqe_m); LIST_REMOVE(q, ipqe_q); FREE(q, M_IPQ); } /* Insert the new fragment queue entry into place. */ tiqe->ipqe_m = m; tiqe->ipqe_tcp = ti; if (p == NULL) { LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q); } else { LIST_INSERT_AFTER(p, tiqe, ipqe_q); } present: /* * Present data to user, advancing rcv_nxt through * completed sequence space. */ if (TCPS_HAVEESTABLISHED(tp->t_state) == 0) return (0); q = tp->segq.lh_first; if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt) return (0); if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len) return (0); do { tp->rcv_nxt += q->ipqe_tcp->ti_len; flags = q->ipqe_tcp->ti_flags & TH_FIN; nq = q->ipqe_q.le_next; LIST_REMOVE(q, ipqe_q); if (so->so_state & SS_CANTRCVMORE) m_freem(q->ipqe_m); else sbappend(&so->so_rcv, q->ipqe_m); FREE(q, M_IPQ); q = nq; } while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt); sorwakeup(so); return (flags); } /* * TCP input routine, follows pages 65-76 of the * protocol specification dated September, 1981 very closely. */ void #if __STDC__ tcp_input(struct mbuf *m, ...) #else tcp_input(m, va_alist) register struct mbuf *m; #endif { register struct tcpiphdr *ti; register struct inpcb *inp; caddr_t optp = NULL; int optlen = 0; int len, tlen, off, hdroptlen; register struct tcpcb *tp = 0; register int tiflags; struct socket *so = NULL; int todrop, acked, ourfinisacked, needoutput = 0; short ostate = 0; int iss = 0; u_long tiwin; struct tcp_opt_info opti; int iphlen; va_list ap; va_start(ap, m); iphlen = va_arg(ap, int); va_end(ap); tcpstat.tcps_rcvtotal++; opti.ts_present = 0; opti.maxseg = 0; /* * Get IP and TCP header together in first mbuf. * Note: IP leaves IP header in first mbuf. */ ti = mtod(m, struct tcpiphdr *); if (iphlen > sizeof (struct ip)) ip_stripoptions(m, (struct mbuf *)0); if (m->m_len < sizeof (struct tcpiphdr)) { if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { tcpstat.tcps_rcvshort++; return; } ti = mtod(m, struct tcpiphdr *); } /* * Checksum extended TCP header and data. */ tlen = ((struct ip *)ti)->ip_len; len = sizeof (struct ip) + tlen; bzero(ti->ti_x1, sizeof ti->ti_x1); ti->ti_len = (u_int16_t)tlen; HTONS(ti->ti_len); if ((ti->ti_sum = in_cksum(m, len)) != 0) { tcpstat.tcps_rcvbadsum++; goto drop; } #endif /* TUBA_INCLUDE */ /* * Check that TCP offset makes sense, * pull out TCP options and adjust length. XXX */ off = ti->ti_off << 2; if (off < sizeof (struct tcphdr) || off > tlen) { tcpstat.tcps_rcvbadoff++; goto drop; } tlen -= off; ti->ti_len = tlen; if (off > sizeof (struct tcphdr)) { if (m->m_len < sizeof(struct ip) + off) { if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) { tcpstat.tcps_rcvshort++; return; } ti = mtod(m, struct tcpiphdr *); } optlen = off - sizeof (struct tcphdr); optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr); /* * Do quick retrieval of timestamp options ("options * prediction?"). If timestamp is the only option and it's * formatted as recommended in RFC 1323 appendix A, we * quickly get the values now and not bother calling * tcp_dooptions(), etc. */ if ((optlen == TCPOLEN_TSTAMP_APPA || (optlen > TCPOLEN_TSTAMP_APPA && optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) && (ti->ti_flags & TH_SYN) == 0) { opti.ts_present = 1; opti.ts_val = ntohl(*(u_int32_t *)(optp + 4)); opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8)); optp = NULL; /* we've parsed the options */ } } tiflags = ti->ti_flags; /* * Convert TCP protocol specific fields to host format. */ NTOHL(ti->ti_seq); NTOHL(ti->ti_ack); NTOHS(ti->ti_win); NTOHS(ti->ti_urp); /* * Locate pcb for segment. */ findpcb: inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport, ti->ti_dst, ti->ti_dport); if (inp == 0) { ++tcpstat.tcps_pcbhashmiss; inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport); if (inp == 0) { ++tcpstat.tcps_noport; goto dropwithreset; } } /* * If the state is CLOSED (i.e., TCB does not exist) then * all data in the incoming segment is discarded. * If the TCB exists but is in CLOSED state, it is embryonic, * but should either do a listen or a connect soon. */ tp = intotcpcb(inp); if (tp == 0) goto dropwithreset; if (tp->t_state == TCPS_CLOSED) goto drop; /* Unscale the window into a 32-bit value. */ if ((tiflags & TH_SYN) == 0) tiwin = ti->ti_win << tp->snd_scale; else tiwin = ti->ti_win; so = inp->inp_socket; if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { if (so->so_options & SO_DEBUG) { ostate = tp->t_state; tcp_saveti = *ti; } if (so->so_options & SO_ACCEPTCONN) { if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { if (tiflags & TH_RST) syn_cache_reset(ti); else if (tiflags & TH_ACK) { so = syn_cache_get(so, m); if (so == NULL) { /* * We don't have a SYN for * this ACK; send an RST. */ tcpstat.tcps_badsyn++; tp = NULL; goto dropwithreset; } else if (so == (struct socket *)(-1)) { /* * We were unable to create * the connection. If the * 3-way handshake was * completeed, and RST has * been sent to the peer. * Since the mbuf might be * in use for the reply, * do not free it. */ m = NULL; } else { /* * We have created a * full-blown connection. */ inp = sotoinpcb(so); tp = intotcpcb(inp); tiwin <<= tp->snd_scale; goto after_listen; } } } else { /* * Received a SYN; create compressed * TCP state for it. */ if (so->so_qlen <= so->so_qlimit && syn_cache_add(so, m, optp, optlen, &opti)) m = NULL; } goto drop; } } after_listen: #ifdef DIAGNOSTIC /* * Should not happen now that all embryonic connections * are handled with compressed state. */ if (tp->t_state == TCPS_LISTEN) panic("tcp_input: TCPS_LISTEN"); #endif /* * Segment received on connection. * Reset idle time and keep-alive timer. */ tp->t_idle = 0; if (TCPS_HAVEESTABLISHED(tp->t_state)) tp->t_timer[TCPT_KEEP] = tcp_keepidle; /* * Process options. */ if (optp) tcp_dooptions(tp, optp, optlen, ti, &opti); /* * Header prediction: check for the two common cases * of a uni-directional data xfer. If the packet has * no control flags, is in-sequence, the window didn't * change and we're not retransmitting, it's a * candidate. If the length is zero and the ack moved * forward, we're the sender side of the xfer. Just * free the data acked & wake any higher level process * that was blocked waiting for space. If the length * is non-zero and the ack didn't move, we're the * receiver side. If we're getting packets in-order * (the reassembly queue is empty), add the data to * the socket buffer and note that we need a delayed ack. */ if (tp->t_state == TCPS_ESTABLISHED && (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) && ti->ti_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd && tp->snd_nxt == tp->snd_max) { /* * If last ACK falls within this segment's sequence numbers, * record the timestamp. */ if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) { tp->ts_recent_age = tcp_now; tp->ts_recent = opti.ts_val; } if (ti->ti_len == 0) { if (SEQ_GT(ti->ti_ack, tp->snd_una) && SEQ_LEQ(ti->ti_ack, tp->snd_max) && tp->snd_cwnd >= tp->snd_wnd && tp->t_dupacks < tcprexmtthresh) { /* * this is a pure ack for outstanding data. */ ++tcpstat.tcps_predack; if (opti.ts_present) tcp_xmit_timer(tp, tcp_now-opti.ts_ecr+1); else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(tp, tp->t_rtt); acked = ti->ti_ack - tp->snd_una; tcpstat.tcps_rcvackpack++; tcpstat.tcps_rcvackbyte += acked; sbdrop(&so->so_snd, acked); tp->snd_una = ti->ti_ack; m_freem(m); /* * If all outstanding data are acked, stop * retransmit timer, otherwise restart timer * using current (possibly backed-off) value. * If process is waiting for space, * wakeup/selwakeup/signal. If data * are ready to send, let tcp_output * decide between more output or persist. */ if (tp->snd_una == tp->snd_max) tp->t_timer[TCPT_REXMT] = 0; else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; if (sb_notify(&so->so_snd)) sowwakeup(so); if (so->so_snd.sb_cc) (void) tcp_output(tp); return; } } else if (ti->ti_ack == tp->snd_una && tp->segq.lh_first == NULL && ti->ti_len <= sbspace(&so->so_rcv)) { /* * this is a pure, in-sequence data packet * with nothing on the reassembly queue and * we have enough buffer space to take it. */ ++tcpstat.tcps_preddat; tp->rcv_nxt += ti->ti_len; tcpstat.tcps_rcvpack++; tcpstat.tcps_rcvbyte += ti->ti_len; /* * Drop TCP, IP headers and TCP options then add data * to socket buffer. */ m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); sbappend(&so->so_rcv, m); sorwakeup(so); if (ti->ti_flags & TH_PUSH) tp->t_flags |= TF_ACKNOW; else tp->t_flags |= TF_DELACK; return; } } /* * Drop TCP, IP headers and TCP options. */ hdroptlen = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr); m->m_data += hdroptlen; m->m_len -= hdroptlen; /* * Calculate amount of space in receive window, * and then do TCP input processing. * Receive window is amount of space in rcv queue, * but not less than advertised window. */ { int win; win = sbspace(&so->so_rcv); if (win < 0) win = 0; tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); } switch (tp->t_state) { /* * If the state is SYN_SENT: * if seg contains an ACK, but not for our SYN, drop the input. * if seg contains a RST, then drop the connection. * if seg does not contain SYN, then drop it. * Otherwise this is an acceptable SYN segment * initialize tp->rcv_nxt and tp->irs * if seg contains ack then advance tp->snd_una * if SYN has been acked change to ESTABLISHED else SYN_RCVD state * arrange for segment to be acked (eventually) * continue processing rest of data/controls, beginning with URG */ case TCPS_SYN_SENT: if ((tiflags & TH_ACK) && (SEQ_LEQ(ti->ti_ack, tp->iss) || SEQ_GT(ti->ti_ack, tp->snd_max))) goto dropwithreset; if (tiflags & TH_RST) { if (tiflags & TH_ACK) tp = tcp_drop(tp, ECONNREFUSED); goto drop; } if ((tiflags & TH_SYN) == 0) goto drop; if (tiflags & TH_ACK) { tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; } tp->t_timer[TCPT_REXMT] = 0; tp->irs = ti->ti_seq; tcp_rcvseqinit(tp); tp->t_flags |= TF_ACKNOW; tcp_mss(tp, opti.maxseg); if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) { tcpstat.tcps_connects++; soisconnected(so); tp->t_state = TCPS_ESTABLISHED; tp->t_timer[TCPT_KEEP] = tcp_keepidle; /* Do window scaling on this connection? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->snd_scale = tp->requested_s_scale; tp->rcv_scale = tp->request_r_scale; } (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); /* * if we didn't have to retransmit the SYN, * use its rtt as our initial srtt & rtt var. */ if (tp->t_rtt) tcp_xmit_timer(tp, tp->t_rtt); } else tp->t_state = TCPS_SYN_RECEIVED; /* * Advance ti->ti_seq to correspond to first data byte. * If data, trim to stay within window, * dropping FIN if necessary. */ ti->ti_seq++; if (ti->ti_len > tp->rcv_wnd) { todrop = ti->ti_len - tp->rcv_wnd; m_adj(m, -todrop); ti->ti_len = tp->rcv_wnd; tiflags &= ~TH_FIN; tcpstat.tcps_rcvpackafterwin++; tcpstat.tcps_rcvbyteafterwin += todrop; } tp->snd_wl1 = ti->ti_seq - 1; tp->rcv_up = ti->ti_seq; goto step6; /* * If the state is SYN_RECEIVED: * If seg contains an ACK, but not for our SYN, drop the input * and generate an RST. See page 36, rfc793 */ case TCPS_SYN_RECEIVED: if ((tiflags & TH_ACK) && (SEQ_LEQ(ti->ti_ack, tp->iss) || SEQ_GT(ti->ti_ack, tp->snd_max))) goto dropwithreset; break; } /* * States other than LISTEN or SYN_SENT. * First check timestamp, if present. * Then check that at least some bytes of segment are within * receive window. If segment begins before rcv_nxt, * drop leading data (and SYN); if nothing left, just ack. * * RFC 1323 PAWS: If we have a timestamp reply on this segment * and it's less than ts_recent, drop it. */ if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent && TSTMP_LT(opti.ts_val, tp->ts_recent)) { /* Check to see if ts_recent is over 24 days old. */ if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { /* * Invalidate ts_recent. If this segment updates * ts_recent, the age will be reset later and ts_recent * will get a valid value. If it does not, setting * ts_recent to zero will at least satisfy the * requirement that zero be placed in the timestamp * echo reply when ts_recent isn't valid. The * age isn't reset until we get a valid ts_recent * because we don't want out-of-order segments to be * dropped when ts_recent is old. */ tp->ts_recent = 0; } else { tcpstat.tcps_rcvduppack++; tcpstat.tcps_rcvdupbyte += ti->ti_len; tcpstat.tcps_pawsdrop++; goto dropafterack; } } todrop = tp->rcv_nxt - ti->ti_seq; if (todrop > 0) { if (tiflags & TH_SYN) { tiflags &= ~TH_SYN; ti->ti_seq++; if (ti->ti_urp > 1) ti->ti_urp--; else { tiflags &= ~TH_URG; ti->ti_urp = 0; } todrop--; } if (todrop >= ti->ti_len) { /* * Any valid FIN must be to the left of the * window. At this point, FIN must be a * duplicate or out-of-sequence, so drop it. */ tiflags &= ~TH_FIN; /* * Send ACK to resynchronize, and drop any data, * but keep on processing for RST or ACK. */ tp->t_flags |= TF_ACKNOW; tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len; tcpstat.tcps_rcvduppack++; } else { tcpstat.tcps_rcvpartduppack++; tcpstat.tcps_rcvpartdupbyte += todrop; } m_adj(m, todrop); ti->ti_seq += todrop; ti->ti_len -= todrop; if (ti->ti_urp > todrop) ti->ti_urp -= todrop; else { tiflags &= ~TH_URG; ti->ti_urp = 0; } } /* * If new data are received on a connection after the * user processes are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { tp = tcp_close(tp); tcpstat.tcps_rcvafterclose++; goto dropwithreset; } /* * If segment ends after window, drop trailing data * (and PUSH and FIN); if nothing left, just ACK. */ todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); if (todrop > 0) { tcpstat.tcps_rcvpackafterwin++; if (todrop >= ti->ti_len) { tcpstat.tcps_rcvbyteafterwin += ti->ti_len; /* * If a new connection request is received * while in TIME_WAIT, drop the old connection * and start over if the sequence numbers * are above the previous ones. */ if (tiflags & TH_SYN && tp->t_state == TCPS_TIME_WAIT && SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { iss = tp->rcv_nxt + TCP_ISSINCR; tp = tcp_close(tp); /* * We have already advanced the mbuf * pointers past the IP+TCP headers and * options. Restore those pointers before * attempting to use the TCP header again. */ m->m_data -= hdroptlen; m->m_len += hdroptlen; goto findpcb; } /* * If window is closed can only take segments at * window edge, and have to drop data and PUSH from * incoming segments. Continue processing, but * remember to ack. Otherwise, drop segment * and ack. */ if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { tp->t_flags |= TF_ACKNOW; tcpstat.tcps_rcvwinprobe++; } else goto dropafterack; } else tcpstat.tcps_rcvbyteafterwin += todrop; m_adj(m, -todrop); ti->ti_len -= todrop; tiflags &= ~(TH_PUSH|TH_FIN); } /* * If last ACK falls within this segment's sequence numbers, * record its timestamp. */ if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len + ((tiflags & (TH_SYN|TH_FIN)) != 0))) { tp->ts_recent_age = tcp_now; tp->ts_recent = opti.ts_val; } /* * If the RST bit is set examine the state: * SYN_RECEIVED STATE: * If passive open, return to LISTEN state. * If active open, inform user that connection was refused. * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: * Inform user that connection was reset, and close tcb. * CLOSING, LAST_ACK, TIME_WAIT STATES * Close the tcb. */ if (tiflags&TH_RST) switch (tp->t_state) { case TCPS_SYN_RECEIVED: so->so_error = ECONNREFUSED; goto close; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: so->so_error = ECONNRESET; close: tp->t_state = TCPS_CLOSED; tcpstat.tcps_drops++; tp = tcp_close(tp); goto drop; case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: tp = tcp_close(tp); goto drop; } /* * If a SYN is in the window, then this is an * error and we send an RST and drop the connection. */ if (tiflags & TH_SYN) { tp = tcp_drop(tp, ECONNRESET); goto dropwithreset; } /* * If the ACK bit is off we drop the segment and return. */ if ((tiflags & TH_ACK) == 0) goto drop; /* * Ack processing. */ switch (tp->t_state) { /* * In SYN_RECEIVED state if the ack ACKs our SYN then enter * ESTABLISHED state and continue processing, otherwise * send an RST. */ case TCPS_SYN_RECEIVED: if (SEQ_GT(tp->snd_una, ti->ti_ack) || SEQ_GT(ti->ti_ack, tp->snd_max)) goto dropwithreset; tcpstat.tcps_connects++; soisconnected(so); tp->t_state = TCPS_ESTABLISHED; tp->t_timer[TCPT_KEEP] = tcp_keepidle; /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->snd_scale = tp->requested_s_scale; tp->rcv_scale = tp->request_r_scale; } (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); tp->snd_wl1 = ti->ti_seq - 1; /* fall into ... */ /* * In ESTABLISHED state: drop duplicate ACKs; ACK out of range * ACKs. If the ack is in the range * tp->snd_una < ti->ti_ack <= tp->snd_max * then advance tp->snd_una to ti->ti_ack and drop * data from the retransmission queue. If this ACK reflects * more up to date window information we update our window information. */ case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { if (ti->ti_len == 0 && tiwin == tp->snd_wnd) { tcpstat.tcps_rcvdupack++; /* * If we have outstanding data (other than * a window probe), this is a completely * duplicate ack (ie, window info didn't * change), the ack is the biggest we've * seen and we've seen exactly our rexmt * threshhold of them, assume a packet * has been dropped and retransmit it. * Kludge snd_nxt & the congestion * window so we send only this one * packet. * * We know we're losing at the current * window size so do congestion avoidance * (set ssthresh to half the current window * and pull our congestion window back to * the new ssthresh). * * Dup acks mean that packets have left the * network (they're now cached at the receiver) * so bump cwnd by the amount in the receiver * to keep a constant cwnd packets in the * network. */ if (tp->t_timer[TCPT_REXMT] == 0 || ti->ti_ack != tp->snd_una) tp->t_dupacks = 0; else if (++tp->t_dupacks == tcprexmtthresh) { tcp_seq onxt = tp->snd_nxt; u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg; if (win < 2) win = 2; tp->snd_ssthresh = win * tp->t_maxseg; tp->t_timer[TCPT_REXMT] = 0; tp->t_rtt = 0; tp->snd_nxt = ti->ti_ack; tp->snd_cwnd = tp->t_maxseg; (void) tcp_output(tp); tp->snd_cwnd = tp->snd_ssthresh + tp->t_maxseg * tp->t_dupacks; if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; goto drop; } else if (tp->t_dupacks > tcprexmtthresh) { tp->snd_cwnd += tp->t_maxseg; (void) tcp_output(tp); goto drop; } } else tp->t_dupacks = 0; break; } /* * If the congestion window was inflated to account * for the other side's cached packets, retract it. */ if (tp->t_dupacks >= tcprexmtthresh && tp->snd_cwnd > tp->snd_ssthresh) tp->snd_cwnd = tp->snd_ssthresh; tp->t_dupacks = 0; if (SEQ_GT(ti->ti_ack, tp->snd_max)) { tcpstat.tcps_rcvacktoomuch++; goto dropafterack; } acked = ti->ti_ack - tp->snd_una; tcpstat.tcps_rcvackpack++; tcpstat.tcps_rcvackbyte += acked; /* * If we have a timestamp reply, update smoothed * round trip time. If no timestamp is present but * transmit timer is running and timed sequence * number was acked, update smoothed round trip time. * Since we now have an rtt measurement, cancel the * timer backoff (cf., Phil Karn's retransmit alg.). * Recompute the initial retransmit timer. */ if (opti.ts_present) tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1); else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(tp,tp->t_rtt); /* * If all outstanding data is acked, stop retransmit * timer and remember to restart (more output or persist). * If there is more data to be acked, restart retransmit * timer, using current (possibly backed-off) value. */ if (ti->ti_ack == tp->snd_max) { tp->t_timer[TCPT_REXMT] = 0; needoutput = 1; } else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; /* * When new data is acked, open the congestion window. * If the window gives us less than ssthresh packets * in flight, open exponentially (maxseg per packet). * Otherwise open linearly: maxseg per window * (maxseg^2 / cwnd per packet), plus a constant * fraction of a packet (maxseg/8) to help larger windows * open quickly enough. */ { register u_int cw = tp->snd_cwnd; register u_int incr = tp->t_maxseg; if (cw > tp->snd_ssthresh) incr = incr * incr / cw; tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<snd_scale); } if (acked > so->so_snd.sb_cc) { tp->snd_wnd -= so->so_snd.sb_cc; sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); ourfinisacked = 1; } else { sbdrop(&so->so_snd, acked); tp->snd_wnd -= acked; ourfinisacked = 0; } if (sb_notify(&so->so_snd)) sowwakeup(so); tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; switch (tp->t_state) { /* * In FIN_WAIT_1 STATE in addition to the processing * for the ESTABLISHED state if our FIN is now acknowledged * then enter FIN_WAIT_2. */ case TCPS_FIN_WAIT_1: if (ourfinisacked) { /* * If we can't receive any more * data, then closing user can proceed. * Starting the timer is contrary to the * specification, but if we don't get a FIN * we'll hang forever. */ if (so->so_state & SS_CANTRCVMORE) { soisdisconnected(so); tp->t_timer[TCPT_2MSL] = tcp_maxidle; } tp->t_state = TCPS_FIN_WAIT_2; } break; /* * In CLOSING STATE in addition to the processing for * the ESTABLISHED state if the ACK acknowledges our FIN * then enter the TIME-WAIT state, otherwise ignore * the segment. */ case TCPS_CLOSING: if (ourfinisacked) { tp->t_state = TCPS_TIME_WAIT; tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; soisdisconnected(so); } break; /* * In LAST_ACK, we may still be waiting for data to drain * and/or to be acked, as well as for the ack of our FIN. * If our FIN is now acknowledged, delete the TCB, * enter the closed state and return. */ case TCPS_LAST_ACK: if (ourfinisacked) { tp = tcp_close(tp); goto drop; } break; /* * In TIME_WAIT state the only thing that should arrive * is a retransmission of the remote FIN. Acknowledge * it and restart the finack timer. */ case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; goto dropafterack; } } step6: /* * Update window information. * Don't look at window if no ACK: TAC's send garbage on first SYN. */ if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) || (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) || (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) { /* keep track of pure window updates */ if (ti->ti_len == 0 && tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd) tcpstat.tcps_rcvwinupd++; tp->snd_wnd = tiwin; tp->snd_wl1 = ti->ti_seq; tp->snd_wl2 = ti->ti_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; needoutput = 1; } /* * Process segments with URG. */ if ((tiflags & TH_URG) && ti->ti_urp && TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * This is a kludge, but if we receive and accept * random urgent pointers, we'll crash in * soreceive. It's hard to imagine someone * actually wanting to send this much urgent data. */ if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) { ti->ti_urp = 0; /* XXX */ tiflags &= ~TH_URG; /* XXX */ goto dodata; /* XXX */ } /* * If this segment advances the known urgent pointer, * then mark the data stream. This should not happen * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since * a FIN has been received from the remote side. * In these states we ignore the URG. * * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section as the original * spec states (in one of two places). */ if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { tp->rcv_up = ti->ti_seq + ti->ti_urp; so->so_oobmark = so->so_rcv.sb_cc + (tp->rcv_up - tp->rcv_nxt) - 1; if (so->so_oobmark == 0) so->so_state |= SS_RCVATMARK; sohasoutofband(so); tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); } /* * Remove out of band data so doesn't get presented to user. * This can happen independent of advancing the URG pointer, * but if two URG's are pending at once, some out-of-band * data may creep in... ick. */ if (ti->ti_urp <= (u_int16_t) ti->ti_len #ifdef SO_OOBINLINE && (so->so_options & SO_OOBINLINE) == 0 #endif ) tcp_pulloutofband(so, ti, m); } else /* * If no out of band data is expected, * pull receive urgent pointer along * with the receive window. */ if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) tp->rcv_up = tp->rcv_nxt; dodata: /* XXX */ /* * Process the segment text, merging it into the TCP sequencing queue, * and arranging for acknowledgment of receipt if necessary. * This process logically involves adjusting tp->rcv_wnd as data * is presented to the user (this happens in tcp_usrreq.c, * case PRU_RCVD). If a FIN has already been received on this * connection then we just ignore the text. */ if ((ti->ti_len || (tiflags & TH_FIN)) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { TCP_REASS(tp, ti, m, so, tiflags); /* * Note the amount of data that peer has sent into * our window, in order to estimate the sender's * buffer size. */ len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); } else { m_freem(m); tiflags &= ~TH_FIN; } /* * If FIN is received ACK the FIN and let the user know * that the connection is closing. Ignore a FIN received before * the connection is fully established. */ if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { socantrcvmore(so); tp->t_flags |= TF_ACKNOW; tp->rcv_nxt++; } switch (tp->t_state) { /* * In ESTABLISHED STATE enter the CLOSE_WAIT state. */ case TCPS_ESTABLISHED: tp->t_state = TCPS_CLOSE_WAIT; break; /* * If still in FIN_WAIT_1 STATE FIN has not been acked so * enter the CLOSING state. */ case TCPS_FIN_WAIT_1: tp->t_state = TCPS_CLOSING; break; /* * In FIN_WAIT_2 state enter the TIME_WAIT state, * starting the time-wait timer, turning off the other * standard timers. */ case TCPS_FIN_WAIT_2: tp->t_state = TCPS_TIME_WAIT; tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; soisdisconnected(so); break; /* * In TIME_WAIT state restart the 2 MSL time_wait timer. */ case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; break; } } if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0); /* * Return any desired output. */ if (needoutput || (tp->t_flags & TF_ACKNOW)) (void) tcp_output(tp); return; dropafterack: /* * Generate an ACK dropping incoming segment if it occupies * sequence space, where the ACK reflects our state. */ if (tiflags & TH_RST) goto drop; m_freem(m); tp->t_flags |= TF_ACKNOW; (void) tcp_output(tp); return; dropwithreset: /* * Generate a RST, dropping incoming segment. * Make ACK acceptable to originator of segment. * Don't bother to respond if destination was broadcast/multicast. */ if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) || IN_MULTICAST(ti->ti_dst.s_addr)) goto drop; if (tiflags & TH_ACK) (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); else { if (tiflags & TH_SYN) ti->ti_len++; (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, TH_RST|TH_ACK); } return; drop: /* * Drop space held by incoming segment and return. */ if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0); m_freem(m); return; #ifndef TUBA_INCLUDE } void tcp_dooptions(tp, cp, cnt, ti, oi) struct tcpcb *tp; u_char *cp; int cnt; struct tcpiphdr *ti; struct tcp_opt_info *oi; { u_int16_t mss; int opt, optlen; for (; cnt > 0; cnt -= optlen, cp += optlen) { opt = cp[0]; if (opt == TCPOPT_EOL) break; if (opt == TCPOPT_NOP) optlen = 1; else { optlen = cp[1]; if (optlen <= 0) break; } switch (opt) { default: continue; case TCPOPT_MAXSEG: if (optlen != TCPOLEN_MAXSEG) continue; if (!(ti->ti_flags & TH_SYN)) continue; bcopy(cp + 2, &mss, sizeof(mss)); oi->maxseg = ntohs(mss); break; case TCPOPT_WINDOW: if (optlen != TCPOLEN_WINDOW) continue; if (!(ti->ti_flags & TH_SYN)) continue; tp->t_flags |= TF_RCVD_SCALE; tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); break; case TCPOPT_TIMESTAMP: if (optlen != TCPOLEN_TIMESTAMP) continue; oi -> ts_present = 1; bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val)); NTOHL(oi->ts_val); bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr)); NTOHL(oi->ts_ecr); /* * A timestamp received in a SYN makes * it ok to send timestamp requests and replies. */ if (ti->ti_flags & TH_SYN) { tp->t_flags |= TF_RCVD_TSTMP; tp->ts_recent = oi->ts_val; tp->ts_recent_age = tcp_now; } break; } } } /* * Pull out of band byte out of a segment so * it doesn't appear in the user's data queue. * It is still reflected in the segment length for * sequencing purposes. */ void tcp_pulloutofband(so, ti, m) struct socket *so; struct tcpiphdr *ti; register struct mbuf *m; { int cnt = ti->ti_urp - 1; while (cnt >= 0) { if (m->m_len > cnt) { char *cp = mtod(m, caddr_t) + cnt; struct tcpcb *tp = sototcpcb(so); tp->t_iobc = *cp; tp->t_oobflags |= TCPOOB_HAVEDATA; bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); m->m_len--; return; } cnt -= m->m_len; m = m->m_next; if (m == 0) break; } panic("tcp_pulloutofband"); } /* * Collect new round-trip time estimate * and update averages and current timeout. */ void tcp_xmit_timer(tp, rtt) register struct tcpcb *tp; short rtt; { register short delta; tcpstat.tcps_rttupdated++; --rtt; if (tp->t_srtt != 0) { /* * srtt is stored as fixed point with 3 bits after the * binary point (i.e., scaled by 8). The following magic * is equivalent to the smoothing algorithm in rfc793 with * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed * point). Adjust rtt to origin 0. */ delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT); if ((tp->t_srtt += delta) <= 0) tp->t_srtt = 1 << 2; /* * We accumulate a smoothed rtt variance (actually, a * smoothed mean difference), then set the retransmit * timer to smoothed rtt + 4 times the smoothed variance. * rttvar is stored as fixed point with 2 bits after the * binary point (scaled by 4). The following is * equivalent to rfc793 smoothing with an alpha of .75 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces * rfc793's wired-in beta. */ if (delta < 0) delta = -delta; delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT); if ((tp->t_rttvar += delta) <= 0) tp->t_rttvar = 1 << 2; } else { /* * No rtt measurement yet - use the unsmoothed rtt. * Set the variance to half the rtt (so our first * retransmit happens at 3*rtt). */ tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2); tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1); } tp->t_rtt = 0; tp->t_rxtshift = 0; /* * the retransmit should happen at rtt + 4 * rttvar. * Because of the way we do the smoothing, srtt and rttvar * will each average +1/2 tick of bias. When we compute * the retransmit timer, we want 1/2 tick of rounding and * 1 extra tick because of +-1/2 tick uncertainty in the * firing of the timer. The bias will give us exactly the * 1.5 tick we need. But, because the bias is * statistical, we have to test that we don't drop below * the minimum feasible timer (which is 2 ticks). */ TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rtt + 2, TCPTV_REXMTMAX); /* * We received an ack for a packet that wasn't retransmitted; * it is probably safe to discard any error indications we've * received recently. This isn't quite right, but close enough * for now (a route might have failed after we sent a segment, * and the return path might not be symmetrical). */ tp->t_softerror = 0; } /* * Determine a reasonable value for maxseg size. * If the route is known, check route for mtu. * If none, use an mss that can be handled on the outgoing * interface without forcing IP to fragment; if bigger than * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES * to utilize large mbufs. If no route is found, route has no mtu, * or the destination isn't local, use a default, hopefully conservative * size (usually 512 or the default IP max size, but no more than the mtu * of the interface), as we can't discover anything about intervening * gateways or networks. We also initialize the congestion/slow start * window to be a single segment if the destination isn't local. * While looking at the routing entry, we also initialize other path-dependent * parameters from pre-set or cached values in the routing entry. */ int tcp_mss(tp, offer) register struct tcpcb *tp; u_int offer; { struct route *ro; register struct rtentry *rt; struct ifnet *ifp; register int rtt, mss; u_long bufsize; struct inpcb *inp; struct socket *so; inp = tp->t_inpcb; ro = &inp->inp_route; if ((rt = ro->ro_rt) == (struct rtentry *)0) { /* No route yet, so try to acquire one */ if (!in_nullhost(inp->inp_faddr)) { ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof(ro->ro_dst); satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr; rtalloc(ro); } if ((rt = ro->ro_rt) == (struct rtentry *)0) return (tcp_mssdflt); } ifp = rt->rt_ifp; so = inp->inp_socket; #ifdef RTV_MTU /* if route characteristics exist ... */ /* * While we're here, check if there's an initial rtt * or rttvar. Convert from the route-table units * to scaled multiples of the slow timeout timer. */ if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) { /* * XXX the lock bit for MTU indicates that the value * is also a minimum value; this is subject to time. */ if (rt->rt_rmx.rmx_locks & RTV_RTT) tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ); tp->t_srtt = rtt / ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2)); if (rt->rt_rmx.rmx_rttvar) tp->t_rttvar = rt->rt_rmx.rmx_rttvar / ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2)); else /* default variation is +- 1 rtt */ tp->t_rttvar = tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT); TCPT_RANGESET(tp->t_rxtcur, ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2), tp->t_rttmin, TCPTV_REXMTMAX); } /* * if there's an mtu associated with the route, use it */ if (rt->rt_rmx.rmx_mtu) mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr); else #endif /* RTV_MTU */ { mss = ifp->if_mtu - sizeof(struct tcpiphdr); #if (MCLBYTES & (MCLBYTES - 1)) == 0 if (mss > MCLBYTES) mss &= ~(MCLBYTES-1); #else if (mss > MCLBYTES) mss = mss / MCLBYTES * MCLBYTES; #endif if (!in_localaddr(inp->inp_faddr)) mss = min(mss, tcp_mssdflt); } /* * The current mss, t_maxseg, is initialized to the default value. * If we compute a smaller value, reduce the current mss. * If we compute a larger value, return it for use in sending * a max seg size option, but don't store it for use * unless we received an offer at least that large from peer. * However, do not accept offers under 32 bytes. */ if (offer) mss = min(mss, offer); mss = max(mss, 32); /* sanity */ if (mss < tp->t_maxseg || offer != 0) { /* * If there's a pipesize, change the socket buffer * to that size. Make the socket buffers an integral * number of mss units; if the mss is larger than * the socket buffer, decrease the mss. */ #ifdef RTV_SPIPE if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0) #endif bufsize = so->so_snd.sb_hiwat; if (bufsize < mss) mss = bufsize; else { bufsize = roundup(bufsize, mss); if (bufsize > sb_max) bufsize = sb_max; (void)sbreserve(&so->so_snd, bufsize); } tp->t_maxseg = mss; #ifdef RTV_RPIPE if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0) #endif bufsize = so->so_rcv.sb_hiwat; if (bufsize > mss) { bufsize = roundup(bufsize, mss); if (bufsize > sb_max) bufsize = sb_max; (void)sbreserve(&so->so_rcv, bufsize); } } tp->snd_cwnd = mss; #ifdef RTV_SSTHRESH if (rt->rt_rmx.rmx_ssthresh) { /* * There's some sort of gateway or interface * buffer limit on the path. Use this to set * the slow start threshhold, but set the * threshold to no less than 2*mss. */ tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh); } #endif /* RTV_MTU */ return (mss); } /* * TCP compressed state engine. Currently used to hold compressed * state for SYN_RECEIVED. */ u_long syn_cache_count; u_int32_t syn_hash1, syn_hash2; #define SYN_HASH(sa, sp, dp) \ ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \ ((u_int32_t)(sp)))^syn_hash2)) \ & 0x7fffffff) #define eptosp(ep, e, s) ((struct s *)((char *)(ep) - \ ((char *)(&((struct s *)0)->e) - (char *)0))) #define SYN_CACHE_RM(sc, p, scp) { \ *(p) = (sc)->sc_next; \ if ((sc)->sc_next) \ (sc)->sc_next->sc_timer += (sc)->sc_timer; \ else { \ (scp)->sch_timer_sum -= (sc)->sc_timer; \ if ((scp)->sch_timer_sum <= 0) \ (scp)->sch_timer_sum = -1; \ /* If need be, fix up the last pointer */ \ if ((scp)->sch_first) \ (scp)->sch_last = eptosp(p, sc_next, syn_cache); \ } \ (scp)->sch_length--; \ syn_cache_count--; \ } void syn_cache_insert(sc, prevp, headp) struct syn_cache *sc; struct syn_cache ***prevp; struct syn_cache_head **headp; { struct syn_cache_head *scp, *scp2, *sce; struct syn_cache *sc2; static u_int timeo_val; int s; /* Initialize the hash secrets when adding the first entry */ if (syn_cache_count == 0) { struct timeval tv; microtime(&tv); syn_hash1 = random() ^ (u_long)≻ syn_hash2 = random() ^ tv.tv_usec; } sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport); sc->sc_next = NULL; scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size]; *headp = scp; /* * Make sure that we don't overflow the per-bucket * limit or the total cache size limit. */ s = splsoftnet(); if (scp->sch_length >= tcp_syn_bucket_limit) { tcpstat.tcps_sc_bucketoverflow++; sc2 = scp->sch_first; scp->sch_first = sc2->sc_next; FREE(sc2, M_PCB); } else if (syn_cache_count >= tcp_syn_cache_limit) { tcpstat.tcps_sc_overflowed++; /* * The cache is full. Toss the first (i.e, oldest) * element in this bucket. */ scp2 = scp; if (scp2->sch_first == NULL) { sce = &tcp_syn_cache[tcp_syn_cache_size]; for (++scp2; scp2 != scp; scp2++) { if (scp2 >= sce) scp2 = &tcp_syn_cache[0]; if (scp2->sch_first) break; } } sc2 = scp2->sch_first; if (sc2 == NULL) { FREE(sc, M_PCB); return; } if ((scp2->sch_first = sc2->sc_next) == NULL) scp2->sch_last = NULL; else sc2->sc_next->sc_timer += sc2->sc_timer; FREE(sc2, M_PCB); } else { scp->sch_length++; syn_cache_count++; } tcpstat.tcps_sc_added++; /* * Put it into the bucket. */ if (scp->sch_first == NULL) *prevp = &scp->sch_first; else { *prevp = &scp->sch_last->sc_next; tcpstat.tcps_sc_collisions++; } **prevp = sc; scp->sch_last = sc; /* * If the timeout value has changed * 1) force it to fit in a u_char * 2) Run the timer routine to truncate all * existing entries to the new timeout value. */ if (timeo_val != tcp_syn_cache_timeo) { tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX); if (timeo_val > tcp_syn_cache_timeo) syn_cache_timer(timeo_val - tcp_syn_cache_timeo); timeo_val = tcp_syn_cache_timeo; } if (scp->sch_timer_sum > 0) sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum; else if (scp->sch_timer_sum == 0) { /* When the bucket timer is 0, it is not in the cache queue. */ scp->sch_headq = tcp_syn_cache_first; tcp_syn_cache_first = scp; sc->sc_timer = tcp_syn_cache_timeo; } scp->sch_timer_sum = tcp_syn_cache_timeo; splx(s); } /* * Walk down the cache list, decrementing the timer of * the first element on each entry. If the timer goes * to zero, remove it and all successive entries with * a zero timer. */ void syn_cache_timer(interval) int interval; { struct syn_cache_head *scp, **pscp; struct syn_cache *sc, *scn; int n, s; pscp = &tcp_syn_cache_first; scp = tcp_syn_cache_first; s = splsoftnet(); while (scp) { /* * Remove any empty hash buckets * from the cache queue. */ if ((sc = scp->sch_first) == NULL) { *pscp = scp->sch_headq; scp->sch_headq = NULL; scp->sch_timer_sum = 0; scp->sch_first = scp->sch_last = NULL; scp->sch_length = 0; scp = *pscp; continue; } scp->sch_timer_sum -= interval; if (scp->sch_timer_sum <= 0) scp->sch_timer_sum = -1; n = interval; while (sc->sc_timer <= n) { n -= sc->sc_timer; scn = sc->sc_next; tcpstat.tcps_sc_timed_out++; syn_cache_count--; FREE(sc, M_PCB); scp->sch_length--; if ((sc = scn) == NULL) break; } if ((scp->sch_first = sc) != NULL) { sc->sc_timer -= n; pscp = &scp->sch_headq; scp = scp->sch_headq; } } splx(s); } /* * Find an entry in the syn cache. */ struct syn_cache * syn_cache_lookup(ti, prevp, headp) struct tcpiphdr *ti; struct syn_cache ***prevp; struct syn_cache_head **headp; { struct syn_cache *sc, **prev; struct syn_cache_head *head; u_int32_t hash; int s; hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport); head = &tcp_syn_cache[hash % tcp_syn_cache_size]; *headp = head; prev = &head->sch_first; s = splsoftnet(); for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) { if (sc->sc_hash != hash) continue; if (sc->sc_src.s_addr == ti->ti_src.s_addr && sc->sc_sport == ti->ti_sport && sc->sc_dport == ti->ti_dport && sc->sc_dst.s_addr == ti->ti_dst.s_addr) { *prevp = prev; splx(s); return (sc); } } splx(s); return (NULL); } /* * This function gets called when we receive an ACK for a * socket in the LISTEN state. We look up the connection * in the syn cache, and if its there, we pull it out of * the cache and turn it into a full-blown connection in * the SYN-RECEIVED state. * * The return values may not be immediately obvious, and their effects * can be subtle, so here they are: * * NULL SYN was not found in cache; caller should drop the * packet and send an RST. * * -1 We were unable to create the new connection, and are * aborting it. An ACK,RST is being sent to the peer * (unless we got screwey sequence numbners; see below), * because the 3-way handshake has been completed. Caller * should not free the mbuf, since we may be using it. If * we are not, we will free it. * * Otherwise, the return value is a pointer to the new socket * associated with the connection. */ struct socket * syn_cache_get(so, m) struct socket *so; struct mbuf *m; { struct syn_cache *sc, **sc_prev; struct syn_cache_head *head; register struct inpcb *inp; register struct tcpcb *tp = 0; register struct tcpiphdr *ti; struct sockaddr_in *sin; struct mbuf *am; long win; int s; ti = mtod(m, struct tcpiphdr *); s = splsoftnet(); if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) { splx(s); return (NULL); } win = sbspace(&so->so_rcv); if (win > TCP_MAXWIN) win = TCP_MAXWIN; /* * Verify the sequence and ack numbers. */ if ((ti->ti_ack != sc->sc_iss + 1) || SEQ_LEQ(ti->ti_seq, sc->sc_irs) || SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) { (void) syn_cache_respond(sc, m, ti, win, 0); splx(s); return ((struct socket *)(-1)); } /* Remove this cache entry */ SYN_CACHE_RM(sc, sc_prev, head); splx(s); /* * Ok, create the full blown connection, and set things up * as they would have been set up if we had created the * connection when the SYN arrived. If we can't create * the connection, abort it. */ so = sonewconn(so, SS_ISCONNECTED); if (so == NULL) goto resetandabort; inp = sotoinpcb(so); inp->inp_laddr = sc->sc_dst; inp->inp_lport = sc->sc_dport; in_pcbstate(inp, INP_BOUND); #if BSD>=43 inp->inp_options = ip_srcroute(); #endif am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */ if (am == NULL) { m_freem(m); goto resetandabort; } am->m_len = sizeof(struct sockaddr_in); sin = mtod(am, struct sockaddr_in *); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = sc->sc_src; sin->sin_port = sc->sc_sport; bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); if (in_pcbconnect(inp, am)) { (void) m_free(am); m_freem(m); goto resetandabort; } (void) m_free(am); tp = intotcpcb(inp); if (sc->sc_request_r_scale != 15) { tp->requested_s_scale = sc->sc_requested_s_scale; tp->request_r_scale = sc->sc_request_r_scale; tp->snd_scale = sc->sc_requested_s_scale; tp->rcv_scale = sc->sc_request_r_scale; tp->t_flags |= TF_RCVD_SCALE; } if (sc->sc_tstmp) tp->t_flags |= TF_RCVD_TSTMP; tp->t_template = tcp_template(tp); if (tp->t_template == 0) { tp = tcp_drop(tp, ENOBUFS); /* destroys socket */ so = NULL; m_freem(m); goto abort; } tp->iss = sc->sc_iss; tp->irs = sc->sc_irs; tcp_sendseqinit(tp); tcp_rcvseqinit(tp); tp->t_state = TCPS_SYN_RECEIVED; tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; tcpstat.tcps_accepts++; tcp_mss(tp, sc->sc_peermaxseg); tp->snd_wl1 = sc->sc_irs; tp->rcv_up = sc->sc_irs + 1; /* * This is what whould have happened in tcp_ouput() when * the SYN,ACK was sent. */ tp->snd_up = tp->snd_una; tp->snd_max = tp->snd_nxt = tp->iss+1; tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv)) tp->rcv_adv = tp->rcv_nxt + win; tp->last_ack_sent = tp->rcv_nxt; tcpstat.tcps_sc_completed++; FREE(sc, M_PCB); return (so); resetandabort: (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, TH_RST|TH_ACK); abort: if (so != NULL) (void) soabort(so); FREE(sc, M_PCB); tcpstat.tcps_sc_aborted++; return ((struct socket *)(-1)); } /* * This function is called when we get a RST for a * non-existant connection, so that we can see if the * connection is in the syn cache. If it is, zap it. */ void syn_cache_reset(ti) register struct tcpiphdr *ti; { struct syn_cache *sc, **sc_prev; struct syn_cache_head *head; int s = splsoftnet(); if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) { splx(s); return; } if (SEQ_LT(ti->ti_seq,sc->sc_irs) || SEQ_GT(ti->ti_seq, sc->sc_irs+1)) { splx(s); return; } SYN_CACHE_RM(sc, sc_prev, head); splx(s); tcpstat.tcps_sc_reset++; FREE(sc, M_PCB); } void syn_cache_unreach(ip, th) struct ip *ip; struct tcphdr *th; { struct syn_cache *sc, **sc_prev; struct syn_cache_head *head; struct tcpiphdr ti2; int s; ti2.ti_src.s_addr = ip->ip_dst.s_addr; ti2.ti_dst.s_addr = ip->ip_src.s_addr; ti2.ti_sport = th->th_dport; ti2.ti_dport = th->th_sport; s = splsoftnet(); if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) { splx(s); return; } /* If the sequence number != sc_iss, then it's a bogus ICMP msg */ if (ntohl (th->th_seq) != sc->sc_iss) { splx(s); return; } SYN_CACHE_RM(sc, sc_prev, head); splx(s); tcpstat.tcps_sc_unreach++; FREE(sc, M_PCB); } /* * Given a LISTEN socket and an inbound SYN request, add * this to the syn cache, and send back a segment: * * to the source. */ int syn_cache_add(so, m, optp, optlen, oi) struct socket *so; struct mbuf *m; u_char *optp; int optlen; struct tcp_opt_info *oi; { register struct tcpiphdr *ti; struct tcpcb tb; long win; struct syn_cache *sc, **sc_prev; struct syn_cache_head *scp; extern int tcp_do_rfc1323; ti = mtod(m, struct tcpiphdr *); /* * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN * in_broadcast() should never return true on a received * packet with M_BCAST not set. */ if (m->m_flags & (M_BCAST|M_MCAST) || IN_MULTICAST(ti->ti_src.s_addr) || IN_MULTICAST(ti->ti_dst.s_addr)) return (0); /* * Initialize some local state. */ win = sbspace(&so->so_rcv); if (win > TCP_MAXWIN) win = TCP_MAXWIN; if (optp) { tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0; tcp_dooptions(&tb, optp, optlen, ti, oi); } else tb.t_flags = 0; /* * See if we already have an entry for this connection. */ if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) { tcpstat.tcps_sc_dupesyn++; if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) { tcpstat.tcps_sndacks++; tcpstat.tcps_sndtotal++; } return (1); } MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT); if (sc == NULL) return (0); /* * Fill in the cache, and put the necessary TCP * options into the reply. */ sc->sc_src.s_addr = ti->ti_src.s_addr; sc->sc_dst.s_addr = ti->ti_dst.s_addr; sc->sc_sport = ti->ti_sport; sc->sc_dport = ti->ti_dport; sc->sc_irs = ti->ti_seq; sc->sc_iss = tcp_iss; tcp_iss += TCP_ISSINCR/2; sc->sc_peermaxseg = oi->maxseg; sc->sc_tstmp = (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP)) ? 1 : 0; if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { sc->sc_requested_s_scale = tb.requested_s_scale; sc->sc_request_r_scale = 0; while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT && TCP_MAXWIN << sc->sc_request_r_scale < so->so_rcv.sb_hiwat) sc->sc_request_r_scale++; } else { sc->sc_requested_s_scale = 15; sc->sc_request_r_scale = 15; } if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) { syn_cache_insert(sc, &sc_prev, &scp); tcpstat.tcps_sndacks++; tcpstat.tcps_sndtotal++; } else { FREE(sc, M_PCB); tcpstat.tcps_sc_dropped++; } return (1); } int syn_cache_respond(sc, m, ti, win, ts) struct syn_cache *sc; struct mbuf *m; register struct tcpiphdr *ti; long win; u_long ts; { u_int8_t *optp; int optlen; u_int16_t mss; extern unsigned long in_maxmtu; mss = in_maxmtu - sizeof(struct tcpiphdr); if (!in_localaddr(ti->ti_dst)) mss = min(mss, tcp_mssdflt); /* * Tack on the TCP options. If there isn't enough trailing * space for them, move up the fixed header to make space. */ optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) + (sc->sc_tstmp ? TCPOLEN_TSTAMP_APPA : 0); if (optlen > M_TRAILINGSPACE(m)) { if (M_LEADINGSPACE(m) >= optlen) { m->m_data -= optlen; m->m_len += optlen; } else { struct mbuf *m0 = m; if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) { m_freem(m0); return (ENOBUFS); } MH_ALIGN(m, sizeof(*ti) + optlen); m->m_next = m0; /* this gets freed below */ } ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti)); ti = mtod(m, struct tcpiphdr *); } optp = (u_int8_t *)(ti + 1); optp[0] = TCPOPT_MAXSEG; optp[1] = 4; optp[2] = (mss >> 8) & 0xff; optp[3] = mss & 0xff; optlen = 4; if (sc->sc_request_r_scale != 15) { *((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 | TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 | sc->sc_request_r_scale); optlen += 4; } if (sc->sc_tstmp) { u_int32_t *lp = (u_int32_t *)(optp + optlen); /* Form timestamp option as shown in appendix A of RFC 1323. */ *lp++ = htonl(TCPOPT_TSTAMP_HDR); *lp++ = htonl(tcp_now); *lp = htonl(ts); optlen += TCPOLEN_TSTAMP_APPA; } /* * Toss any trailing mbufs. No need to worry about * m_len and m_pkthdr.len, since tcp_respond() will * unconditionally set them. */ if (m->m_next) { m_freem(m->m_next); m->m_next = NULL; } /* * Fill in the fields that tcp_respond() will not touch, and * then send the response. */ ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2; ti->ti_win = htons(win); return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss, TH_SYN|TH_ACK)); } #endif /* TUBA_INCLUDE */