/* $NetBSD: z8530tty.c,v 1.12 2002/03/17 19:40:44 atatat Exp $ */ /*- * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999 * Charles M. Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles M. Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994 Gordon W. Ross * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Zilog Z8530 Dual UART driver (tty interface) * * This is the "slave" driver that will be attached to * the "zsc" driver for plain "tty" async. serial lines. * * Credits, history: * * The original version of this code was the sparc/dev/zs.c driver * as distributed with the Berkeley 4.4 Lite release. Since then, * Gordon Ross reorganized the code into the current parent/child * driver scheme, separating the Sun keyboard and mouse support * into independent child drivers. * * RTS/CTS flow-control support was a collaboration of: * Gordon Ross , * Bill Studenmund * Ian Dall * * The driver was massively overhauled in November 1997 by Charles Hannum, * fixing *many* bugs, and substantially improving performance. */ #include "opt_kgdb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "locators.h" /* * How many input characters we can buffer. * The port-specific var.h may override this. * Note: must be a power of two! */ #ifndef ZSTTY_RING_SIZE #define ZSTTY_RING_SIZE 2048 #endif /* * Make this an option variable one can patch. * But be warned: this must be a power of 2! */ u_int zstty_rbuf_size = ZSTTY_RING_SIZE; /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4; u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4; struct zstty_softc { struct device zst_dev; /* required first: base device */ struct tty *zst_tty; struct zs_chanstate *zst_cs; struct callout zst_diag_ch; u_int zst_overflows, zst_floods, zst_errors; int zst_hwflags, /* see z8530var.h */ zst_swflags; /* TIOCFLAG_SOFTCAR, ... */ u_int zst_r_hiwat, zst_r_lowat; u_char *volatile zst_rbget, *volatile zst_rbput; volatile u_int zst_rbavail; u_char *zst_rbuf, *zst_ebuf; /* * The transmit byte count and address are used for pseudo-DMA * output in the hardware interrupt code. PDMA can be suspended * to get pending changes done; heldtbc is used for this. It can * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state. */ u_char *zst_tba; /* transmit buffer address */ u_int zst_tbc, /* transmit byte count */ zst_heldtbc; /* held tbc while xmission stopped */ /* Flags to communicate with zstty_softint() */ volatile u_char zst_rx_flags, /* receiver blocked */ #define RX_TTY_BLOCKED 0x01 #define RX_TTY_OVERFLOWED 0x02 #define RX_IBUF_BLOCKED 0x04 #define RX_IBUF_OVERFLOWED 0x08 #define RX_ANY_BLOCK 0x0f zst_tx_busy, /* working on an output chunk */ zst_tx_done, /* done with one output chunk */ zst_tx_stopped, /* H/W level stop (lost CTS) */ zst_st_check, /* got a status interrupt */ zst_rx_ready; }; /* Macros to clear/set/test flags. */ #define SET(t, f) (t) |= (f) #define CLR(t, f) (t) &= ~(f) #define ISSET(t, f) ((t) & (f)) /* Definition of the driver for autoconfig. */ static int zstty_match(struct device *, struct cfdata *, void *); static void zstty_attach(struct device *, struct device *, void *); struct cfattach zstty_ca = { sizeof(struct zstty_softc), zstty_match, zstty_attach }; extern struct cfdriver zstty_cd; struct zsops zsops_tty; /* Routines called from other code. */ cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */ static void zs_shutdown __P((struct zstty_softc *)); static void zsstart __P((struct tty *)); static int zsparam __P((struct tty *, struct termios *)); static void zs_modem __P((struct zstty_softc *, int)); static void tiocm_to_zs __P((struct zstty_softc *, int, int)); static int zs_to_tiocm __P((struct zstty_softc *)); static int zshwiflow __P((struct tty *, int)); static void zs_hwiflow __P((struct zstty_softc *)); /* Low-level routines. */ static void zstty_rxint __P((struct zs_chanstate *)); static void zstty_stint __P((struct zs_chanstate *, int)); static void zstty_txint __P((struct zs_chanstate *)); static void zstty_softint __P((struct zs_chanstate *)); #define ZSUNIT(x) (minor(x) & 0x7ffff) #define ZSDIALOUT(x) (minor(x) & 0x80000) /* * zstty_match: how is this zs channel configured? */ int zstty_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct zsc_attach_args *args = aux; /* Exact match is better than wildcard. */ if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel) return 2; /* This driver accepts wildcard. */ if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT) return 1; return 0; } void zstty_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct zsc_softc *zsc = (void *) parent; struct zstty_softc *zst = (void *) self; struct cfdata *cf = self->dv_cfdata; struct zsc_attach_args *args = aux; struct zs_chanstate *cs; struct tty *tp; int channel, s, tty_unit; dev_t dev; callout_init(&zst->zst_diag_ch); tty_unit = zst->zst_dev.dv_unit; channel = args->channel; cs = zsc->zsc_cs[channel]; cs->cs_private = zst; cs->cs_ops = &zsops_tty; zst->zst_cs = cs; zst->zst_swflags = cf->cf_flags; /* softcar, etc. */ zst->zst_hwflags = args->hwflags; dev = makedev(zs_major, tty_unit); if (zst->zst_swflags) printf(" flags 0x%x", zst->zst_swflags); if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { printf(" (console)\n"); DELAY(20000); cn_tab->cn_dev = dev; } else #ifdef KGDB if (zs_check_kgdb(cs, dev)) { /* * Allow kgdb to "take over" this port. Returns true * if this serial port is in-use by kgdb. */ printf(" (kgdb)\n"); /* * This is the kgdb port (exclusive use) * so skip the normal attach code. */ return; } else #endif printf("\n"); tp = ttymalloc(); tp->t_dev = dev; tp->t_oproc = zsstart; tp->t_param = zsparam; tp->t_hwiflow = zshwiflow; tty_attach(tp); zst->zst_tty = tp; zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK); zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1); /* Disable the high water mark. */ zst->zst_r_hiwat = 0; zst->zst_r_lowat = 0; zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf; zst->zst_rbavail = zstty_rbuf_size; /* XXX - Do we need an MD hook here? */ /* * Hardware init */ if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { /* Call zsparam similar to open. */ struct termios t; /* Setup the "new" parameters in t. */ t.c_ispeed = 0; t.c_ospeed = cs->cs_defspeed; t.c_cflag = cs->cs_defcflag; s = splzs(); /* * Turn on receiver and status interrupts. * We defer the actual write of the register to zsparam(), * but we must make sure status interrupts are turned on by * the time zsparam() reads the initial rr0 state. */ SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); splx(s); /* Make sure zsparam will see changes. */ tp->t_ospeed = 0; (void) zsparam(tp, &t); s = splzs(); /* Make sure DTR is on now. */ zs_modem(zst, 1); splx(s); } else { /* Not the console; may need reset. */ int reset; reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); /* Will raise DTR in open. */ zs_modem(zst, 0); splx(s); } } /* * Return pointer to our tty. */ struct tty * zstty(dev) dev_t dev; { struct zstty_softc *zst; int unit = ZSUNIT(dev); #ifdef DIAGNOSTIC if (unit >= zstty_cd.cd_ndevs) panic("zstty"); #endif zst = zstty_cd.cd_devs[unit]; return (zst->zst_tty); } void zs_shutdown(zst) struct zstty_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; struct tty *tp = zst->zst_tty; int s; s = splzs(); /* If we were asserting flow control, then deassert it. */ SET(zst->zst_rx_flags, RX_IBUF_BLOCKED); zs_hwiflow(zst); /* Clear any break condition set with TIOCSBRK. */ zs_break(cs, 0); /* * Hang up if necessary. Wait a bit, so the other side has time to * notice even if we immediately open the port again. */ if (ISSET(tp->t_cflag, HUPCL)) { zs_modem(zst, 0); (void) tsleep(cs, TTIPRI, ttclos, hz); } /* Turn off interrupts if not the console. */ if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } splx(s); } /* * Open a zs serial (tty) port. */ int zsopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { int unit = ZSUNIT(dev); struct zstty_softc *zst; struct zs_chanstate *cs; struct tty *tp; int s, s2; int error; if (unit >= zstty_cd.cd_ndevs) return (ENXIO); zst = zstty_cd.cd_devs[unit]; if (zst == 0) return (ENXIO); tp = zst->zst_tty; cs = zst->zst_cs; /* If KGDB took the line, then tp==NULL */ if (tp == NULL) return (EBUSY); if (ISSET(tp->t_state, TS_ISOPEN) && ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0) return (EBUSY); s = spltty(); /* * Do the following iff this is a first open. */ if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { struct termios t; tp->t_dev = dev; /* * Initialize the termios status to the defaults. Add in the * sticky bits from TIOCSFLAGS. */ t.c_ispeed = 0; t.c_ospeed = cs->cs_defspeed; t.c_cflag = cs->cs_defcflag; if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL)) SET(t.c_cflag, CLOCAL); if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS)) SET(t.c_cflag, CRTSCTS); if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS)) SET(t.c_cflag, CDTRCTS); if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF)) SET(t.c_cflag, MDMBUF); s2 = splzs(); /* * Turn on receiver and status interrupts. * We defer the actual write of the register to zsparam(), * but we must make sure status interrupts are turned on by * the time zsparam() reads the initial rr0 state. */ SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); splx(s2); /* Make sure zsparam will see changes. */ tp->t_ospeed = 0; (void) zsparam(tp, &t); /* * Note: zsparam has done: cflag, ispeed, ospeed * so we just need to do: iflag, oflag, lflag, cc * For "raw" mode, just leave all zeros. */ if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) { tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_lflag = TTYDEF_LFLAG; } else { tp->t_iflag = 0; tp->t_oflag = 0; tp->t_lflag = 0; } ttychars(tp); ttsetwater(tp); s2 = splzs(); /* * Turn on DTR. We must always do this, even if carrier is not * present, because otherwise we'd have to use TIOCSDTR * immediately after setting CLOCAL, which applications do not * expect. We always assert DTR while the device is open * unless explicitly requested to deassert it. */ zs_modem(zst, 1); /* Clear the input ring, and unblock. */ zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf; zst->zst_rbavail = zstty_rbuf_size; zs_iflush(cs); CLR(zst->zst_rx_flags, RX_ANY_BLOCK); zs_hwiflow(zst); splx(s2); } splx(s); error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK)); if (error) goto bad; error = (*tp->t_linesw->l_open)(dev, tp); if (error) goto bad; return (0); bad: if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { /* * We failed to open the device, and nobody else had it opened. * Clean up the state as appropriate. */ zs_shutdown(zst); } return (error); } /* * Close a zs serial port. */ int zsclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)]; struct tty *tp = zst->zst_tty; /* XXX This is for cons.c. */ if (!ISSET(tp->t_state, TS_ISOPEN)) return 0; (*tp->t_linesw->l_close)(tp, flags); ttyclose(tp); if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { /* * Although we got a last close, the device may still be in * use; e.g. if this was the dialout node, and there are still * processes waiting for carrier on the non-dialout node. */ zs_shutdown(zst); } return (0); } /* * Read/write zs serial port. */ int zsread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)]; struct tty *tp = zst->zst_tty; return ((*tp->t_linesw->l_read)(tp, uio, flags)); } int zswrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)]; struct tty *tp = zst->zst_tty; return ((*tp->t_linesw->l_write)(tp, uio, flags)); } int zspoll(dev, events, p) dev_t dev; int events; struct proc *p; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)]; struct tty *tp = zst->zst_tty; return ((*tp->t_linesw->l_poll)(tp, events, p)); } int zsioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)]; struct zs_chanstate *cs = zst->zst_cs; struct tty *tp = zst->zst_tty; int error; int s; error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p); if (error != EPASSTHROUGH) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error != EPASSTHROUGH) return (error); #ifdef ZS_MD_IOCTL error = ZS_MD_IOCTL(cs, cmd, data); if (error != EPASSTHROUGH) return (error); #endif /* ZS_MD_IOCTL */ error = 0; s = splzs(); switch (cmd) { case TIOCSBRK: zs_break(cs, 1); break; case TIOCCBRK: zs_break(cs, 0); break; case TIOCGFLAGS: *(int *)data = zst->zst_swflags; break; case TIOCSFLAGS: error = suser(p->p_ucred, &p->p_acflag); if (error) break; zst->zst_swflags = *(int *)data; break; case TIOCSDTR: zs_modem(zst, 1); break; case TIOCCDTR: zs_modem(zst, 0); break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: tiocm_to_zs(zst, cmd, *(int *)data); break; case TIOCMGET: *(int *)data = zs_to_tiocm(zst); break; default: error = EPASSTHROUGH; break; } splx(s); return (error); } /* * Start or restart transmission. */ static void zsstart(tp) struct tty *tp; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)]; struct zs_chanstate *cs = zst->zst_cs; int s; s = spltty(); if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) goto out; if (zst->zst_tx_stopped) goto out; if (tp->t_outq.c_cc <= tp->t_lowat) { if (ISSET(tp->t_state, TS_ASLEEP)) { CLR(tp->t_state, TS_ASLEEP); wakeup((caddr_t)&tp->t_outq); } selwakeup(&tp->t_wsel); if (tp->t_outq.c_cc == 0) goto out; } /* Grab the first contiguous region of buffer space. */ { u_char *tba; int tbc; tba = tp->t_outq.c_cf; tbc = ndqb(&tp->t_outq, 0); (void) splzs(); zst->zst_tba = tba; zst->zst_tbc = tbc; } SET(tp->t_state, TS_BUSY); zst->zst_tx_busy = 1; #ifdef ZS_TXDMA if (zst->zst_tbc > 1) { zs_dma_setup(cs, zst->zst_tba, zst->zst_tbc); goto out; } #endif /* Enable transmit completion interrupts if necessary. */ if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) { SET(cs->cs_preg[1], ZSWR1_TIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } /* Output the first character of the contiguous buffer. */ { zs_write_data(cs, *zst->zst_tba); zst->zst_tbc--; zst->zst_tba++; } out: splx(s); return; } /* * Stop output, e.g., for ^S or output flush. */ void zsstop(tp, flag) struct tty *tp; int flag; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)]; int s; s = splzs(); if (ISSET(tp->t_state, TS_BUSY)) { /* Stop transmitting at the next chunk. */ zst->zst_tbc = 0; zst->zst_heldtbc = 0; if (!ISSET(tp->t_state, TS_TTSTOP)) SET(tp->t_state, TS_FLUSH); } splx(s); } /* * Set ZS tty parameters from termios. * XXX - Should just copy the whole termios after * making sure all the changes could be done. */ static int zsparam(tp, t) struct tty *tp; struct termios *t; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)]; struct zs_chanstate *cs = zst->zst_cs; int ospeed, cflag; u_char tmp3, tmp4, tmp5, tmp15; int s, error; ospeed = t->c_ospeed; cflag = t->c_cflag; /* Check requested parameters. */ if (ospeed < 0) return (EINVAL); if (t->c_ispeed && t->c_ispeed != ospeed) return (EINVAL); /* * For the console, always force CLOCAL and !HUPCL, so that the port * is always active. */ if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) || ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { SET(cflag, CLOCAL); CLR(cflag, HUPCL); } /* * Only whack the UART when params change. * Some callers need to clear tp->t_ospeed * to make sure initialization gets done. */ if (tp->t_ospeed == ospeed && tp->t_cflag == cflag) return (0); /* * Call MD functions to deal with changed * clock modes or H/W flow control modes. * The BRG divisor is set now. (reg 12,13) */ error = zs_set_speed(cs, ospeed); if (error) return (error); error = zs_set_modes(cs, cflag); if (error) return (error); /* * Block interrupts so that state will not * be altered until we are done setting it up. * * Initial values in cs_preg are set before * our attach routine is called. The master * interrupt enable is handled by zsc.c * */ s = splzs(); cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd; tmp15 = cs->cs_preg[15]; if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD)) SET(tmp15, ZSWR15_DCD_IE); else CLR(tmp15, ZSWR15_DCD_IE); if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS)) SET(tmp15, ZSWR15_CTS_IE); else CLR(tmp15, ZSWR15_CTS_IE); cs->cs_preg[15] = tmp15; /* Recompute character size bits. */ tmp3 = cs->cs_preg[3]; tmp5 = cs->cs_preg[5]; CLR(tmp3, ZSWR3_RXSIZE); CLR(tmp5, ZSWR5_TXSIZE); switch (ISSET(cflag, CSIZE)) { case CS5: SET(tmp3, ZSWR3_RX_5); SET(tmp5, ZSWR5_TX_5); break; case CS6: SET(tmp3, ZSWR3_RX_6); SET(tmp5, ZSWR5_TX_6); break; case CS7: SET(tmp3, ZSWR3_RX_7); SET(tmp5, ZSWR5_TX_7); break; case CS8: SET(tmp3, ZSWR3_RX_8); SET(tmp5, ZSWR5_TX_8); break; } cs->cs_preg[3] = tmp3; cs->cs_preg[5] = tmp5; /* * Recompute the stop bits and parity bits. Note that * zs_set_speed() may have set clock selection bits etc. * in wr4, so those must preserved. */ tmp4 = cs->cs_preg[4]; CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK); if (ISSET(cflag, CSTOPB)) SET(tmp4, ZSWR4_TWOSB); else SET(tmp4, ZSWR4_ONESB); if (!ISSET(cflag, PARODD)) SET(tmp4, ZSWR4_EVENP); if (ISSET(cflag, PARENB)) SET(tmp4, ZSWR4_PARENB); cs->cs_preg[4] = tmp4; /* And copy to tty. */ tp->t_ispeed = 0; tp->t_ospeed = ospeed; tp->t_cflag = cflag; /* * If nothing is being transmitted, set up new current values, * else mark them as pending. */ if (!cs->cs_heldchange) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 1; } else zs_loadchannelregs(cs); } /* * If hardware flow control is disabled, turn off the buffer water * marks and unblock any soft flow control state. Otherwise, enable * the water marks. */ if (!ISSET(cflag, CHWFLOW)) { zst->zst_r_hiwat = 0; zst->zst_r_lowat = 0; if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED); zst->zst_rx_ready = 1; cs->cs_softreq = 1; } if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); zs_hwiflow(zst); } } else { zst->zst_r_hiwat = zstty_rbuf_hiwat; zst->zst_r_lowat = zstty_rbuf_lowat; } /* * Force a recheck of the hardware carrier and flow control status, * since we may have changed which bits we're looking at. */ zstty_stint(cs, 1); splx(s); /* * If hardware flow control is disabled, unblock any hard flow control * state. */ if (!ISSET(cflag, CHWFLOW)) { if (zst->zst_tx_stopped) { zst->zst_tx_stopped = 0; zsstart(tp); } } zstty_softint(cs); return (0); } /* * Raise or lower modem control (DTR/RTS) signals. If a character is * in transmission, the change is deferred. */ static void zs_modem(zst, onoff) struct zstty_softc *zst; int onoff; { struct zs_chanstate *cs = zst->zst_cs; if (cs->cs_wr5_dtr == 0) return; if (onoff) SET(cs->cs_preg[5], cs->cs_wr5_dtr); else CLR(cs->cs_preg[5], cs->cs_wr5_dtr); if (!cs->cs_heldchange) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 1; } else zs_loadchannelregs(cs); } } static void tiocm_to_zs(zst, how, ttybits) struct zstty_softc *zst; int how, ttybits; { struct zs_chanstate *cs = zst->zst_cs; u_char zsbits; zsbits = 0; if (ISSET(ttybits, TIOCM_DTR)) SET(zsbits, ZSWR5_DTR); if (ISSET(ttybits, TIOCM_RTS)) SET(zsbits, ZSWR5_RTS); switch (how) { case TIOCMBIC: CLR(cs->cs_preg[5], zsbits); break; case TIOCMBIS: SET(cs->cs_preg[5], zsbits); break; case TIOCMSET: CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR); SET(cs->cs_preg[5], zsbits); break; } if (!cs->cs_heldchange) { if (zst->zst_tx_busy) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 1; } else zs_loadchannelregs(cs); } } static int zs_to_tiocm(zst) struct zstty_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; u_char zsbits; int ttybits = 0; zsbits = cs->cs_preg[5]; if (ISSET(zsbits, ZSWR5_DTR)) SET(ttybits, TIOCM_DTR); if (ISSET(zsbits, ZSWR5_RTS)) SET(ttybits, TIOCM_RTS); zsbits = cs->cs_rr0; if (ISSET(zsbits, ZSRR0_DCD)) SET(ttybits, TIOCM_CD); if (ISSET(zsbits, ZSRR0_CTS)) SET(ttybits, TIOCM_CTS); return (ttybits); } /* * Try to block or unblock input using hardware flow-control. * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and * if this function returns non-zero, the TS_TBLOCK flag will * be set or cleared according to the "block" arg passed. */ int zshwiflow(tp, block) struct tty *tp; int block; { struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)]; struct zs_chanstate *cs = zst->zst_cs; int s; if (cs->cs_wr5_rts == 0) return (0); s = splzs(); if (block) { if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { SET(zst->zst_rx_flags, RX_TTY_BLOCKED); zs_hwiflow(zst); } } else { if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED); zst->zst_rx_ready = 1; cs->cs_softreq = 1; } if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { CLR(zst->zst_rx_flags, RX_TTY_BLOCKED); zs_hwiflow(zst); } } splx(s); return (1); } /* * Internal version of zshwiflow * called at splzs */ static void zs_hwiflow(zst) struct zstty_softc *zst; { struct zs_chanstate *cs = zst->zst_cs; if (cs->cs_wr5_rts == 0) return; if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) { CLR(cs->cs_preg[5], cs->cs_wr5_rts); CLR(cs->cs_creg[5], cs->cs_wr5_rts); } else { SET(cs->cs_preg[5], cs->cs_wr5_rts); SET(cs->cs_creg[5], cs->cs_wr5_rts); } zs_write_reg(cs, 5, cs->cs_creg[5]); } /**************************************************************** * Interface to the lower layer (zscc) ****************************************************************/ #define integrate static inline integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *)); integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *)); integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *)); static void zstty_diag __P((void *)); /* * receiver ready interrupt. * called at splzs */ static void zstty_rxint(cs) struct zs_chanstate *cs; { struct zstty_softc *zst = cs->cs_private; u_char *put, *end; u_int cc; u_char rr0, rr1, c; end = zst->zst_ebuf; put = zst->zst_rbput; cc = zst->zst_rbavail; while (cc > 0) { /* * First read the status, because reading the received char * destroys the status of this char. */ rr1 = zs_read_reg(cs, 1); c = zs_read_data(cs); if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { /* Clear the receive error. */ zs_write_csr(cs, ZSWR0_RESET_ERRORS); } put[0] = c; put[1] = rr1; put += 2; if (put >= end) put = zst->zst_rbuf; cc--; rr0 = zs_read_csr(cs); if (!ISSET(rr0, ZSRR0_RX_READY)) break; } /* * Current string of incoming characters ended because * no more data was available or we ran out of space. * Schedule a receive event if any data was received. * If we're out of space, turn off receive interrupts. */ zst->zst_rbput = put; zst->zst_rbavail = cc; if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { zst->zst_rx_ready = 1; cs->cs_softreq = 1; } /* * See if we are in danger of overflowing a buffer. If * so, use hardware flow control to ease the pressure. */ if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) && cc < zst->zst_r_hiwat) { SET(zst->zst_rx_flags, RX_IBUF_BLOCKED); zs_hwiflow(zst); } /* * If we're out of space, disable receive interrupts * until the queue has drained a bit. */ if (!cc) { SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); CLR(cs->cs_preg[1], ZSWR1_RIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } #if 0 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail); #endif } /* * transmitter ready interrupt. (splzs) */ static void zstty_txint(cs) struct zs_chanstate *cs; { struct zstty_softc *zst = cs->cs_private; /* * If we've delayed a parameter change, do it now, and restart * output. */ if (cs->cs_heldchange) { zs_loadchannelregs(cs); cs->cs_heldchange = 0; zst->zst_tbc = zst->zst_heldtbc; zst->zst_heldtbc = 0; } /* Output the next character in the buffer, if any. */ if (zst->zst_tbc > 0) { zs_write_data(cs, *zst->zst_tba); zst->zst_tbc--; zst->zst_tba++; } else { /* Disable transmit completion interrupts if necessary. */ if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) { CLR(cs->cs_preg[1], ZSWR1_TIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } if (zst->zst_tx_busy) { zst->zst_tx_busy = 0; zst->zst_tx_done = 1; cs->cs_softreq = 1; } } } /* * status change interrupt. (splzs) */ static void zstty_stint(cs, force) struct zs_chanstate *cs; int force; { struct zstty_softc *zst = cs->cs_private; u_char rr0, delta; rr0 = zs_read_csr(cs); zs_write_csr(cs, ZSWR0_RESET_STATUS); /* * Check here for console break, so that we can abort * even when interrupts are locking up the machine. */ if (ISSET(rr0, ZSRR0_BREAK) && ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { zs_abort(cs); return; } if (!force) delta = rr0 ^ cs->cs_rr0; else delta = cs->cs_rr0_mask; cs->cs_rr0 = rr0; if (ISSET(delta, cs->cs_rr0_mask)) { SET(cs->cs_rr0_delta, delta); /* * Stop output immediately if we lose the output * flow control signal or carrier detect. */ if (ISSET(~rr0, cs->cs_rr0_mask)) { zst->zst_tbc = 0; zst->zst_heldtbc = 0; } zst->zst_st_check = 1; cs->cs_softreq = 1; } } void zstty_diag(arg) void *arg; { struct zstty_softc *zst = arg; int overflows, floods; int s; s = splzs(); overflows = zst->zst_overflows; zst->zst_overflows = 0; floods = zst->zst_floods; zst->zst_floods = 0; zst->zst_errors = 0; splx(s); log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", zst->zst_dev.dv_xname, overflows, overflows == 1 ? "" : "s", floods, floods == 1 ? "" : "s"); } integrate void zstty_rxsoft(zst, tp) struct zstty_softc *zst; struct tty *tp; { struct zs_chanstate *cs = zst->zst_cs; int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint; u_char *get, *end; u_int cc, scc; u_char rr1; int code; int s; end = zst->zst_ebuf; get = zst->zst_rbget; scc = cc = zstty_rbuf_size - zst->zst_rbavail; if (cc == zstty_rbuf_size) { zst->zst_floods++; if (zst->zst_errors++ == 0) callout_reset(&zst->zst_diag_ch, 60 * hz, zstty_diag, zst); } while (cc) { code = get[0]; rr1 = get[1]; if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) { if (ISSET(rr1, ZSRR1_DO)) { zst->zst_overflows++; if (zst->zst_errors++ == 0) callout_reset(&zst->zst_diag_ch, 60 * hz, zstty_diag, zst); } if (ISSET(rr1, ZSRR1_FE)) SET(code, TTY_FE); if (ISSET(rr1, ZSRR1_PE)) SET(code, TTY_PE); } if ((*rint)(code, tp) == -1) { /* * The line discipline's buffer is out of space. */ if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { /* * We're either not using flow control, or the * line discipline didn't tell us to block for * some reason. Either way, we have no way to * know when there's more space available, so * just drop the rest of the data. */ get += cc << 1; if (get >= end) get -= zstty_rbuf_size << 1; cc = 0; } else { /* * Don't schedule any more receive processing * until the line discipline tells us there's * space available (through comhwiflow()). * Leave the rest of the data in the input * buffer. */ SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED); } break; } get += 2; if (get >= end) get = zst->zst_rbuf; cc--; } if (cc != scc) { zst->zst_rbget = get; s = splzs(); cc = zst->zst_rbavail += scc - cc; /* Buffers should be ok again, release possible block. */ if (cc >= zst->zst_r_lowat) { if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) { CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); SET(cs->cs_preg[1], ZSWR1_RIE); cs->cs_creg[1] = cs->cs_preg[1]; zs_write_reg(cs, 1, cs->cs_creg[1]); } if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) { CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED); zs_hwiflow(zst); } } splx(s); } #if 0 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail); #endif } integrate void zstty_txsoft(zst, tp) struct zstty_softc *zst; struct tty *tp; { CLR(tp->t_state, TS_BUSY); if (ISSET(tp->t_state, TS_FLUSH)) CLR(tp->t_state, TS_FLUSH); else ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf)); (*tp->t_linesw->l_start)(tp); } integrate void zstty_stsoft(zst, tp) struct zstty_softc *zst; struct tty *tp; { struct zs_chanstate *cs = zst->zst_cs; u_char rr0, delta; int s; s = splzs(); rr0 = cs->cs_rr0; delta = cs->cs_rr0_delta; cs->cs_rr0_delta = 0; splx(s); if (ISSET(delta, cs->cs_rr0_dcd)) { /* * Inform the tty layer that carrier detect changed. */ (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD)); } if (ISSET(delta, cs->cs_rr0_cts)) { /* Block or unblock output according to flow control. */ if (ISSET(rr0, cs->cs_rr0_cts)) { zst->zst_tx_stopped = 0; (*tp->t_linesw->l_start)(tp); } else { zst->zst_tx_stopped = 1; } } } /* * Software interrupt. Called at zssoft * * The main job to be done here is to empty the input ring * by passing its contents up to the tty layer. The ring is * always emptied during this operation, therefore the ring * must not be larger than the space after "high water" in * the tty layer, or the tty layer might drop our input. * * Note: an "input blockage" condition is assumed to exist if * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set. */ static void zstty_softint(cs) struct zs_chanstate *cs; { struct zstty_softc *zst = cs->cs_private; struct tty *tp = zst->zst_tty; int s; s = spltty(); if (zst->zst_rx_ready) { zst->zst_rx_ready = 0; zstty_rxsoft(zst, tp); } if (zst->zst_st_check) { zst->zst_st_check = 0; zstty_stsoft(zst, tp); } if (zst->zst_tx_done) { zst->zst_tx_done = 0; zstty_txsoft(zst, tp); } splx(s); } struct zsops zsops_tty = { zstty_rxint, /* receive char available */ zstty_stint, /* external/status */ zstty_txint, /* xmit buffer empty */ zstty_softint, /* process software interrupt */ }; #ifdef ZS_TXDMA void zstty_txdma_int(arg) void *arg; { struct zs_chanstate *cs = arg; struct zstty_softc *zst = cs->cs_private; zst->zst_tba += zst->zst_tbc; zst->zst_tbc = 0; if (zst->zst_tx_busy) { zst->zst_tx_busy = 0; zst->zst_tx_done = 1; cs->cs_softreq = 1; } } #endif