/* $NetBSD: atw.c,v 1.151 2010/04/05 07:19:33 joerg Exp $ */ /*- * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by David Young, by Jason R. Thorpe, and by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Device driver for the ADMtek ADM8211 802.11 MAC/BBP. */ #include __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.151 2010/04/05 07:19:33 joerg Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX TBD open questions * * * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC * handle this for me? * */ /* device attachment * * print TOFS[012] * * device initialization * * clear ATW_FRCTL_MAXPSP to disable max power saving * set ATW_TXBR_ALCUPDATE to enable ALC * set TOFS[012]? (hope not) * disable rx/tx * set ATW_PAR_SWR (software reset) * wait for ATW_PAR_SWR clear * disable interrupts * ack status register * enable interrupts * * rx/tx initialization * * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST * allocate and init descriptor rings * write ATW_PAR_DSL (descriptor skip length) * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB * write ATW_NAR_SQ for one/both transmit descriptor rings * write ATW_NAR_SQ for one/both transmit descriptor rings * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST * * rx/tx end * * stop DMA * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST * flush tx w/ ATW_NAR_HF * * scan * * initialize rx/tx * * BSS join: (re)association response * * set ATW_FRCTL_AID * * optimizations ??? * */ #define ATW_REFSLAVE /* slavishly do what the reference driver does */ int atw_pseudo_milli = 1; int atw_magic_delay1 = 100 * 1000; int atw_magic_delay2 = 100 * 1000; /* more magic multi-millisecond delays (units: microseconds) */ int atw_nar_delay = 20 * 1000; int atw_magic_delay4 = 10 * 1000; int atw_rf_delay1 = 10 * 1000; int atw_rf_delay2 = 5 * 1000; int atw_plcphd_delay = 2 * 1000; int atw_bbp_io_enable_delay = 20 * 1000; int atw_bbp_io_disable_delay = 2 * 1000; int atw_writewep_delay = 1000; int atw_beacon_len_adjust = 4; int atw_dwelltime = 200; int atw_xindiv2 = 0; #ifdef ATW_DEBUG int atw_debug = 0; #define ATW_DPRINTF(x) if (atw_debug > 0) printf x #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x) #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x) static void atw_dump_pkt(struct ifnet *, struct mbuf *); static void atw_print_regs(struct atw_softc *, const char *); /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */ # ifdef ATW_BBPDEBUG static void atw_rf3000_print(struct atw_softc *); static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *); # endif /* ATW_BBPDEBUG */ # ifdef ATW_SYNDEBUG static void atw_si4126_print(struct atw_softc *); static int atw_si4126_read(struct atw_softc *, u_int, u_int *); # endif /* ATW_SYNDEBUG */ #else #define ATW_DPRINTF(x) #define ATW_DPRINTF2(x) #define ATW_DPRINTF3(x) #define DPRINTF(sc, x) /* nothing */ #define DPRINTF2(sc, x) /* nothing */ #define DPRINTF3(sc, x) /* nothing */ #endif /* ifnet methods */ int atw_init(struct ifnet *); int atw_ioctl(struct ifnet *, u_long, void *); void atw_start(struct ifnet *); void atw_stop(struct ifnet *, int); void atw_watchdog(struct ifnet *); /* Device attachment */ void atw_attach(struct atw_softc *); int atw_detach(struct atw_softc *); static void atw_evcnt_attach(struct atw_softc *); static void atw_evcnt_detach(struct atw_softc *); /* Rx/Tx process */ int atw_add_rxbuf(struct atw_softc *, int); void atw_idle(struct atw_softc *, u_int32_t); void atw_rxdrain(struct atw_softc *); void atw_txdrain(struct atw_softc *); /* Device (de)activation and power state */ void atw_reset(struct atw_softc *); /* Interrupt handlers */ void atw_linkintr(struct atw_softc *, u_int32_t); void atw_rxintr(struct atw_softc *); void atw_txintr(struct atw_softc *, uint32_t); /* 802.11 state machine */ static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int); static void atw_next_scan(void *); static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *, struct ieee80211_node *, int, int, u_int32_t); static int atw_tune(struct atw_softc *); /* Device initialization */ static void atw_bbp_io_init(struct atw_softc *); static void atw_cfp_init(struct atw_softc *); static void atw_cmdr_init(struct atw_softc *); static void atw_ifs_init(struct atw_softc *); static void atw_nar_init(struct atw_softc *); static void atw_response_times_init(struct atw_softc *); static void atw_rf_reset(struct atw_softc *); static void atw_test1_init(struct atw_softc *); static void atw_tofs0_init(struct atw_softc *); static void atw_tofs2_init(struct atw_softc *); static void atw_txlmt_init(struct atw_softc *); static void atw_wcsr_init(struct atw_softc *); /* Key management */ static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *); static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *, const u_int8_t[IEEE80211_ADDR_LEN]); static void atw_key_update_begin(struct ieee80211com *); static void atw_key_update_end(struct ieee80211com *); /* RAM/ROM utilities */ static void atw_clear_sram(struct atw_softc *); static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int); static int atw_read_srom(struct atw_softc *); /* BSS setup */ static void atw_predict_beacon(struct atw_softc *); static void atw_start_beacon(struct atw_softc *, int); static void atw_write_bssid(struct atw_softc *); static void atw_write_ssid(struct atw_softc *); static void atw_write_sup_rates(struct atw_softc *); static void atw_write_wep(struct atw_softc *); /* Media */ static int atw_media_change(struct ifnet *); static void atw_filter_setup(struct atw_softc *); /* 802.11 utilities */ static uint64_t atw_get_tsft(struct atw_softc *); static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t, uint32_t); static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *); static void atw_node_free(struct ieee80211_node *); /* * Tuner/transceiver/modem */ static void atw_bbp_io_enable(struct atw_softc *, int); /* RFMD RF3000 Baseband Processor */ static int atw_rf3000_init(struct atw_softc *); static int atw_rf3000_tune(struct atw_softc *, u_int); static int atw_rf3000_write(struct atw_softc *, u_int, u_int); /* Silicon Laboratories Si4126 RF/IF Synthesizer */ static void atw_si4126_tune(struct atw_softc *, u_int); static void atw_si4126_write(struct atw_softc *, u_int, u_int); const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE; const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE; const char *atw_tx_state[] = { "STOPPED", "RUNNING - read descriptor", "RUNNING - transmitting", "RUNNING - filling fifo", /* XXX */ "SUSPENDED", "RUNNING -- write descriptor", "RUNNING -- write last descriptor", "RUNNING - fifo full" }; const char *atw_rx_state[] = { "STOPPED", "RUNNING - read descriptor", "RUNNING - check this packet, pre-fetch next", "RUNNING - wait for reception", "SUSPENDED", "RUNNING - write descriptor", "RUNNING - flush fifo", "RUNNING - fifo drain" }; static inline int is_running(struct ifnet *ifp) { return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP); } int atw_activate(device_t self, enum devact act) { struct atw_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: if_deactivate(&sc->sc_if); return 0; default: return EOPNOTSUPP; } } bool atw_suspend(device_t self, const pmf_qual_t *qual) { struct atw_softc *sc = device_private(self); atw_rxdrain(sc); sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; return true; } /* Returns -1 on failure. */ static int atw_read_srom(struct atw_softc *sc) { struct seeprom_descriptor sd; uint32_t test0, fail_bits; (void)memset(&sd, 0, sizeof(sd)); test0 = ATW_READ(sc, ATW_TEST0); switch (sc->sc_rev) { case ATW_REVISION_BA: case ATW_REVISION_CA: fail_bits = ATW_TEST0_EPNE; break; default: fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM; break; } if ((test0 & fail_bits) != 0) { aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n"); return -1; } switch (test0 & ATW_TEST0_EPTYP_MASK) { case ATW_TEST0_EPTYP_93c66: ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev))); sc->sc_sromsz = 512; sd.sd_chip = C56_66; break; case ATW_TEST0_EPTYP_93c46: ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev))); sc->sc_sromsz = 128; sd.sd_chip = C46; break; default: printf("%s: unknown SROM type %" __PRIuBITS "\n", device_xname(sc->sc_dev), __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK)); return -1; } sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT); if (sc->sc_srom == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n"); return -1; } (void)memset(sc->sc_srom, 0, sc->sc_sromsz); /* ADM8211 has a single 32-bit register for controlling the * 93cx6 SROM. Bit SRS enables the serial port. There is no * "ready" bit. The ADM8211 input/output sense is the reverse * of read_seeprom's. */ sd.sd_tag = sc->sc_st; sd.sd_bsh = sc->sc_sh; sd.sd_regsize = 4; sd.sd_control_offset = ATW_SPR; sd.sd_status_offset = ATW_SPR; sd.sd_dataout_offset = ATW_SPR; sd.sd_CK = ATW_SPR_SCLK; sd.sd_CS = ATW_SPR_SCS; sd.sd_DI = ATW_SPR_SDO; sd.sd_DO = ATW_SPR_SDI; sd.sd_MS = ATW_SPR_SRS; sd.sd_RDY = 0; if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) { aprint_error_dev(sc->sc_dev, "could not read SROM\n"); free(sc->sc_srom, M_DEVBUF); return -1; } #ifdef ATW_DEBUG { int i; ATW_DPRINTF(("\nSerial EEPROM:\n\t")); for (i = 0; i < sc->sc_sromsz/2; i = i + 1) { if (((i % 8) == 0) && (i != 0)) { ATW_DPRINTF(("\n\t")); } ATW_DPRINTF((" 0x%x", sc->sc_srom[i])); } ATW_DPRINTF(("\n")); } #endif /* ATW_DEBUG */ return 0; } #ifdef ATW_DEBUG static void atw_print_regs(struct atw_softc *sc, const char *where) { #define PRINTREG(sc, reg) \ ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \ device_xname(sc->sc_dev), reg, ATW_READ(sc, reg))) ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where)); PRINTREG(sc, ATW_PAR); PRINTREG(sc, ATW_FRCTL); PRINTREG(sc, ATW_TDR); PRINTREG(sc, ATW_WTDP); PRINTREG(sc, ATW_RDR); PRINTREG(sc, ATW_WRDP); PRINTREG(sc, ATW_RDB); PRINTREG(sc, ATW_CSR3A); PRINTREG(sc, ATW_TDBD); PRINTREG(sc, ATW_TDBP); PRINTREG(sc, ATW_STSR); PRINTREG(sc, ATW_CSR5A); PRINTREG(sc, ATW_NAR); PRINTREG(sc, ATW_CSR6A); PRINTREG(sc, ATW_IER); PRINTREG(sc, ATW_CSR7A); PRINTREG(sc, ATW_LPC); PRINTREG(sc, ATW_TEST1); PRINTREG(sc, ATW_SPR); PRINTREG(sc, ATW_TEST0); PRINTREG(sc, ATW_WCSR); PRINTREG(sc, ATW_WPDR); PRINTREG(sc, ATW_GPTMR); PRINTREG(sc, ATW_GPIO); PRINTREG(sc, ATW_BBPCTL); PRINTREG(sc, ATW_SYNCTL); PRINTREG(sc, ATW_PLCPHD); PRINTREG(sc, ATW_MMIWADDR); PRINTREG(sc, ATW_MMIRADDR1); PRINTREG(sc, ATW_MMIRADDR2); PRINTREG(sc, ATW_TXBR); PRINTREG(sc, ATW_CSR15A); PRINTREG(sc, ATW_ALCSTAT); PRINTREG(sc, ATW_TOFS2); PRINTREG(sc, ATW_CMDR); PRINTREG(sc, ATW_PCIC); PRINTREG(sc, ATW_PMCSR); PRINTREG(sc, ATW_PAR0); PRINTREG(sc, ATW_PAR1); PRINTREG(sc, ATW_MAR0); PRINTREG(sc, ATW_MAR1); PRINTREG(sc, ATW_ATIMDA0); PRINTREG(sc, ATW_ABDA1); PRINTREG(sc, ATW_BSSID0); PRINTREG(sc, ATW_TXLMT); PRINTREG(sc, ATW_MIBCNT); PRINTREG(sc, ATW_BCNT); PRINTREG(sc, ATW_TSFTH); PRINTREG(sc, ATW_TSC); PRINTREG(sc, ATW_SYNRF); PRINTREG(sc, ATW_BPLI); PRINTREG(sc, ATW_CAP0); PRINTREG(sc, ATW_CAP1); PRINTREG(sc, ATW_RMD); PRINTREG(sc, ATW_CFPP); PRINTREG(sc, ATW_TOFS0); PRINTREG(sc, ATW_TOFS1); PRINTREG(sc, ATW_IFST); PRINTREG(sc, ATW_RSPT); PRINTREG(sc, ATW_TSFTL); PRINTREG(sc, ATW_WEPCTL); PRINTREG(sc, ATW_WESK); PRINTREG(sc, ATW_WEPCNT); PRINTREG(sc, ATW_MACTEST); PRINTREG(sc, ATW_FER); PRINTREG(sc, ATW_FEMR); PRINTREG(sc, ATW_FPSR); PRINTREG(sc, ATW_FFER); #undef PRINTREG } #endif /* ATW_DEBUG */ /* * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end. */ void atw_attach(struct atw_softc *sc) { static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; int country_code, error, i, nrate, srom_major; u_int32_t reg; static const char *type_strings[] = {"Intersil (not supported)", "RFMD", "Marvel (not supported)"}; pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); sc->sc_txth = atw_txthresh_tab_lo; SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); #ifdef ATW_DEBUG atw_print_regs(sc, "atw_attach"); #endif /* ATW_DEBUG */ /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error); goto fail_0; } if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg, sizeof(struct atw_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct atw_control_data), 1, sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, error = %d\n", error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct atw_control_data), NULL, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n", error); goto fail_3; } /* * Create the transmit buffer DMA maps. */ sc->sc_ntxsegs = ATW_NTXSEGS; for (i = 0; i < ATW_TXQUEUELEN; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, sc->sc_ntxsegs, MCLBYTES, 0, 0, &sc->sc_txsoft[i].txs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, error = %d\n", i, error); goto fail_4; } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < ATW_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, error = %d\n", i, error); goto fail_5; } } for (i = 0; i < ATW_NRXDESC; i++) { sc->sc_rxsoft[i].rxs_mbuf = NULL; } switch (sc->sc_rev) { case ATW_REVISION_AB: case ATW_REVISION_AF: sc->sc_sramlen = ATW_SRAM_A_SIZE; break; case ATW_REVISION_BA: case ATW_REVISION_CA: sc->sc_sramlen = ATW_SRAM_B_SIZE; break; } /* Reset the chip to a known state. */ atw_reset(sc); if (atw_read_srom(sc) == -1) return; sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20], ATW_SR_RFTYPE_MASK); sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20], ATW_SR_BBPTYPE_MASK); if (sc->sc_rftype >= __arraycount(type_strings)) { aprint_error_dev(sc->sc_dev, "unknown RF\n"); return; } if (sc->sc_bbptype >= __arraycount(type_strings)) { aprint_error_dev(sc->sc_dev, "unknown BBP\n"); return; } printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev), type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]); /* XXX There exists a Linux driver which seems to use RFType = 0 for * MARVEL. My bug, or theirs? */ reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK); switch (sc->sc_rftype) { case ATW_RFTYPE_INTERSIL: reg |= ATW_SYNCTL_CS1; break; case ATW_RFTYPE_RFMD: reg |= ATW_SYNCTL_CS0; break; case ATW_RFTYPE_MARVEL: break; } sc->sc_synctl_rd = reg | ATW_SYNCTL_RD; sc->sc_synctl_wr = reg | ATW_SYNCTL_WR; reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK); switch (sc->sc_bbptype) { case ATW_BBPTYPE_INTERSIL: reg |= ATW_BBPCTL_TWI; break; case ATW_BBPTYPE_RFMD: reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO | ATW_BBPCTL_CCA_ACTLO; break; case ATW_BBPTYPE_MARVEL: break; case ATW_C_BBPTYPE_RFMD: printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n", device_xname(sc->sc_dev)); break; } sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR; sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD; /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ sc->sc_flags |= ATWF_ATTACHED; ATW_DPRINTF((" SROM MAC %04x%04x%04x", htole16(sc->sc_srom[ATW_SR_MAC00]), htole16(sc->sc_srom[ATW_SR_MAC01]), htole16(sc->sc_srom[ATW_SR_MAC10]))); srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION], ATW_SR_MAJOR_MASK); if (srom_major < 2) sc->sc_rf3000_options1 = 0; else if (sc->sc_rev == ATW_REVISION_BA) { sc->sc_rf3000_options1 = __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03], ATW_SR_CR28_MASK); } else sc->sc_rf3000_options1 = 0; sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29], ATW_SR_CR29_MASK); country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29], ATW_SR_CTRY_MASK); #define ADD_CHANNEL(_ic, _chan) do { \ _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \ _ic->ic_channels[_chan].ic_freq = \ ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\ } while (0) /* Find available channels */ switch (country_code) { case COUNTRY_MMK2: /* 1-14 */ ADD_CHANNEL(ic, 14); /*FALLTHROUGH*/ case COUNTRY_ETSI: /* 1-13 */ for (i = 1; i <= 13; i++) ADD_CHANNEL(ic, i); break; case COUNTRY_FCC: /* 1-11 */ case COUNTRY_IC: /* 1-11 */ for (i = 1; i <= 11; i++) ADD_CHANNEL(ic, i); break; case COUNTRY_MMK: /* 14 */ ADD_CHANNEL(ic, 14); break; case COUNTRY_FRANCE: /* 10-13 */ for (i = 10; i <= 13; i++) ADD_CHANNEL(ic, i); break; default: /* assume channels 10-11 */ case COUNTRY_SPAIN: /* 10-11 */ for (i = 10; i <= 11; i++) ADD_CHANNEL(ic, i); break; } /* Read the MAC address. */ reg = ATW_READ(sc, ATW_PAR0); ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK); ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK); ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK); ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK); reg = ATW_READ(sc, ATW_PAR1); ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK); ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK); if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { printf(" could not get mac address, attach failed\n"); return; } printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; ifp->if_ioctl = atw_ioctl; ifp->if_start = atw_start; ifp->if_watchdog = atw_watchdog; ifp->if_init = atw_init; ifp->if_stop = atw_stop; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_DS; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR; nrate = 0; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; /* * Call MI attach routines. */ if_attach(ifp); ieee80211_ifattach(ic); atw_evcnt_attach(sc); sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = atw_newstate; sc->sc_recv_mgmt = ic->ic_recv_mgmt; ic->ic_recv_mgmt = atw_recv_mgmt; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = atw_node_free; sc->sc_node_alloc = ic->ic_node_alloc; ic->ic_node_alloc = atw_node_alloc; ic->ic_crypto.cs_key_delete = atw_key_delete; ic->ic_crypto.cs_key_set = atw_key_set; ic->ic_crypto.cs_key_update_begin = atw_key_update_begin; ic->ic_crypto.cs_key_update_end = atw_key_update_end; /* possibly we should fill in our own sc_send_prresp, since * the ADM8211 is probably sending probe responses in ad hoc * mode. */ /* complete initialization */ ieee80211_media_init(ic, atw_media_change, ieee80211_media_status); callout_init(&sc->sc_scan_ch, 0); bpf_attach2(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf); memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT); memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT); ieee80211_announce(ic); return; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_5: for (i = 0; i < ATW_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap == NULL) continue; bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } fail_4: for (i = 0; i < ATW_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap == NULL) continue; bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct atw_control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); fail_0: return; } static struct ieee80211_node * atw_node_alloc(struct ieee80211_node_table *nt) { struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc; struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt); DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni)); return ni; } static void atw_node_free(struct ieee80211_node *ni) { struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc; DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni, ether_sprintf(ni->ni_bssid))); (*sc->sc_node_free)(ni); } static void atw_test1_reset(struct atw_softc *sc) { switch (sc->sc_rev) { case ATW_REVISION_BA: if (1 /* XXX condition on transceiver type */) { ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR); } break; case ATW_REVISION_CA: ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK); break; default: break; } } /* * atw_reset: * * Perform a soft reset on the ADM8211. */ void atw_reset(struct atw_softc *sc) { int i; uint32_t lpc; ATW_WRITE(sc, ATW_NAR, 0x0); DELAY(atw_nar_delay); /* Reference driver has a cryptic remark indicating that this might * power-on the chip. I know that it turns off power-saving.... */ ATW_WRITE(sc, ATW_FRCTL, 0x0); ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR); for (i = 0; i < 50000 / atw_pseudo_milli; i++) { if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0) break; DELAY(atw_pseudo_milli); } /* ... and then pause 100ms longer for good measure. */ DELAY(atw_magic_delay1); DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i)); if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR)) aprint_error_dev(sc->sc_dev, "reset failed to complete\n"); /* * Initialize the PCI Access Register. */ sc->sc_busmode = ATW_PAR_PBL_8DW; ATW_WRITE(sc, ATW_PAR, sc->sc_busmode); DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev), ATW_READ(sc, ATW_PAR), sc->sc_busmode)); atw_test1_reset(sc); /* Turn off maximum power saving, etc. */ ATW_WRITE(sc, ATW_FRCTL, 0x0); DELAY(atw_magic_delay2); /* Recall EEPROM. */ ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD); DELAY(atw_magic_delay4); lpc = ATW_READ(sc, ATW_LPC); DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc)); /* A reset seems to affect the SRAM contents, so put them into * a known state. */ atw_clear_sram(sc); memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid)); } static void atw_clear_sram(struct atw_softc *sc) { memset(sc->sc_sram, 0, sizeof(sc->sc_sram)); sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; /* XXX not for revision 0x20. */ atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen); } /* TBD atw_init * * set MAC based on ic->ic_bss->myaddr * write WEP keys * set TX rate */ /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass * without receiving a beacon with the preferred BSSID & SSID. * atw_write_bssid & atw_write_ssid set the BSSID & SSID. */ static void atw_wcsr_init(struct atw_softc *sc) { uint32_t wcsr; wcsr = ATW_READ(sc, ATW_WCSR); wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE); wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK); ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */ DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n", device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR))); } /* Turn off power management. Set Rx store-and-forward mode. */ static void atw_cmdr_init(struct atw_softc *sc) { uint32_t cmdr; cmdr = ATW_READ(sc, ATW_CMDR); cmdr &= ~ATW_CMDR_APM; cmdr |= ATW_CMDR_RTE; cmdr &= ~ATW_CMDR_DRT_MASK; cmdr |= ATW_CMDR_DRT_SF; ATW_WRITE(sc, ATW_CMDR, cmdr); } static void atw_tofs2_init(struct atw_softc *sc) { uint32_t tofs2; /* XXX this magic can probably be figured out from the RFMD docs */ #ifndef ATW_REFSLAVE tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */ __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */ __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */ __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */ __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */ __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */ __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */ __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */ #else /* XXX new magic from reference driver source */ tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */ __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */ __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */ __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */ __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */ __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */ __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */ __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */ #endif ATW_WRITE(sc, ATW_TOFS2, tofs2); } static void atw_nar_init(struct atw_softc *sc) { ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB); } static void atw_txlmt_init(struct atw_softc *sc) { ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) | __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK)); } static void atw_test1_init(struct atw_softc *sc) { uint32_t test1; test1 = ATW_READ(sc, ATW_TEST1); test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL); /* XXX magic 0x1 */ test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL; ATW_WRITE(sc, ATW_TEST1, test1); } static void atw_rf_reset(struct atw_softc *sc) { /* XXX this resets an Intersil RF front-end? */ /* TBD condition on Intersil RFType? */ ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN); DELAY(atw_rf_delay1); ATW_WRITE(sc, ATW_SYNRF, 0); DELAY(atw_rf_delay2); } /* Set 16 TU max duration for the contention-free period (CFP). */ static void atw_cfp_init(struct atw_softc *sc) { uint32_t cfpp; cfpp = ATW_READ(sc, ATW_CFPP); cfpp &= ~ATW_CFPP_CFPMD; cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD); ATW_WRITE(sc, ATW_CFPP, cfpp); } static void atw_tofs0_init(struct atw_softc *sc) { /* XXX I guess that the Cardbus clock is 22 MHz? * I am assuming that the role of ATW_TOFS0_USCNT is * to divide the bus clock to get a 1 MHz clock---the datasheet is not * very clear on this point. It says in the datasheet that it is * possible for the ADM8211 to accommodate bus speeds between 22 MHz * and 33 MHz; maybe this is the way? I see a binary-only driver write * these values. These values are also the power-on default. */ ATW_WRITE(sc, ATW_TOFS0, __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) | ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */); } /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */ static void atw_ifs_init(struct atw_softc *sc) { uint32_t ifst; /* XXX EIFS=0x64, SIFS=110 are used by the reference driver. * Go figure. */ ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) | __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */, ATW_IFST_SIFS_MASK) | __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) | __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK); ATW_WRITE(sc, ATW_IFST, ifst); } static void atw_response_times_init(struct atw_softc *sc) { /* XXX More magic. Relates to ACK timing? The datasheet seems to * indicate that the MAC expects at least SIFS + MIRT microseconds * to pass after it transmits a frame that requires a response; * it waits at most SIFS + MART microseconds for the response. * Surely this is not the ACK timeout? */ ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) | __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK)); } /* Set up the MMI read/write addresses for the baseband. The Tx/Rx * engines read and write baseband registers after Rx and before * Tx, respectively. */ static void atw_bbp_io_init(struct atw_softc *sc) { uint32_t mmiraddr2; /* XXX The reference driver does this, but is it *really* * necessary? */ switch (sc->sc_rev) { case ATW_REVISION_AB: case ATW_REVISION_AF: mmiraddr2 = 0x0; break; default: mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2); mmiraddr2 &= ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK); break; } switch (sc->sc_bbptype) { case ATW_BBPTYPE_INTERSIL: ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL); ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL); mmiraddr2 |= ATW_MMIRADDR2_INTERSIL; break; case ATW_BBPTYPE_MARVEL: /* TBD find out the Marvel settings. */ break; case ATW_BBPTYPE_RFMD: default: ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD); ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD); mmiraddr2 |= ATW_MMIRADDR2_RFMD; break; } ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2); ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK); } /* * atw_init: [ ifnet interface function ] * * Initialize the interface. Must be called at splnet(). */ int atw_init(struct ifnet *ifp) { struct atw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct atw_txsoft *txs; struct atw_rxsoft *rxs; int i, error = 0; if (device_is_active(sc->sc_dev)) { /* * Cancel any pending I/O. */ atw_stop(ifp, 0); } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || !device_is_active(sc->sc_dev)) return 0; /* * Reset the chip to a known state. */ atw_reset(sc); DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n", __func__, ieee80211_chan2ieee(ic, ic->ic_curchan), ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags)); atw_wcsr_init(sc); atw_cmdr_init(sc); /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s. * * XXX Set transmit power for ATIM, RTS, Beacon. */ ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) | __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK)); atw_tofs2_init(sc); atw_nar_init(sc); atw_txlmt_init(sc); atw_test1_init(sc); atw_rf_reset(sc); atw_cfp_init(sc); atw_tofs0_init(sc); atw_ifs_init(sc); /* XXX Fall asleep after one second of inactivity. * XXX A frame may only dribble in for 65536us. */ ATW_WRITE(sc, ATW_RMD, __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK)); atw_response_times_init(sc); atw_bbp_io_init(sc); ATW_WRITE(sc, ATW_STSR, 0xffffffff); if ((error = atw_rf3000_init(sc)) != 0) goto out; ATW_WRITE(sc, ATW_PAR, sc->sc_busmode); DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev), ATW_READ(sc, ATW_PAR), sc->sc_busmode)); /* * Initialize the transmit descriptor ring. */ memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); for (i = 0; i < ATW_NTXDESC; i++) { sc->sc_txdescs[i].at_ctl = 0; /* no transmit chaining */ sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */; sc->sc_txdescs[i].at_buf2 = htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i))); } /* use ring mode */ sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER); ATW_CDTXSYNC(sc, 0, ATW_NTXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->sc_txfree = ATW_NTXDESC; sc->sc_txnext = 0; /* * Initialize the transmit job descriptors. */ SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); for (i = 0; i < ATW_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < ATW_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = atw_add_rxbuf(sc, i)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate or map rx buffer %d, " "error = %d\n", i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ atw_rxdrain(sc); goto out; } } else atw_init_rxdesc(sc, i); } sc->sc_rxptr = 0; /* * Initialize the interrupt mask and enable interrupts. */ /* normal interrupts */ sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI | ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC; /* abnormal interrupts */ sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT | ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS | ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ; sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF | ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ; sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU; sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT | ATW_INTR_TRT; sc->sc_linkint_mask &= sc->sc_inten; sc->sc_rxint_mask &= sc->sc_inten; sc->sc_txint_mask &= sc->sc_inten; ATW_WRITE(sc, ATW_IER, sc->sc_inten); ATW_WRITE(sc, ATW_STSR, 0xffffffff); DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n", device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten)); /* * Give the transmit and receive rings to the ADM8211. */ ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr)); ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext)); sc->sc_txthresh = 0; sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST | sc->sc_txth[sc->sc_txthresh].txth_opmode; /* common 802.11 configuration */ ic->ic_flags &= ~IEEE80211_F_IBSSON; switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_AHDEMO: /* XXX */ case IEEE80211_M_IBSS: ic->ic_flags |= IEEE80211_F_IBSSON; /*FALLTHROUGH*/ case IEEE80211_M_HOSTAP: /* XXX */ break; case IEEE80211_M_MONITOR: /* XXX */ break; } switch (ic->ic_opmode) { case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: #ifndef IEEE80211_NO_HOSTAP ic->ic_bss->ni_intval = ic->ic_lintval; ic->ic_bss->ni_rssi = 0; ic->ic_bss->ni_rstamp = 0; #endif /* !IEEE80211_NO_HOSTAP */ break; default: /* XXX */ break; } sc->sc_wepctl = 0; atw_write_ssid(sc); atw_write_sup_rates(sc); atw_write_wep(sc); ic->ic_state = IEEE80211_S_INIT; /* * Set the receive filter. This will start the transmit and * receive processes. */ atw_filter_setup(sc); /* * Start the receive process. */ ATW_WRITE(sc, ATW_RDR, 0x1); /* * Note that the interface is now running. */ ifp->if_flags |= IFF_RUNNING; /* send no beacons, yet. */ atw_start_beacon(sc, 0); if (ic->ic_opmode == IEEE80211_M_MONITOR) error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); out: if (error) { ifp->if_flags &= ~IFF_RUNNING; sc->sc_tx_timer = 0; ifp->if_timer = 0; printf("%s: interface not running\n", device_xname(sc->sc_dev)); } #ifdef ATW_DEBUG atw_print_regs(sc, "end of init"); #endif /* ATW_DEBUG */ return (error); } /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL. * 0: MAC control of RF3000/Si4126. * * Applies power, or selects RF front-end? Sets reset condition. * * TBD support non-RFMD BBP, non-SiLabs synth. */ static void atw_bbp_io_enable(struct atw_softc *sc, int enable) { if (enable) { ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST); DELAY(atw_bbp_io_enable_delay); } else { ATW_WRITE(sc, ATW_SYNRF, 0); DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */ } } static int atw_tune(struct atw_softc *sc) { int rc; u_int chan; struct ieee80211com *ic = &sc->sc_ic; chan = ieee80211_chan2ieee(ic, ic->ic_curchan); if (chan == IEEE80211_CHAN_ANY) panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__); if (chan == sc->sc_cur_chan) return 0; DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev), sc->sc_cur_chan, chan)); atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST); atw_si4126_tune(sc, chan); if ((rc = atw_rf3000_tune(sc, chan)) != 0) printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev), chan); ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); DELAY(atw_nar_delay); ATW_WRITE(sc, ATW_RDR, 0x1); if (rc == 0) { sc->sc_cur_chan = chan; sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq = htole16(ic->ic_curchan->ic_freq); sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags = htole16(ic->ic_curchan->ic_flags); } return rc; } #ifdef ATW_SYNDEBUG static void atw_si4126_print(struct atw_softc *sc) { struct ifnet *ifp = &sc->sc_if; u_int addr, val; val = 0; if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0) return; for (addr = 0; addr <= 8; addr++) { printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr); if (atw_si4126_read(sc, addr, &val) == 0) { printf(" (quitting print-out)\n"); break; } printf("%05x\n", val); } } #endif /* ATW_SYNDEBUG */ /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer. * * The RF/IF synthesizer produces two reference frequencies for * the RF2948B transceiver. The first frequency the RF2948B requires * is two times the so-called "intermediate frequency" (IF). Since * a SAW filter on the radio fixes the IF at 374 MHz, I program the * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second * frequency required by the transceiver is the radio frequency * (RF). This is a superheterodyne transceiver; for f(chan) the * center frequency of the channel we are tuning, RF = f(chan) - * IF. * * XXX I am told by SiLabs that the Si4126 will accept a broader range * of XIN than the 2-25 MHz mentioned by the datasheet, even *without* * XINDIV2 = 1. I've tried this (it is necessary to double R) and it * works, but I have still programmed for XINDIV2 = 1 to be safe. */ static void atw_si4126_tune(struct atw_softc *sc, u_int chan) { u_int mhz; u_int R; u_int32_t gpio; u_int16_t gain; #ifdef ATW_SYNDEBUG atw_si4126_print(sc); #endif /* ATW_SYNDEBUG */ if (chan == 14) mhz = 2484; else mhz = 2412 + 5 * (chan - 1); /* Tune IF to 748 MHz to suit the IF LO input of the * RF2494B, which is 2 x IF. No need to set an IF divider * because an IF in 526 MHz - 952 MHz is allowed. * * XIN is 44.000 MHz, so divide it by two to get allowable * range of 2-25 MHz. SiLabs tells me that this is not * strictly necessary. */ if (atw_xindiv2) R = 44; else R = 88; /* Power-up RF, IF synthesizers. */ atw_si4126_write(sc, SI4126_POWER, SI4126_POWER_PDIB|SI4126_POWER_PDRB); /* set LPWR, too? */ atw_si4126_write(sc, SI4126_MAIN, (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0); /* Set the phase-locked loop gain. If RF2 N > 2047, then * set KP2 to 1. * * REFDIF This is different from the reference driver, which * always sets SI4126_GAIN to 0. */ gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK); atw_si4126_write(sc, SI4126_GAIN, gain); /* XIN = 44 MHz. * * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496, * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz. * * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88 * so that 1496/88 * 44 MHz = 748 MHz. */ atw_si4126_write(sc, SI4126_IFN, 1496); atw_si4126_write(sc, SI4126_IFR, R); #ifndef ATW_REFSLAVE /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because * then RF1 becomes the active RF synthesizer, even on the Si4126, * which has no RF1! */ atw_si4126_write(sc, SI4126_RF1R, R); atw_si4126_write(sc, SI4126_RF1N, mhz - 374); #endif /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF, * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44. * Now let's multiply it to mhz. So mhz - IF = N. */ atw_si4126_write(sc, SI4126_RF2R, R); atw_si4126_write(sc, SI4126_RF2N, mhz - 374); /* wait 100us from power-up for RF, IF to settle */ DELAY(100); gpio = ATW_READ(sc, ATW_GPIO); gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK); gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK); if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) { /* Set a Prism RF front-end to a special mode for channel 14? * * Apparently the SMC2635W needs this, although I don't think * it has a Prism RF. */ gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK); } ATW_WRITE(sc, ATW_GPIO, gpio); #ifdef ATW_SYNDEBUG atw_si4126_print(sc); #endif /* ATW_SYNDEBUG */ } /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna * diversity. * * !!! * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR). * !!! */ static int atw_rf3000_init(struct atw_softc *sc) { int rc = 0; atw_bbp_io_enable(sc, 1); /* CCA is acquisition sensitive */ rc = atw_rf3000_write(sc, RF3000_CCACTL, __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK)); if (rc != 0) goto out; /* enable diversity */ rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE); if (rc != 0) goto out; /* sensible setting from a binary-only driver */ rc = atw_rf3000_write(sc, RF3000_GAINCTL, __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK)); if (rc != 0) goto out; /* magic from a binary-only driver */ rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK)); if (rc != 0) goto out; rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD); if (rc != 0) goto out; /* XXX Reference driver remarks that Abocom sets this to 50. * Meaning 0x50, I think.... 50 = 0x32, which would set a bit * in the "reserved" area of register RF3000_OPTIONS1. */ rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1); if (rc != 0) goto out; rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2); if (rc != 0) goto out; out: atw_bbp_io_enable(sc, 0); return rc; } #ifdef ATW_BBPDEBUG static void atw_rf3000_print(struct atw_softc *sc) { struct ifnet *ifp = &sc->sc_if; u_int addr, val; if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0) return; for (addr = 0x01; addr <= 0x15; addr++) { printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr); if (atw_rf3000_read(sc, addr, &val) != 0) { printf(" (quitting print-out)\n"); break; } printf("%08x\n", val); } } #endif /* ATW_BBPDEBUG */ /* Set the power settings on the BBP for channel `chan'. */ static int atw_rf3000_tune(struct atw_softc *sc, u_int chan) { int rc = 0; u_int32_t reg; u_int16_t txpower, lpf_cutoff, lna_gs_thresh; txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)]; lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)]; lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)]; /* odd channels: LSB, even channels: MSB */ if (chan % 2 == 1) { txpower &= 0xFF; lpf_cutoff &= 0xFF; lna_gs_thresh &= 0xFF; } else { txpower >>= 8; lpf_cutoff >>= 8; lna_gs_thresh >>= 8; } #ifdef ATW_BBPDEBUG atw_rf3000_print(sc); #endif /* ATW_BBPDEBUG */ DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, " "lna_gs_thresh %02x\n", device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh)); atw_bbp_io_enable(sc, 1); if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL, __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0) goto out; if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0) goto out; if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0) goto out; rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0); if (rc != 0) goto out; rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY); if (rc != 0) goto out; #ifdef ATW_BBPDEBUG atw_rf3000_print(sc); #endif /* ATW_BBPDEBUG */ out: atw_bbp_io_enable(sc, 0); /* set beacon, rts, atim transmit power */ reg = ATW_READ(sc, ATW_PLCPHD); reg &= ~ATW_PLCPHD_SERVICE_MASK; reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK), ATW_PLCPHD_SERVICE_MASK); ATW_WRITE(sc, ATW_PLCPHD, reg); DELAY(atw_plcphd_delay); return rc; } /* Write a register on the RF3000 baseband processor using the * registers provided by the ADM8211 for this purpose. * * Return 0 on success. */ static int atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val) { u_int32_t reg; int i; reg = sc->sc_bbpctl_wr | __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK); for (i = 20000 / atw_pseudo_milli; --i >= 0; ) { ATW_WRITE(sc, ATW_BBPCTL, reg); DELAY(2 * atw_pseudo_milli); if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0) break; } if (i < 0) { printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } return 0; } /* Read a register on the RF3000 baseband processor using the registers * the ADM8211 provides for this purpose. * * The 7-bit register address is addr. Record the 8-bit data in the register * in *val. * * Return 0 on success. * * XXX This does not seem to work. The ADM8211 must require more or * different magic to read the chip than to write it. Possibly some * of the magic I have derived from a binary-only driver concerns * the "chip address" (see the RF3000 manual). */ #ifdef ATW_BBPDEBUG static int atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val) { u_int32_t reg; int i; for (i = 1000; --i >= 0; ) { if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0) break; DELAY(100); } if (i < 0) { printf("%s: start atw_rf3000_read, BBPCTL busy\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK); ATW_WRITE(sc, ATW_BBPCTL, reg); for (i = 1000; --i >= 0; ) { DELAY(100); if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0) break; } ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD); if (i < 0) { printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n", device_xname(sc->sc_dev), reg); return ETIMEDOUT; } if (val != NULL) *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK); return 0; } #endif /* ATW_BBPDEBUG */ /* Write a register on the Si4126 RF/IF synthesizer using the registers * provided by the ADM8211 for that purpose. * * val is 18 bits of data, and val is the 4-bit address of the register. * * Return 0 on success. */ static void atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val) { uint32_t bits, mask, reg; const int nbits = 22; KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0); KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0); bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) | __SHIFTIN(addr, SI4126_TWI_ADDR_MASK); reg = ATW_SYNRF_SELSYN; /* reference driver: reset Si4126 serial bus to initial * conditions? */ ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF); ATW_WRITE(sc, ATW_SYNRF, reg); for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) { if ((bits & mask) != 0) reg |= ATW_SYNRF_SYNDATA; else reg &= ~ATW_SYNRF_SYNDATA; ATW_WRITE(sc, ATW_SYNRF, reg); ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK); ATW_WRITE(sc, ATW_SYNRF, reg); } ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF); ATW_WRITE(sc, ATW_SYNRF, 0x0); } /* Read 18-bit data from the 4-bit address addr in Si4126 * RF synthesizer and write the data to *val. Return 0 on success. * * XXX This does not seem to work. The ADM8211 must require more or * different magic to read the chip than to write it. */ #ifdef ATW_SYNDEBUG static int atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val) { u_int32_t reg; int i; KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0); for (i = 1000; --i >= 0; ) { if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0) break; DELAY(100); } if (i < 0) { printf("%s: start atw_si4126_read, SYNCTL busy\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK); ATW_WRITE(sc, ATW_SYNCTL, reg); for (i = 1000; --i >= 0; ) { DELAY(100); if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0) break; } ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD); if (i < 0) { printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n", device_xname(sc->sc_dev), reg); return ETIMEDOUT; } if (val != NULL) *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL), ATW_SYNCTL_DATA_MASK); return 0; } #endif /* ATW_SYNDEBUG */ /* XXX is the endianness correct? test. */ #define atw_calchash(addr) \ (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0)) /* * atw_filter_setup: * * Set the ADM8211's receive filter. */ static void atw_filter_setup(struct atw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ethercom *ec = &sc->sc_ec; struct ifnet *ifp = &sc->sc_if; int hash; u_int32_t hashes[2]; struct ether_multi *enm; struct ether_multistep step; /* According to comments in tlp_al981_filter_setup * (dev/ic/tulip.c) the ADMtek AL981 does not like for its * multicast filter to be set while it is running. Hopefully * the ADM8211 is not the same! */ if ((ifp->if_flags & IFF_RUNNING) != 0) atw_idle(sc, ATW_NAR_SR); sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM); ifp->if_flags &= ~IFF_ALLMULTI; /* XXX in scan mode, do not filter packets. Maybe this is * unnecessary. */ if (ic->ic_state == IEEE80211_S_SCAN || (ifp->if_flags & IFF_PROMISC) != 0) { sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB; goto allmulti; } hashes[0] = hashes[1] = 0x0; /* * Program the 64-bit multicast hash filter. */ ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; hash = atw_calchash(enm->enm_addrlo); hashes[hash >> 5] |= 1 << (hash & 0x1f); ETHER_NEXT_MULTI(step, enm); sc->sc_opmode |= ATW_NAR_MM; } ifp->if_flags &= ~IFF_ALLMULTI; goto setit; allmulti: sc->sc_opmode |= ATW_NAR_MM; ifp->if_flags |= IFF_ALLMULTI; hashes[0] = hashes[1] = 0xffffffff; setit: ATW_WRITE(sc, ATW_MAR0, hashes[0]); ATW_WRITE(sc, ATW_MAR1, hashes[1]); ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); DELAY(atw_nar_delay); ATW_WRITE(sc, ATW_RDR, 0x1); DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev), ATW_READ(sc, ATW_NAR), sc->sc_opmode)); } /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match * a beacon's BSSID and SSID against the preferred BSSID and SSID * before it will raise ATW_INTR_LINKON. When the ADM8211 receives * no beacon with the preferred BSSID and SSID in the number of * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF. */ static void atw_write_bssid(struct atw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; u_int8_t *bssid; bssid = ic->ic_bss->ni_bssid; ATW_WRITE(sc, ATW_BSSID0, __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) | __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) | __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) | __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK)); ATW_WRITE(sc, ATW_ABDA1, (ATW_READ(sc, ATW_ABDA1) & ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) | __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) | __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK)); DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev), ether_sprintf(sc->sc_bssid))); DPRINTF(sc, ("%s\n", ether_sprintf(bssid))); memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid)); } /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th * 16-bit word. */ static void atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen) { u_int i; u_int8_t *ptr; memcpy(&sc->sc_sram[ofs], buf, buflen); KASSERT(ofs % 2 == 0 && buflen % 2 == 0); KASSERT(buflen + ofs <= sc->sc_sramlen); ptr = &sc->sc_sram[ofs]; for (i = 0; i < buflen; i += 2) { ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR | __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK)); DELAY(atw_writewep_delay); ATW_WRITE(sc, ATW_WESK, __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK)); DELAY(atw_writewep_delay); } ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */ if (sc->sc_if.if_flags & IFF_DEBUG) { int n_octets = 0; printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n", device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl); for (i = 0; i < buflen; i++) { printf(" %02x", ptr[i]); if (++n_octets % 24 == 0) printf("\n"); } if (n_octets % 24 != 0) printf("\n"); } } static int atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) { struct atw_softc *sc = ic->ic_ifp->if_softc; u_int keyix = k->wk_keyix; DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix)); if (keyix >= IEEE80211_WEP_NKID) return 0; if (k->wk_keylen != 0) sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; return 1; } static int atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, const u_int8_t mac[IEEE80211_ADDR_LEN]) { struct atw_softc *sc = ic->ic_ifp->if_softc; DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix)); if (k->wk_keyix >= IEEE80211_WEP_NKID) return 0; sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; return 1; } static void atw_key_update_begin(struct ieee80211com *ic) { #ifdef ATW_DEBUG struct ifnet *ifp = ic->ic_ifp; struct atw_softc *sc = ifp->if_softc; #endif DPRINTF(sc, ("%s:\n", __func__)); } static void atw_key_update_end(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct atw_softc *sc = ifp->if_softc; DPRINTF(sc, ("%s:\n", __func__)); if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0) return; if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) return; atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST); atw_write_wep(sc); ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); DELAY(atw_nar_delay); ATW_WRITE(sc, ATW_RDR, 0x1); } /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */ static void atw_write_wep(struct atw_softc *sc) { #if 0 struct ieee80211com *ic = &sc->sc_ic; u_int32_t reg; int i; #endif /* SRAM shared-key record format: key0 flags key1 ... key12 */ u_int8_t buf[IEEE80211_WEP_NKID] [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */]; sc->sc_wepctl = 0; ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); memset(&buf[0][0], 0, sizeof(buf)); #if 0 for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (ic->ic_nw_keys[i].wk_keylen > 5) { buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT; } else if (ic->ic_nw_keys[i].wk_keylen != 0) { buf[i][1] = ATW_WEP_ENABLED; } else { buf[i][1] = 0; continue; } buf[i][0] = ic->ic_nw_keys[i].wk_key[0]; memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1], ic->ic_nw_keys[i].wk_keylen - 1); } reg = ATW_READ(sc, ATW_MACTEST); reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID; reg &= ~ATW_MACTEST_KEYID_MASK; reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK); ATW_WRITE(sc, ATW_MACTEST, reg); if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0) sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE; switch (sc->sc_rev) { case ATW_REVISION_AB: case ATW_REVISION_AF: /* Bypass WEP on Rx. */ sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP; break; default: break; } #endif atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0], sizeof(buf)); sc->sc_flags |= ATWF_WEP_SRAM_VALID; } static void atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp) { struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc; /* The ADM8211A answers probe requests. TBD ADM8211B/C. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ) return; (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp); switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: case IEEE80211_FC0_SUBTYPE_BEACON: if (ic->ic_opmode == IEEE80211_M_IBSS && ic->ic_state == IEEE80211_S_RUN) { if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc)) (void)ieee80211_ibss_merge(ni); } break; default: break; } return; } /* Write the SSID in the ieee80211com to the SRAM on the ADM8211. * In ad hoc mode, the SSID is written to the beacons sent by the * ADM8211. In both ad hoc and infrastructure mode, beacons received * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF * indications. */ static void atw_write_ssid(struct atw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but * it only expects the element length, not its ID. */ u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)]; memset(buf, 0, sizeof(buf)); buf[0] = ic->ic_bss->ni_esslen; memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen); atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, roundup(1 + ic->ic_bss->ni_esslen, 2)); } /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211. * In ad hoc mode, the supported rates are written to beacons sent by the * ADM8211. */ static void atw_write_sup_rates(struct atw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for * supported rates */ u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)]; memset(buf, 0, sizeof(buf)); buf[0] = ic->ic_bss->ni_rates.rs_nrates; memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates, ic->ic_bss->ni_rates.rs_nrates); atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf)); } /* Start/stop sending beacons. */ void atw_start_beacon(struct atw_softc *sc, int start) { struct ieee80211com *ic = &sc->sc_ic; uint16_t chan; uint32_t bcnt, bpli, cap0, cap1, capinfo; size_t len; if (!device_is_active(sc->sc_dev)) return; /* start beacons */ len = sizeof(struct ieee80211_frame) + 8 /* timestamp */ + 2 /* beacon interval */ + 2 /* capability info */ + 2 + ic->ic_bss->ni_esslen /* SSID element */ + 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ + 3 /* DS parameters */ + IEEE80211_CRC_LEN; bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK; cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK; cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK; ATW_WRITE(sc, ATW_BCNT, bcnt); ATW_WRITE(sc, ATW_CAP1, cap1); if (!start) return; /* TBD use ni_capinfo */ capinfo = 0; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; switch (ic->ic_opmode) { case IEEE80211_M_IBSS: len += 4; /* IBSS parameters */ capinfo |= IEEE80211_CAPINFO_IBSS; break; case IEEE80211_M_HOSTAP: /* XXX 6-byte minimum TIM */ len += atw_beacon_len_adjust; capinfo |= IEEE80211_CAPINFO_ESS; break; default: return; } /* set listen interval * XXX do software units agree w/ hardware? */ bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) | __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK); chan = ieee80211_chan2ieee(ic, ic->ic_curchan); bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK); cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK); cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK); ATW_WRITE(sc, ATW_BCNT, bcnt); ATW_WRITE(sc, ATW_BPLI, bpli); ATW_WRITE(sc, ATW_CAP0, cap0); ATW_WRITE(sc, ATW_CAP1, cap1); DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n", device_xname(sc->sc_dev), bcnt)); DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n", device_xname(sc->sc_dev), cap1)); } /* Return the 32 lsb of the last TSFT divisible by ival. */ static inline uint32_t atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival) { /* Following the reference driver's lead, I compute * * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival) * * without using 64-bit arithmetic, using the following * relationship: * * (0x100000000 * H + L) % m * = ((0x100000000 % m) * H + L) % m * = (((0xffffffff + 1) % m) * H + L) % m * = ((0xffffffff % m + 1 % m) * H + L) % m * = ((0xffffffff % m + 1) * H + L) % m */ return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival; } static uint64_t atw_get_tsft(struct atw_softc *sc) { int i; uint32_t tsfth, tsftl; for (i = 0; i < 2; i++) { tsfth = ATW_READ(sc, ATW_TSFTH); tsftl = ATW_READ(sc, ATW_TSFTL); if (ATW_READ(sc, ATW_TSFTH) == tsfth) break; } return ((uint64_t)tsfth << 32) | tsftl; } /* If we've created an IBSS, write the TSF time in the ADM8211 to * the ieee80211com. * * Predict the next target beacon transmission time (TBTT) and * write it to the ADM8211. */ static void atw_predict_beacon(struct atw_softc *sc) { #define TBTTOFS 20 /* TU */ struct ieee80211com *ic = &sc->sc_ic; uint64_t tsft; uint32_t ival, past_even, tbtt, tsfth, tsftl; union { uint64_t word; uint8_t tstamp[8]; } u; if ((ic->ic_opmode == IEEE80211_M_HOSTAP) || ((ic->ic_opmode == IEEE80211_M_IBSS) && (ic->ic_flags & IEEE80211_F_SIBSS))) { tsft = atw_get_tsft(sc); u.word = htole64(tsft); (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0], sizeof(ic->ic_bss->ni_tstamp)); } else tsft = le64toh(ic->ic_bss->ni_tstamp.tsf); ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU; tsftl = tsft & 0xFFFFFFFF; tsfth = tsft >> 32; /* We sent/received the last beacon `past' microseconds * after the interval divided the TSF timer. */ past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival); /* Skip ten beacons so that the TBTT cannot pass before * we've programmed it. Ten is an arbitrary number. */ tbtt = past_even + ival * 10; ATW_WRITE(sc, ATW_TOFS1, __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) | __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) | __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU, ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK)); #undef TBTTOFS } static void atw_next_scan(void *arg) { struct atw_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; /* don't call atw_start w/o network interrupts blocked */ s = splnet(); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ic); splx(s); } /* Synchronize the hardware state with the software state. */ static int atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct atw_softc *sc = ifp->if_softc; enum ieee80211_state ostate; int error = 0; ostate = ic->ic_state; callout_stop(&sc->sc_scan_ch); switch (nstate) { case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: atw_write_bssid(sc); error = atw_tune(sc); break; case IEEE80211_S_INIT: callout_stop(&sc->sc_scan_ch); sc->sc_cur_chan = IEEE80211_CHAN_ANY; atw_start_beacon(sc, 0); break; case IEEE80211_S_SCAN: error = atw_tune(sc); callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000, atw_next_scan, sc); break; case IEEE80211_S_RUN: error = atw_tune(sc); atw_write_bssid(sc); atw_write_ssid(sc); atw_write_sup_rates(sc); if (ic->ic_opmode == IEEE80211_M_AHDEMO || ic->ic_opmode == IEEE80211_M_MONITOR) break; /* set listen interval * XXX do software units agree w/ hardware? */ ATW_WRITE(sc, ATW_BPLI, __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) | __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK)); DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev), ATW_READ(sc, ATW_BPLI))); atw_predict_beacon(sc); switch (ic->ic_opmode) { case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: case IEEE80211_M_IBSS: atw_start_beacon(sc, 1); break; case IEEE80211_M_MONITOR: case IEEE80211_M_STA: break; } break; } return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg); } /* * atw_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ int atw_add_rxbuf(struct atw_softc *sc, int idx) { struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n", idx, error); panic("atw_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); atw_init_rxdesc(sc, idx); return (0); } /* * Release any queued transmit buffers. */ void atw_txdrain(struct atw_softc *sc) { struct atw_txsoft *txs; while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); sc->sc_txfree += txs->txs_ndescs; } KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 || !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) || sc->sc_txfree != ATW_NTXDESC)); sc->sc_if.if_flags &= ~IFF_OACTIVE; sc->sc_tx_timer = 0; } /* * atw_stop: [ ifnet interface function ] * * Stop transmission on the interface. */ void atw_stop(struct ifnet *ifp, int disable) { struct atw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); if (device_is_active(sc->sc_dev)) { /* Disable interrupts. */ ATW_WRITE(sc, ATW_IER, 0); /* Stop the transmit and receive processes. */ ATW_WRITE(sc, ATW_NAR, 0); DELAY(atw_nar_delay); ATW_WRITE(sc, ATW_TDBD, 0); ATW_WRITE(sc, ATW_TDBP, 0); ATW_WRITE(sc, ATW_RDB, 0); } sc->sc_opmode = 0; atw_txdrain(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~IFF_RUNNING; ifp->if_timer = 0; if (disable) pmf_device_suspend(sc->sc_dev, &sc->sc_qual); } /* * atw_rxdrain: * * Drain the receive queue. */ void atw_rxdrain(struct atw_softc *sc) { struct atw_rxsoft *rxs; int i; for (i = 0; i < ATW_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) continue; bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } /* * atw_detach: * * Detach an ADM8211 interface. */ int atw_detach(struct atw_softc *sc) { struct ifnet *ifp = &sc->sc_if; struct atw_rxsoft *rxs; struct atw_txsoft *txs; int i; /* * Succeed now if there isn't any work to do. */ if ((sc->sc_flags & ATWF_ATTACHED) == 0) return (0); pmf_device_deregister(sc->sc_dev); callout_stop(&sc->sc_scan_ch); ieee80211_ifdetach(&sc->sc_ic); if_detach(ifp); for (i = 0; i < ATW_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap); } for (i = 0; i < ATW_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct atw_control_data)); bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); if (sc->sc_srom) free(sc->sc_srom, M_DEVBUF); atw_evcnt_detach(sc); return (0); } /* atw_shutdown: make sure the interface is stopped at reboot time. */ bool atw_shutdown(device_t self, int flags) { struct atw_softc *sc = device_private(self); atw_stop(&sc->sc_if, 1); return true; } #if 0 static void atw_workaround1(struct atw_softc *sc) { uint32_t test1; test1 = ATW_READ(sc, ATW_TEST1); sc->sc_misc_ev.ev_count++; if ((test1 & ATW_TEST1_RXPKT1IN) != 0) { sc->sc_rxpkt1in_ev.ev_count++; return; } if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) == __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) { sc->sc_rxamatch_ev.ev_count++; return; } sc->sc_workaround1_ev.ev_count++; (void)atw_init(&sc->sc_if); } #endif int atw_intr(void *arg) { struct atw_softc *sc = arg; struct ifnet *ifp = &sc->sc_if; u_int32_t status, rxstatus, txstatus, linkstatus; int handled = 0, txthresh; #ifdef DEBUG if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev)); #endif /* * If the interface isn't running, the interrupt couldn't * possibly have come from us. */ if ((ifp->if_flags & IFF_RUNNING) == 0 || !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) return (0); for (;;) { status = ATW_READ(sc, ATW_STSR); if (status) ATW_WRITE(sc, ATW_STSR, status); #ifdef ATW_DEBUG #define PRINTINTR(flag) do { \ if ((status & flag) != 0) { \ printf("%s" #flag, delim); \ delim = ","; \ } \ } while (0) if (atw_debug > 1 && status) { const char *delim = "<"; printf("%s: reg[STSR] = %x", device_xname(sc->sc_dev), status); PRINTINTR(ATW_INTR_FBE); PRINTINTR(ATW_INTR_LINKOFF); PRINTINTR(ATW_INTR_LINKON); PRINTINTR(ATW_INTR_RCI); PRINTINTR(ATW_INTR_RDU); PRINTINTR(ATW_INTR_REIS); PRINTINTR(ATW_INTR_RPS); PRINTINTR(ATW_INTR_TCI); PRINTINTR(ATW_INTR_TDU); PRINTINTR(ATW_INTR_TLT); PRINTINTR(ATW_INTR_TPS); PRINTINTR(ATW_INTR_TRT); PRINTINTR(ATW_INTR_TUF); PRINTINTR(ATW_INTR_BCNTC); PRINTINTR(ATW_INTR_ATIME); PRINTINTR(ATW_INTR_TBTT); PRINTINTR(ATW_INTR_TSCZ); PRINTINTR(ATW_INTR_TSFTF); printf(">\n"); } #undef PRINTINTR #endif /* ATW_DEBUG */ if ((status & sc->sc_inten) == 0) break; handled = 1; rxstatus = status & sc->sc_rxint_mask; txstatus = status & sc->sc_txint_mask; linkstatus = status & sc->sc_linkint_mask; if (linkstatus) { atw_linkintr(sc, linkstatus); } if (rxstatus) { /* Grab any new packets. */ atw_rxintr(sc); if (rxstatus & ATW_INTR_RDU) { printf("%s: receive ring overrun\n", device_xname(sc->sc_dev)); /* Get the receive process going again. */ ATW_WRITE(sc, ATW_RDR, 0x1); } } if (txstatus) { /* Sweep up transmit descriptors. */ atw_txintr(sc, txstatus); if (txstatus & ATW_INTR_TLT) { DPRINTF(sc, ("%s: tx lifetime exceeded\n", device_xname(sc->sc_dev))); (void)atw_init(&sc->sc_if); } if (txstatus & ATW_INTR_TRT) { DPRINTF(sc, ("%s: tx retry limit exceeded\n", device_xname(sc->sc_dev))); } /* If Tx under-run, increase our transmit threshold * if another is available. */ txthresh = sc->sc_txthresh + 1; if ((txstatus & ATW_INTR_TUF) && sc->sc_txth[txthresh].txth_name != NULL) { /* Idle the transmit process. */ atw_idle(sc, ATW_NAR_ST); sc->sc_txthresh = txthresh; sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF); sc->sc_opmode |= sc->sc_txth[txthresh].txth_opmode; printf("%s: transmit underrun; new " "threshold: %s\n", device_xname(sc->sc_dev), sc->sc_txth[txthresh].txth_name); /* Set the new threshold and restart * the transmit process. */ ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); DELAY(atw_nar_delay); ATW_WRITE(sc, ATW_TDR, 0x1); /* XXX Log every Nth underrun from * XXX now on? */ } } if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) { if (status & ATW_INTR_TPS) printf("%s: transmit process stopped\n", device_xname(sc->sc_dev)); if (status & ATW_INTR_RPS) printf("%s: receive process stopped\n", device_xname(sc->sc_dev)); (void)atw_init(ifp); break; } if (status & ATW_INTR_FBE) { aprint_error_dev(sc->sc_dev, "fatal bus error\n"); (void)atw_init(ifp); break; } /* * Not handled: * * Transmit buffer unavailable -- normal * condition, nothing to do, really. * * Early receive interrupt -- not available on * all chips, we just use RI. We also only * use single-segment receive DMA, so this * is mostly useless. * * TBD others */ } /* Try to get more packets going. */ atw_start(ifp); return (handled); } /* * atw_idle: * * Cause the transmit and/or receive processes to go idle. * * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx * process in STSR if I clear SR or ST after the process has already * ceased. Fair enough. But the Rx process status bits in ATW_TEST0 * do not seem to be too reliable. Perhaps I have the sense of the * Rx bits switched with the Tx bits? */ void atw_idle(struct atw_softc *sc, u_int32_t bits) { u_int32_t ackmask = 0, opmode, stsr, test0; int i, s; s = splnet(); opmode = sc->sc_opmode & ~bits; if (bits & ATW_NAR_SR) ackmask |= ATW_INTR_RPS; if (bits & ATW_NAR_ST) { ackmask |= ATW_INTR_TPS; /* set ATW_NAR_HF to flush TX FIFO. */ opmode |= ATW_NAR_HF; } ATW_WRITE(sc, ATW_NAR, opmode); DELAY(atw_nar_delay); for (i = 0; i < 1000; i++) { stsr = ATW_READ(sc, ATW_STSR); if ((stsr & ackmask) == ackmask) break; DELAY(10); } ATW_WRITE(sc, ATW_STSR, stsr & ackmask); if ((stsr & ackmask) == ackmask) goto out; test0 = ATW_READ(sc, ATW_TEST0); if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 && (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) { printf("%s: transmit process not idle [%s]\n", device_xname(sc->sc_dev), atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]); printf("%s: bits %08x test0 %08x stsr %08x\n", device_xname(sc->sc_dev), bits, test0, stsr); } if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 && (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) { DPRINTF2(sc, ("%s: receive process not idle [%s]\n", device_xname(sc->sc_dev), atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)])); DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n", device_xname(sc->sc_dev), bits, test0, stsr)); } out: if ((bits & ATW_NAR_ST) != 0) atw_txdrain(sc); splx(s); return; } /* * atw_linkintr: * * Helper; handle link-status interrupts. */ void atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus) { struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_state != IEEE80211_S_RUN) return; if (linkstatus & ATW_INTR_LINKON) { DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev))); sc->sc_rescan_timer = 0; } else if (linkstatus & ATW_INTR_LINKOFF) { DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev))); if (ic->ic_opmode != IEEE80211_M_STA) return; sc->sc_rescan_timer = 3; sc->sc_if.if_timer = 1; } } static inline int atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh) { if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0) return 0; if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0) return 0; return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0; } /* * atw_rxintr: * * Helper; handle receive interrupts. */ void atw_rxintr(struct atw_softc *sc) { static int rate_tbl[] = {2, 4, 11, 22, 44}; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ieee80211_frame_min *wh; struct ifnet *ifp = &sc->sc_if; struct atw_rxsoft *rxs; struct mbuf *m; u_int32_t rxstat; int i, len, rate, rate0; u_int32_t rssi, ctlrssi; for (i = sc->sc_rxptr;; i = sc->sc_rxptr) { rxs = &sc->sc_rxsoft[i]; ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rxstat = le32toh(sc->sc_rxdescs[i].ar_stat); ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi); rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK); if (rxstat & ATW_RXSTAT_OWN) { ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); break; } sc->sc_rxptr = ATW_NEXTRX(i); DPRINTF3(sc, ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n", device_xname(sc->sc_dev), rxstat, ctlrssi, le32toh(sc->sc_rxdescs[i].ar_buf1), le32toh(sc->sc_rxdescs[i].ar_buf2))); /* * Make sure the packet fits in one buffer. This should * always be the case. */ if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) != (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) { printf("%s: incoming packet spilled, resetting\n", device_xname(sc->sc_dev)); (void)atw_init(ifp); return; } /* * If an error occurred, update stats, clear the status * word, and leave the packet buffer in place. It will * simply be reused the next time the ring comes around. */ if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) { #define PRINTERR(bit, str) \ if (rxstat & (bit)) \ aprint_error_dev(sc->sc_dev, "receive error: %s\n", \ str) ifp->if_ierrors++; PRINTERR(ATW_RXSTAT_DE, "descriptor error"); PRINTERR(ATW_RXSTAT_RXTOE, "time-out"); #if 0 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error"); PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error"); PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error"); PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error"); #endif #undef PRINTERR atw_init_rxdesc(sc, i); continue; } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * No errors; receive the packet. Note the ADM8211 * includes the CRC in promiscuous mode. */ len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK); /* * Allocate a new mbuf cluster. If that fails, we are * out of memory, and must drop the packet and recycle * the buffer that's already attached to this descriptor. */ m = rxs->rxs_mbuf; if (atw_add_rxbuf(sc, i) != 0) { ifp->if_ierrors++; bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); atw_init_rxdesc(sc, i); continue; } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len); rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0; /* The RSSI comes straight from a register in the * baseband processor. I know that for the RF3000, * the RSSI register also contains the antenna-selection * bits. Mask those off. * * TBD Treat other basebands. * TBD Use short-preamble bit and such in RF3000_RXSTAT. */ if (sc->sc_bbptype == ATW_BBPTYPE_RFMD) rssi = ctlrssi & RF3000_RSSI_MASK; else rssi = ctlrssi; /* Pass this up to any BPF listeners. */ if (sc->sc_radiobpf != NULL) { struct atw_rx_radiotap_header *tap = &sc->sc_rxtap; tap->ar_rate = rate; /* TBD verify units are dB */ tap->ar_antsignal = (int)rssi; if (sc->sc_opmode & ATW_NAR_PR) tap->ar_flags = IEEE80211_RADIOTAP_F_FCS; else tap->ar_flags = 0; if ((rxstat & ATW_RXSTAT_CRC32E) != 0) tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS; bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu), m); } sc->sc_recv_ev.ev_count++; if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) { if (rxstat & ATW_RXSTAT_CRC16E) sc->sc_crc16e_ev.ev_count++; if (rxstat & ATW_RXSTAT_CRC32E) sc->sc_crc32e_ev.ev_count++; if (rxstat & ATW_RXSTAT_ICVE) sc->sc_icve_ev.ev_count++; if (rxstat & ATW_RXSTAT_SFDE) sc->sc_sfde_ev.ev_count++; if (rxstat & ATW_RXSTAT_SIGE) sc->sc_sige_ev.ev_count++; ifp->if_ierrors++; m_freem(m); continue; } if (sc->sc_opmode & ATW_NAR_PR) m_adj(m, -IEEE80211_CRC_LEN); wh = mtod(m, struct ieee80211_frame_min *); ni = ieee80211_find_rxnode(ic, wh); #if 0 if (atw_hw_decrypted(sc, wh)) { wh->i_fc[1] &= ~IEEE80211_FC1_WEP; DPRINTF(sc, ("%s: hw decrypted\n", __func__)); } #endif ieee80211_input(ic, m, ni, (int)rssi, 0); ieee80211_free_node(ni); } } /* * atw_txintr: * * Helper; handle transmit interrupts. */ void atw_txintr(struct atw_softc *sc, uint32_t status) { static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)]; struct ifnet *ifp = &sc->sc_if; struct atw_txsoft *txs; u_int32_t txstat; DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags)); /* * Go through our Tx list and free mbufs for those * frames that have been transmitted. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); #ifdef ATW_DEBUG if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) { int i; printf(" txsoft %p transmit chain:\n", txs); ATW_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs - 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) { printf(" descriptor %d:\n", i); printf(" at_status: 0x%08x\n", le32toh(sc->sc_txdescs[i].at_stat)); printf(" at_flags: 0x%08x\n", le32toh(sc->sc_txdescs[i].at_flags)); printf(" at_buf1: 0x%08x\n", le32toh(sc->sc_txdescs[i].at_buf1)); printf(" at_buf2: 0x%08x\n", le32toh(sc->sc_txdescs[i].at_buf2)); if (i == txs->txs_lastdesc) break; } ATW_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD); } #endif txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat); if (txstat & ATW_TXSTAT_OWN) { ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1, BUS_DMASYNC_PREREAD); break; } SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; sc->sc_txfree += txs->txs_ndescs; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0); sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if ((ifp->if_flags & IFF_DEBUG) != 0 && (txstat & ATW_TXSTAT_ERRMASK) != 0) { snprintb(txstat_buf, sizeof(txstat_buf), ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK); printf("%s: txstat %s %" __PRIuBITS "\n", device_xname(sc->sc_dev), txstat_buf, __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK)); } sc->sc_xmit_ev.ev_count++; /* * Check for errors and collisions. */ if (txstat & ATW_TXSTAT_TUF) sc->sc_tuf_ev.ev_count++; if (txstat & ATW_TXSTAT_TLT) sc->sc_tlt_ev.ev_count++; if (txstat & ATW_TXSTAT_TRT) sc->sc_trt_ev.ev_count++; if (txstat & ATW_TXSTAT_TRO) sc->sc_tro_ev.ev_count++; if (txstat & ATW_TXSTAT_SOFBR) sc->sc_sofbr_ev.ev_count++; if ((txstat & ATW_TXSTAT_ES) == 0) ifp->if_collisions += __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK); else ifp->if_oerrors++; ifp->if_opackets++; } KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0); } /* * atw_watchdog: [ifnet interface function] * * Watchdog timer handler. */ void atw_watchdog(struct ifnet *ifp) { struct atw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ifp->if_timer = 0; if (!device_is_active(sc->sc_dev)) return; if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0) (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 && !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) { printf("%s: transmit timeout\n", ifp->if_xname); ifp->if_oerrors++; (void)atw_init(ifp); atw_start(ifp); } if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0) ifp->if_timer = 1; ieee80211_watchdog(ic); } static void atw_evcnt_detach(struct atw_softc *sc) { evcnt_detach(&sc->sc_sige_ev); evcnt_detach(&sc->sc_sfde_ev); evcnt_detach(&sc->sc_icve_ev); evcnt_detach(&sc->sc_crc32e_ev); evcnt_detach(&sc->sc_crc16e_ev); evcnt_detach(&sc->sc_recv_ev); evcnt_detach(&sc->sc_tuf_ev); evcnt_detach(&sc->sc_tro_ev); evcnt_detach(&sc->sc_trt_ev); evcnt_detach(&sc->sc_tlt_ev); evcnt_detach(&sc->sc_sofbr_ev); evcnt_detach(&sc->sc_xmit_ev); evcnt_detach(&sc->sc_rxpkt1in_ev); evcnt_detach(&sc->sc_rxamatch_ev); evcnt_detach(&sc->sc_workaround1_ev); evcnt_detach(&sc->sc_misc_ev); } static void atw_evcnt_attach(struct atw_softc *sc) { evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC, NULL, sc->sc_if.if_xname, "recv"); evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC, &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error"); evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC, &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error"); evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC, &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error"); evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC, &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error"); evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC, &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error"); evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC, NULL, sc->sc_if.if_xname, "xmit"); evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC, &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow"); evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC, &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun"); evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC, &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded"); evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC, &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded"); evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC, &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch"); evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC, NULL, sc->sc_if.if_xname, "misc"); evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC, &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1"); evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC, &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa"); evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC, &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set"); } #ifdef ATW_DEBUG static void atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0) { struct atw_softc *sc = ifp->if_softc; struct mbuf *m; int i, noctets = 0; printf("%s: %d-byte packet\n", device_xname(sc->sc_dev), m0->m_pkthdr.len); for (m = m0; m; m = m->m_next) { if (m->m_len == 0) continue; for (i = 0; i < m->m_len; i++) { printf(" %02x", ((u_int8_t*)m->m_data)[i]); if (++noctets % 24 == 0) printf("\n"); } } printf("%s%s: %d bytes emitted\n", (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets); } #endif /* ATW_DEBUG */ /* * atw_start: [ifnet interface function] * * Start packet transmission on the interface. */ void atw_start(struct ifnet *ifp) { struct atw_softc *sc = ifp->if_softc; struct ieee80211_key *k; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ieee80211_frame_min *whm; struct ieee80211_frame *wh; struct atw_frame *hh; uint16_t hdrctl; struct mbuf *m0, *m; struct atw_txsoft *txs, *last_txs; struct atw_txdesc *txd; int npkt, rate; bus_dmamap_t dmamap; int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg; DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags)); if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) return; /* * Remember the previous number of free descriptors and * the first descriptor we'll use. */ ofree = sc->sc_txfree; firsttx = lasttx = sc->sc_txnext; DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n", device_xname(sc->sc_dev), ofree, firsttx)); /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && sc->sc_txfree != 0) { hdrctl = htole16(ATW_HDRCTL_UNKNOWN1); /* * Grab a packet off the management queue, if it * is not empty. Otherwise, from the data queue. */ IF_DEQUEUE(&ic->ic_mgtq, m0); if (m0 != NULL) { ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; } else if (ic->ic_state != IEEE80211_S_RUN) break; /* send no data until associated */ else { IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; bpf_mtap(ifp, m0); ni = ieee80211_find_txnode(ic, mtod(m0, struct ether_header *)->ether_dhost); if (ni == NULL) { ifp->if_oerrors++; break; } if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } } rate = MAX(ieee80211_get_rate(ni), 2); whm = mtod(m0, struct ieee80211_frame_min *); if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0) k = NULL; else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) { m_freem(m0); ieee80211_free_node(ni); ifp->if_oerrors++; break; } #if 0 if (IEEE80211_IS_MULTICAST(wh->i_addr1) && m0->m_pkthdr.len > ic->ic_fragthreshold) hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG); #endif if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold) hdrctl |= htole16(ATW_HDRCTL_RTSCTS); if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len, ic->ic_flags, ic->ic_fragthreshold, rate, &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) { DPRINTF2(sc, ("%s: fail compute duration\n", __func__)); m_freem(m0); break; } /* XXX Misleading if fragmentation is enabled. Better * to fragment in software? */ *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur); /* * Pass the packet to any BPF listeners. */ bpf_mtap3(ic->ic_rawbpf, m0); if (sc->sc_radiobpf != NULL) { struct atw_tx_radiotap_header *tap = &sc->sc_txtap; tap->at_rate = rate; bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu), m0); } M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT); if (ni != NULL) ieee80211_free_node(ni); if (m0 == NULL) { ifp->if_oerrors++; break; } /* just to make sure. */ m0 = m_pullup(m0, sizeof(struct atw_frame)); if (m0 == NULL) { ifp->if_oerrors++; break; } hh = mtod(m0, struct atw_frame *); wh = &hh->atw_ihdr; /* Copy everything we need from the 802.11 header: * Frame Control; address 1, address 3, or addresses * 3 and 4. NIC fills in BSSID, SA. */ if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) { if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS) panic("%s: illegal WDS frame", device_xname(sc->sc_dev)); memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN); } else memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN); *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc; /* initialize remaining Tx parameters */ memset(&hh->u, 0, sizeof(hh->u)); hh->atw_rate = rate * 5; /* XXX this could be incorrect if M_FCS. _encap should * probably strip FCS just in case it sticks around in * bridged packets. */ hh->atw_service = 0x00; /* XXX guess */ hh->atw_paylen = htole16(m0->m_pkthdr.len - sizeof(struct atw_frame)); /* never fragment multicast frames */ if (IEEE80211_IS_MULTICAST(hh->atw_dst)) hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX); else { if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE); hh->atw_fragthr = htole16(ic->ic_fragthreshold); } hh->atw_rtylmt = 3; #if 0 if (do_encrypt) { hdrctl |= htole16(ATW_HDRCTL_WEP); hh->atw_keyid = ic->ic_def_txkey; } #endif hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len); hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len); if (txs->txs_d0.d_residue) hh->atw_head_plcplen |= htole16(0x8000); if (txs->txs_dn.d_residue) hh->atw_tail_plcplen |= htole16(0x8000); hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur); hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur); hh->atw_hdrctl = hdrctl; hh->atw_fragnum = npkt << 4; #ifdef ATW_DEBUG if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) { printf("%s: dst = %s, rate = 0x%02x, " "service = 0x%02x, paylen = 0x%04x\n", device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst), hh->atw_rate, hh->atw_service, hh->atw_paylen); printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, " "dur1 = 0x%04x, dur2 = 0x%04x, " "dur3 = 0x%04x, rts_dur = 0x%04x\n", device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1], hh->atw_tail_plcplen, hh->atw_head_plcplen, hh->atw_tail_dur, hh->atw_head_dur); printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, " "fragnum = 0x%02x, rtylmt = 0x%04x\n", device_xname(sc->sc_dev), hh->atw_hdrctl, hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt); printf("%s: keyid = %d\n", device_xname(sc->sc_dev), hh->atw_keyid); atw_dump_pkt(ifp, m0); } #endif /* ATW_DEBUG */ dmamap = txs->txs_dmamap; /* * Load the DMA map. Copy and try (once) again if the packet * didn't fit in the alloted number of segments. */ for (first = 1; (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first; first = 0) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n"); break; } if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { aprint_error_dev(sc->sc_dev, "unable to allocate Tx " "cluster\n"); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; m_freem(m0); m0 = m; m = NULL; } if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, " "error = %d\n", error); m_freem(m0); break; } /* * Ensure we have enough descriptors free to describe * the packet. */ if (dmamap->dm_nsegs > sc->sc_txfree) { /* * Not enough free descriptors to transmit * this packet. Unload the DMA map and * drop the packet. Notify the upper layer * that there are no more slots left. * * XXX We could allocate an mbuf and copy, but * XXX it is worth it? */ bus_dmamap_unload(sc->sc_dmat, dmamap); m_freem(m0); break; } /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* XXX arbitrary retry limit; 8 because I have seen it in * use already and maybe 0 means "no tries" ! */ ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK)); DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n", device_xname(sc->sc_dev), rate * 5)); ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK)); /* * Initialize the transmit descriptors. */ for (nexttx = sc->sc_txnext, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = ATW_NEXTTX(nexttx)) { /* * If this is the first descriptor we're * enqueueing, don't set the OWN bit just * yet. That could cause a race condition. * We'll do it below. */ txd = &sc->sc_txdescs[nexttx]; txd->at_ctl = ctl | ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN)); txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr); txd->at_flags = htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len, ATW_TXFLAG_TBS1_MASK)) | ((nexttx == (ATW_NTXDESC - 1)) ? htole32(ATW_TXFLAG_TER) : 0); lasttx = nexttx; } /* Set `first segment' and `last segment' appropriately. */ sc->sc_txdescs[sc->sc_txnext].at_flags |= htole32(ATW_TXFLAG_FS); sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS); #ifdef ATW_DEBUG if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) { printf(" txsoft %p transmit chain:\n", txs); for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) { printf(" descriptor %d:\n", seg); printf(" at_ctl: 0x%08x\n", le32toh(sc->sc_txdescs[seg].at_ctl)); printf(" at_flags: 0x%08x\n", le32toh(sc->sc_txdescs[seg].at_flags)); printf(" at_buf1: 0x%08x\n", le32toh(sc->sc_txdescs[seg].at_buf1)); printf(" at_buf2: 0x%08x\n", le32toh(sc->sc_txdescs[seg].at_buf2)); if (seg == lasttx) break; } } #endif /* Sync the descriptors we're using. */ ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Store a pointer to the packet so we can free it later, * and remember what txdirty will be once the packet is * done. */ txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = lasttx; txs->txs_ndescs = dmamap->dm_nsegs; /* Advance the tx pointer. */ sc->sc_txfree -= dmamap->dm_nsegs; sc->sc_txnext = nexttx; SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); last_txs = txs; } if (sc->sc_txfree != ofree) { DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", device_xname(sc->sc_dev), lasttx, firsttx)); /* * Cause a transmit interrupt to happen on the * last packet we enqueued. */ sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC); ATW_CDTXSYNC(sc, lasttx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * The entire packet chain is set up. Give the * first descriptor to the chip now. */ sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN); ATW_CDTXSYNC(sc, firsttx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* Wake up the transmitter. */ ATW_WRITE(sc, ATW_TDR, 0x1); if (txs == NULL || sc->sc_txfree == 0) ifp->if_flags |= IFF_OACTIVE; /* Set a watchdog timer in case the chip flakes out. */ sc->sc_tx_timer = 5; ifp->if_timer = 1; } } /* * atw_ioctl: [ifnet interface function] * * Handle control requests from the operator. */ int atw_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct atw_softc *sc = ifp->if_softc; struct ieee80211req *ireq; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { case IFF_UP|IFF_RUNNING: /* * To avoid rescanning another access point, * do not call atw_init() here. Instead, * only reflect media settings. */ if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) atw_filter_setup(sc); break; case IFF_UP: error = atw_init(ifp); break; case IFF_RUNNING: atw_stop(ifp, 1); break; case 0: break; } break; case SIOCADDMULTI: case SIOCDELMULTI: if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) atw_filter_setup(sc); /* do not rescan */ error = 0; } break; case SIOCS80211: ireq = data; if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) { if ((error = kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL) != 0)) break; if (!(IEEE80211_FRAG_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_FRAG_MAX)) error = EINVAL; else sc->sc_ic.ic_fragthreshold = ireq->i_val; break; } /*FALLTHROUGH*/ default: error = ieee80211_ioctl(&sc->sc_ic, cmd, data); if (error == ENETRESET || error == ERESTART) { if (is_running(ifp)) error = atw_init(ifp); else error = 0; } break; } /* Try to get more packets going. */ if (device_is_active(sc->sc_dev)) atw_start(ifp); splx(s); return (error); } static int atw_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error == ENETRESET) { if (is_running(ifp)) error = atw_init(ifp); else error = 0; } return error; }