* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP * M68000 Hi-Performance Microprocessor Division * M68040 Software Package * * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. * All rights reserved. * * THE SOFTWARE is provided on an "AS IS" basis and without warranty. * To the maximum extent permitted by applicable law, * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A * PARTICULAR PURPOSE and any warranty against infringement with * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) * and any accompanying written materials. * * To the maximum extent permitted by applicable law, * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE * SOFTWARE. Motorola assumes no responsibility for the maintenance * and support of the SOFTWARE. * * You are hereby granted a copyright license to use, modify, and * distribute the SOFTWARE so long as this entire notice is retained * without alteration in any modified and/or redistributed versions, * and that such modified versions are clearly identified as such. * No licenses are granted by implication, estoppel or otherwise * under any patents or trademarks of Motorola, Inc. * * srem_mod.sa 3.1 12/10/90 * * The entry point sMOD computes the floating point MOD of the * input values X and Y. The entry point sREM computes the floating * point (IEEE) REM of the input values X and Y. * * INPUT * ----- * Double-extended value Y is pointed to by address in register * A0. Double-extended value X is located in -12(A0). The values * of X and Y are both nonzero and finite; although either or both * of them can be denormalized. The special cases of zeros, NaNs, * and infinities are handled elsewhere. * * OUTPUT * ------ * FREM(X,Y) or FMOD(X,Y), depending on entry point. * * ALGORITHM * --------- * * Step 1. Save and strip signs of X and Y: signX := sign(X), * signY := sign(Y), X := |X|, Y := |Y|, * signQ := signX EOR signY. Record whether MOD or REM * is requested. * * Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. * If (L < 0) then * R := X, go to Step 4. * else * R := 2^(-L)X, j := L. * endif * * Step 3. Perform MOD(X,Y) * 3.1 If R = Y, go to Step 9. * 3.2 If R > Y, then { R := R - Y, Q := Q + 1} * 3.3 If j = 0, go to Step 4. * 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to * Step 3.1. * * Step 4. At this point, R = X - QY = MOD(X,Y). Set * Last_Subtract := false (used in Step 7 below). If * MOD is requested, go to Step 6. * * Step 5. R = MOD(X,Y), but REM(X,Y) is requested. * 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to * Step 6. * 5.2 If R > Y/2, then { set Last_Subtract := true, * Q := Q + 1, Y := signY*Y }. Go to Step 6. * 5.3 This is the tricky case of R = Y/2. If Q is odd, * then { Q := Q + 1, signX := -signX }. * * Step 6. R := signX*R. * * Step 7. If Last_Subtract = true, R := R - Y. * * Step 8. Return signQ, last 7 bits of Q, and R as required. * * Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, * X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), * R := 0. Return signQ, last 7 bits of Q, and R. * SREM_MOD IDNT 2,1 Motorola 040 Floating Point Software Package section 8 include fpsp.h Mod_Flag equ L_SCR3 SignY equ FP_SCR3+4 SignX equ FP_SCR3+8 SignQ equ FP_SCR3+12 Sc_Flag equ FP_SCR4 Y equ FP_SCR1 Y_Hi equ Y+4 Y_Lo equ Y+8 R equ FP_SCR2 R_Hi equ R+4 R_Lo equ R+8 Scale DC.L $00010000,$80000000,$00000000,$00000000 xref t_avoid_unsupp xdef smod smod: Clr.L Mod_Flag(a6) BRA.B Mod_Rem xdef srem srem: Move.L #1,Mod_Flag(a6) Mod_Rem: *..Save sign of X and Y MoveM.L D2-D7,-(A7) ...save data registers Move.W (A0),D3 Move.W D3,SignY(a6) AndI.L #$00007FFF,D3 ...Y := |Y| * Move.L 4(A0),D4 Move.L 8(A0),D5 ...(D3,D4,D5) is |Y| Tst.L D3 BNE.B Y_Normal Move.L #$00003FFE,D3 ...$3FFD + 1 Tst.L D4 BNE.B HiY_not0 HiY_0: Move.L D5,D4 CLR.L D5 SubI.L #32,D3 CLR.L D6 BFFFO D4{0:32},D6 LSL.L D6,D4 Sub.L D6,D3 ...(D3,D4,D5) is normalized * ...with bias $7FFD BRA.B Chk_X HiY_not0: CLR.L D6 BFFFO D4{0:32},D6 Sub.L D6,D3 LSL.L D6,D4 Move.L D5,D7 ...a copy of D5 LSL.L D6,D5 Neg.L D6 AddI.L #32,D6 LSR.L D6,D7 Or.L D7,D4 ...(D3,D4,D5) normalized * ...with bias $7FFD BRA.B Chk_X Y_Normal: AddI.L #$00003FFE,D3 ...(D3,D4,D5) normalized * ...with bias $7FFD Chk_X: Move.W -12(A0),D0 Move.W D0,SignX(a6) Move.W SignY(a6),D1 EOr.L D0,D1 AndI.L #$00008000,D1 Move.W D1,SignQ(a6) ...sign(Q) obtained AndI.L #$00007FFF,D0 Move.L -8(A0),D1 Move.L -4(A0),D2 ...(D0,D1,D2) is |X| Tst.L D0 BNE.B X_Normal Move.L #$00003FFE,D0 Tst.L D1 BNE.B HiX_not0 HiX_0: Move.L D2,D1 CLR.L D2 SubI.L #32,D0 CLR.L D6 BFFFO D1{0:32},D6 LSL.L D6,D1 Sub.L D6,D0 ...(D0,D1,D2) is normalized * ...with bias $7FFD BRA.B Init HiX_not0: CLR.L D6 BFFFO D1{0:32},D6 Sub.L D6,D0 LSL.L D6,D1 Move.L D2,D7 ...a copy of D2 LSL.L D6,D2 Neg.L D6 AddI.L #32,D6 LSR.L D6,D7 Or.L D7,D1 ...(D0,D1,D2) normalized * ...with bias $7FFD BRA.B Init X_Normal: AddI.L #$00003FFE,D0 ...(D0,D1,D2) normalized * ...with bias $7FFD Init: * Move.L D3,L_SCR1(a6) ...save biased expo(Y) move.l d0,L_SCR2(a6) ;save d0 Sub.L D3,D0 ...L := expo(X)-expo(Y) * Move.L D0,L ...D0 is j CLR.L D6 ...D6 := carry <- 0 CLR.L D3 ...D3 is Q MoveA.L #0,A1 ...A1 is k; j+k=L, Q=0 *..(Carry,D1,D2) is R Tst.L D0 BGE.B Mod_Loop *..expo(X) < expo(Y). Thus X = mod(X,Y) * move.l L_SCR2(a6),d0 ;restore d0 BRA.W Get_Mod *..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L Mod_Loop: Tst.L D6 ...test carry bit BGT.B R_GT_Y *..At this point carry = 0, R = (D1,D2), Y = (D4,D5) Cmp.L D4,D1 ...compare hi(R) and hi(Y) BNE.B R_NE_Y Cmp.L D5,D2 ...compare lo(R) and lo(Y) BNE.B R_NE_Y *..At this point, R = Y BRA.W Rem_is_0 R_NE_Y: *..use the borrow of the previous compare BCS.B R_LT_Y ...borrow is set iff R < Y R_GT_Y: *..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 *..and Y < (D1,D2) < 2Y. Either way, perform R - Y Sub.L D5,D2 ...lo(R) - lo(Y) SubX.L D4,D1 ...hi(R) - hi(Y) CLR.L D6 ...clear carry AddQ.L #1,D3 ...Q := Q + 1 R_LT_Y: *..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. Tst.L D0 ...see if j = 0. BEQ.B PostLoop Add.L D3,D3 ...Q := 2Q Add.L D2,D2 ...lo(R) = 2lo(R) AddX.L D1,D1 ...hi(R) = 2hi(R) + carry SCS D6 ...set Carry if 2(R) overflows AddQ.L #1,A1 ...k := k+1 SubQ.L #1,D0 ...j := j - 1 *..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. BRA.B Mod_Loop PostLoop: *..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. *..normalize R. Move.L L_SCR1(a6),D0 ...new biased expo of R Tst.L D1 BNE.B HiR_not0 HiR_0: Move.L D2,D1 CLR.L D2 SubI.L #32,D0 CLR.L D6 BFFFO D1{0:32},D6 LSL.L D6,D1 Sub.L D6,D0 ...(D0,D1,D2) is normalized * ...with bias $7FFD BRA.B Get_Mod HiR_not0: CLR.L D6 BFFFO D1{0:32},D6 BMI.B Get_Mod ...already normalized Sub.L D6,D0 LSL.L D6,D1 Move.L D2,D7 ...a copy of D2 LSL.L D6,D2 Neg.L D6 AddI.L #32,D6 LSR.L D6,D7 Or.L D7,D1 ...(D0,D1,D2) normalized * Get_Mod: CmpI.L #$000041FE,D0 BGE.B No_Scale Do_Scale: Move.W D0,R(a6) clr.w R+2(a6) Move.L D1,R_Hi(a6) Move.L D2,R_Lo(a6) Move.L L_SCR1(a6),D6 Move.W D6,Y(a6) clr.w Y+2(a6) Move.L D4,Y_Hi(a6) Move.L D5,Y_Lo(a6) FMove.X R(a6),fp0 ...no exception Move.L #1,Sc_Flag(a6) BRA.B ModOrRem No_Scale: Move.L D1,R_Hi(a6) Move.L D2,R_Lo(a6) SubI.L #$3FFE,D0 Move.W D0,R(a6) clr.w R+2(a6) Move.L L_SCR1(a6),D6 SubI.L #$3FFE,D6 Move.L D6,L_SCR1(a6) FMove.X R(a6),fp0 Move.W D6,Y(a6) Move.L D4,Y_Hi(a6) Move.L D5,Y_Lo(a6) Clr.L Sc_Flag(a6) * ModOrRem: Move.L Mod_Flag(a6),D6 BEQ.B Fix_Sign Move.L L_SCR1(a6),D6 ...new biased expo(Y) SubQ.L #1,D6 ...biased expo(Y/2) Cmp.L D6,D0 BLT.B Fix_Sign BGT.B Last_Sub Cmp.L D4,D1 BNE.B Not_EQ Cmp.L D5,D2 BNE.B Not_EQ BRA.W Tie_Case Not_EQ: BCS.B Fix_Sign Last_Sub: * FSub.X Y(a6),fp0 ...no exceptions AddQ.L #1,D3 ...Q := Q + 1 * Fix_Sign: *..Get sign of X Move.W SignX(a6),D6 BGE.B Get_Q FNeg.X fp0 *..Get Q * Get_Q: clr.l d6 Move.W SignQ(a6),D6 ...D6 is sign(Q) Move.L #8,D7 LSR.L D7,D6 AndI.L #$0000007F,D3 ...7 bits of Q Or.L D6,D3 ...sign and bits of Q Swap D3 FMove.L fpsr,D6 AndI.L #$FF00FFFF,D6 Or.L D3,D6 FMove.L D6,fpsr ...put Q in fpsr * Restore: MoveM.L (A7)+,D2-D7 FMove.L USER_FPCR(a6),fpcr Move.L Sc_Flag(a6),D0 BEQ.B Finish FMul.X Scale(pc),fp0 ...may cause underflow bra t_avoid_unsupp ;check for denorm as a * ;result of the scaling Finish: fmove.x fp0,fp0 ;capture exceptions & round rts Rem_is_0: *..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) AddQ.L #1,D3 CmpI.L #8,D0 ...D0 is j BGE.B Q_Big LSL.L D0,D3 BRA.B Set_R_0 Q_Big: CLR.L D3 Set_R_0: FMove.S #:00000000,fp0 Clr.L Sc_Flag(a6) BRA.W Fix_Sign Tie_Case: *..Check parity of Q Move.L D3,D6 AndI.L #$00000001,D6 Tst.L D6 BEq.W Fix_Sign ...Q is even *..Q is odd, Q := Q + 1, signX := -signX AddQ.L #1,D3 Move.W SignX(a6),D6 EOrI.L #$00008000,D6 Move.W D6,SignX(a6) BRA.W Fix_Sign End