/* $NetBSD: if_wi.c,v 1.23 2000/07/05 02:35:55 onoe Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. * * Original FreeBSD driver written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. * * This driver supports both the PCMCIA and ISA versions of the * WaveLAN/IEEE cards. Note however that the ISA card isn't really * anything of the sort: it's actually a PCMCIA bridge adapter * that fits into an ISA slot, into which a PCMCIA WaveLAN card is * inserted. Consequently, you need to use the pccard support for * both the ISA and PCMCIA adapters. */ /* * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the * Oslo IETF plenary meeting. */ #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #include "opt_inet.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include /* for hz */ #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #include #include #include #ifdef foo static u_int8_t wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 }; #endif static int wi_match __P((struct device *, struct cfdata *, void *)); static void wi_attach __P((struct device *, struct device *, void *)); static int wi_detach __P((struct device *, int)); static int wi_activate __P((struct device *, enum devact)); static int wi_intr __P((void *arg)); static void wi_reset __P((struct wi_softc *)); static int wi_ioctl __P((struct ifnet *, u_long, caddr_t)); static void wi_init __P((struct wi_softc *)); static void wi_start __P((struct ifnet *)); static void wi_stop __P((struct wi_softc *)); static void wi_watchdog __P((struct ifnet *)); static void wi_rxeof __P((struct wi_softc *)); static void wi_txeof __P((struct wi_softc *, int)); static void wi_update_stats __P((struct wi_softc *)); static void wi_setmulti __P((struct wi_softc *)); static int wi_cmd __P((struct wi_softc *, int, int)); static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_read_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_write_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_seek __P((struct wi_softc *, int, int, int)); static int wi_alloc_nicmem __P((struct wi_softc *, int, int *)); static void wi_inquire __P((void *)); static int wi_setdef __P((struct wi_softc *, struct wi_req *)); static int wi_getdef __P((struct wi_softc *, struct wi_req *)); static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int)); static void wi_shutdown __P((void *)); static int wi_enable __P((struct wi_softc *)); static void wi_disable __P((struct wi_softc *)); static int wi_media_change __P((struct ifnet *)); static void wi_media_status __P((struct ifnet *, struct ifmediareq *)); static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int)); static void wi_request_fill_ssid __P((struct wi_req *, struct ieee80211_nwid *)); static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *, struct ieee80211_nwid *)); struct cfattach wi_ca = { sizeof(struct wi_softc), wi_match, wi_attach, wi_detach, wi_activate }; static int wi_match(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct pcmcia_attach_args *pa = aux; if (pa->manufacturer == PCMCIA_VENDOR_LUCENT && pa->product == PCMCIA_PRODUCT_LUCENT_WAVELAN_IEEE) return 1; if (pa->manufacturer == PCMCIA_VENDOR_3COM && pa->product == PCMCIA_PRODUCT_3COM_3CRWE737A) return 1; return 0; } int wi_enable(sc) struct wi_softc *sc; { if (sc->sc_enabled != 0) return (0); sc->sc_ih = pcmcia_intr_establish(sc->sc_pf, IPL_NET, wi_intr, sc); if (sc->sc_ih == NULL) { printf("%s: couldn't establish interrupt handler\n", sc->sc_dev.dv_xname); return (EIO); } if (pcmcia_function_enable(sc->sc_pf) != 0) { printf("%s: couldn't enable card\n", sc->sc_dev.dv_xname); pcmcia_intr_disestablish(sc->sc_pf, sc->sc_ih); return (EIO); } sc->sc_enabled = 1; return (0); } void wi_disable(sc) struct wi_softc *sc; { if (sc->sc_enabled == 0) return; pcmcia_function_disable(sc->sc_pf); pcmcia_intr_disestablish(sc->sc_pf, sc->sc_ih); sc->sc_enabled = 0; } /* * Attach the card. */ void wi_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct wi_softc *sc = (void *) self; struct pcmcia_attach_args *pa = aux; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct wi_ltv_macaddr mac; struct wi_ltv_gen gen; static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* Enable the card. */ sc->sc_pf = pa->pf; pcmcia_function_init(sc->sc_pf, sc->sc_pf->cfe_head.sqh_first); if (pcmcia_function_enable(sc->sc_pf)) { printf(": function enable failed\n"); goto enable_failed; } /* Allocate/map I/O space. */ if (pcmcia_io_alloc(sc->sc_pf, 0, WI_IOSIZ, WI_IOSIZ, &sc->sc_pcioh) != 0) { printf(": can't allocate i/o space\n"); goto ioalloc_failed; } if (pcmcia_io_map(sc->sc_pf, PCMCIA_WIDTH_IO16, 0, WI_IOSIZ, &sc->sc_pcioh, &sc->sc_iowin) != 0) { printf(": can't map i/o space\n"); goto iomap_failed; } sc->wi_btag = sc->sc_pcioh.iot; sc->wi_bhandle = sc->sc_pcioh.ioh; callout_init(&sc->wi_inquire_ch); /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Reset the NIC. */ wi_reset(sc); memset(&mac, 0, sizeof(mac)); /* Read the station address. */ mac.wi_type = WI_RID_MAC_NODE; mac.wi_len = 4; wi_read_record(sc, (struct wi_ltv_gen *)&mac); memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN); /* * Check if we got anything meaningful. * * Is it really enough just checking against null ethernet address? * Or, check against possible vendor? XXX. */ if (bcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) { printf(": could not get mac address, attach failed\n"); goto bad_enaddr; } printf("\n%s: address %s\n", sc->sc_dev.dv_xname, ether_sprintf(sc->sc_macaddr)); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = wi_start; ifp->if_ioctl = wi_ioctl; ifp->if_watchdog = wi_watchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME, sizeof(WI_DEFAULT_NODENAME) - 1); (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME, sizeof(WI_DEFAULT_NETNAME) - 1); (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS, sizeof(WI_DEFAULT_IBSS) - 1); sc->wi_portnum = WI_DEFAULT_PORT; sc->wi_ptype = WI_PORTTYPE_ADHOC; sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; sc->wi_tx_rate = WI_DEFAULT_TX_RATE; sc->wi_max_data_len = WI_DEFAULT_DATALEN; sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. */ gen.wi_type = WI_RID_OWN_CHNL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_channel = gen.wi_val; bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats)); /* * Find out if we support WEP on this card. */ gen.wi_type = WI_RID_WEP_AVAIL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_has_wep = gen.wi_val; ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status); #define IFM_AUTOADHOC \ IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0) #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0); ADD(IFM_AUTOADHOC, 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC, 0), 0); #undef ADD ifmedia_set(&sc->sc_media, IFM_AUTOADHOC); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp, mac.wi_mac_addr); ifp->if_baudrate = IF_Mbps(2); #if NBPFILTER > 0 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif sc->sc_sdhook = shutdownhook_establish(wi_shutdown, sc); /* Disable the card now, and turn it on when the interface goes up */ pcmcia_function_disable(sc->sc_pf); return; bad_enaddr: pcmcia_io_unmap(sc->sc_pf, sc->sc_iowin); iomap_failed: pcmcia_io_free(sc->sc_pf, &sc->sc_pcioh); ioalloc_failed: pcmcia_function_disable(sc->sc_pf); enable_failed: sc->sc_iowin = -1; } static void wi_rxeof(sc) struct wi_softc *sc; { struct ifnet *ifp; struct ether_header *eh; struct wi_frame rx_frame; struct mbuf *m; int id; ifp = &sc->sc_ethercom.ec_if; id = CSR_READ_2(sc, WI_RX_FID); /* First read in the frame header */ if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } if (rx_frame.wi_status & WI_STAT_ERRSTAT) { ifp->if_ierrors++; return; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; if (rx_frame.wi_status == WI_STAT_1042 || rx_frame.wi_status == WI_STAT_TUNNEL || rx_frame.wi_status == WI_STAT_WMP_MSG) { if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) { printf("%s: oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", sc->sc_dev.dv_xname, rx_frame.wi_dat_len, rx_frame.wi_status); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = rx_frame.wi_dat_len + WI_SNAPHDR_LEN; bcopy((char *)&rx_frame.wi_addr1, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_addr2, (char *)&eh->ether_shost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_type, (char *)&eh->ether_type, sizeof(u_int16_t)); if (wi_read_data(sc, id, WI_802_11_OFFSET, mtod(m, caddr_t) + sizeof(struct ether_header), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } else { if((rx_frame.wi_dat_len + sizeof(struct ether_header)) > MCLBYTES) { printf("%s: oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", sc->sc_dev.dv_xname, rx_frame.wi_dat_len, rx_frame.wi_status); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = rx_frame.wi_dat_len + sizeof(struct ether_header); if (wi_read_data(sc, id, WI_802_3_OFFSET, mtod(m, caddr_t), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } ifp->if_ipackets++; #if NBPFILTER > 0 /* Handle BPF listeners. */ if (ifp->if_bpf) { bpf_mtap(ifp->if_bpf, m); if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, sc->sc_macaddr, ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); return; } } #endif /* Receive packet. */ (*ifp->if_input)(ifp, m); } static void wi_txeof(sc, status) struct wi_softc *sc; int status; { struct ifnet *ifp; ifp = &sc->sc_ethercom.ec_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status & WI_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; return; } void wi_inquire(xsc) void *xsc; { struct wi_softc *sc; struct ifnet *ifp; sc = xsc; ifp = &sc->sc_ethercom.ec_if; if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return; callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) return; wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS); return; } void wi_update_stats(sc) struct wi_softc *sc; { struct wi_ltv_gen gen; u_int16_t id; struct ifnet *ifp; u_int32_t *ptr; int len, i; u_int16_t t; ifp = &sc->sc_ethercom.ec_if; id = CSR_READ_2(sc, WI_INFO_FID); wi_read_data(sc, id, 0, (char *)&gen, 4); if (gen.wi_type != WI_INFO_COUNTERS) return; /* some card versions have a larger stats structure */ len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ? gen.wi_len - 1 : sizeof(sc->wi_stats) / 4; ptr = (u_int32_t *)&sc->wi_stats; for (i = 0; i < len; i++) { t = CSR_READ_2(sc, WI_DATA1); #ifdef WI_HERMES_STATS_WAR if (t > 0xF000) t = ~t & 0xFFFF; #endif ptr[i] += t; } ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + sc->wi_stats.wi_tx_multi_retries + sc->wi_stats.wi_tx_retry_limit; return; } int wi_intr(arg) void *arg; { struct wi_softc *sc = arg; struct ifnet *ifp; u_int16_t status; if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (0); ifp = &sc->sc_ethercom.ec_if; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, WI_INT_EN, 0); return 1; } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); if (status & WI_EV_RX) { wi_rxeof(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); } if (status & WI_EV_TX) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); } if (status & WI_EV_ALLOC) { int id; id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (id == sc->wi_tx_data_id) wi_txeof(sc, status); } if (status & WI_EV_INFO) { wi_update_stats(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } if (status & WI_EV_TX_EXC) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } if (status & WI_EV_INFO_DROP) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (ifp->if_snd.ifq_head != NULL) wi_start(ifp); return 1; } static int wi_cmd(sc, cmd, val) struct wi_softc *sc; int cmd; int val; { int i, s = 0; CSR_WRITE_2(sc, WI_PARAM0, val); CSR_WRITE_2(sc, WI_COMMAND, cmd); for (i = 0; i < WI_TIMEOUT; i++) { /* * Wait for 'command complete' bit to be * set in the event status register. */ s = CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD; if (s) { /* Ack the event and read result code. */ s = CSR_READ_2(sc, WI_STATUS); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); #ifdef foo if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK)) return(EIO); #endif if (s & WI_STAT_CMD_RESULT) return(EIO); break; } } if (i == WI_TIMEOUT) return(ETIMEDOUT); return(0); } static void wi_reset(sc) struct wi_softc *sc; { if (wi_cmd(sc, WI_CMD_INI, 0)) printf("%s: init failed\n", sc->sc_dev.dv_xname); CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Calibrate timer. */ WI_SETVAL(WI_RID_TICK_TIME, 8); return; } /* * Read an LTV record from the NIC. */ static int wi_read_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i, len, code; /* Tell the NIC to enter record read mode. */ if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type)) return(EIO); /* Seek to the record. */ if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, WI_DATA1); if (len > ltv->wi_len) return(ENOSPC); code = CSR_READ_2(sc, WI_DATA1); if (code != ltv->wi_type) return(EIO); ltv->wi_len = len; ltv->wi_type = code; /* Now read the data. */ ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); return(0); } /* * Same as read, except we inject data instead of reading it. */ static int wi_write_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i; if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) CSR_WRITE_2(sc, WI_DATA1, ptr[i]); if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type)) return(EIO); return(0); } static int wi_seek(sc, id, off, chan) struct wi_softc *sc; int id, off, chan; { int i; int selreg, offreg; int status; switch (chan) { case WI_BAP0: selreg = WI_SEL0; offreg = WI_OFF0; break; case WI_BAP1: selreg = WI_SEL1; offreg = WI_OFF1; break; default: printf("%s: invalid data path: %x\n", sc->sc_dev.dv_xname, chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < WI_TIMEOUT; i++) { status = CSR_READ_2(sc, offreg); if (!(status & (WI_OFF_BUSY|WI_OFF_ERR))) break; } if (i == WI_TIMEOUT) { printf("%s: timeout in wi_seek to %x/%x; last status %x\n", sc->sc_dev.dv_xname, id, off, status); return(ETIMEDOUT); } return(0); } static int wi_read_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; if (wi_seek(sc, id, off, WI_BAP1)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < len / 2; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); return(0); } /* * According to the comments in the HCF Light code, there is a bug in * the Hermes (or possibly in certain Hermes firmware revisions) where * the chip's internal autoincrement counter gets thrown off during * data writes: the autoincrement is missed, causing one data word to * be overwritten and subsequent words to be written to the wrong memory * locations. The end result is that we could end up transmitting bogus * frames without realizing it. The workaround for this is to write a * couple of extra guard words after the end of the transfer, then * attempt to read then back. If we fail to locate the guard words where * we expect them, we preform the transfer over again. */ static int wi_write_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (wi_seek(sc, id, off, WI_BAP0)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < (len / 2); i++) CSR_WRITE_2(sc, WI_DATA0, ptr[i]); #ifdef WI_HERMES_AUTOINC_WAR CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); if (wi_seek(sc, id, off + len, WI_BAP0)) return(EIO); if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) goto again; #endif return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ static int wi_alloc_nicmem(sc, len, id) struct wi_softc *sc; int len; int *id; { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) { printf("%s: failed to allocate %d bytes on NIC\n", sc->sc_dev.dv_xname, len); return(ENOMEM); } for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; } if (i == WI_TIMEOUT) { printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname); return(ETIMEDOUT); } CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); *id = CSR_READ_2(sc, WI_ALLOC_FID); if (wi_seek(sc, *id, 0, WI_BAP0)) { printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname); return(EIO); } for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, WI_DATA0, 0); return(0); } static void wi_setmulti(sc) struct wi_softc *sc; { struct ifnet *ifp; int i = 0; struct wi_ltv_mcast mcast; struct ether_multi *enm; struct ether_multistep estep; struct ethercom *ec = &sc->sc_ethercom; ifp = &sc->sc_ethercom.ec_if; if ((ifp->if_flags & IFF_PROMISC) != 0) { allmulti: ifp->if_flags |= IFF_ALLMULTI; bzero((char *)&mcast, sizeof(mcast)); mcast.wi_type = WI_RID_MCAST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } i = 0; ETHER_FIRST_MULTI(estep, ec, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0 || i >= 16) goto allmulti; #if 0 /* Punt on ranges. */ if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) break; #endif bcopy(enm->enm_addrlo, (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN); i++; ETHER_NEXT_MULTI(estep, enm); } ifp->if_flags &= ~IFF_ALLMULTI; mcast.wi_type = WI_RID_MCAST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); } static int wi_setdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifnet *ifp; int error = 0; ifp = &sc->sc_ethercom.ec_if; switch(wreq->wi_type) { case WI_RID_MAC_NODE: sdl = (struct sockaddr_dl *)ifp->if_sadl; bcopy((char *)&wreq->wi_val, (char *)&sc->sc_macaddr, ETHER_ADDR_LEN); bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: sc->wi_ptype = wreq->wi_val[0]; break; case WI_RID_TX_RATE: sc->wi_tx_rate = wreq->wi_val[0]; break; case WI_RID_MAX_DATALEN: sc->wi_max_data_len = wreq->wi_val[0]; break; case WI_RID_RTS_THRESH: sc->wi_rts_thresh = wreq->wi_val[0]; break; case WI_RID_SYSTEM_SCALE: sc->wi_ap_density = wreq->wi_val[0]; break; case WI_RID_CREATE_IBSS: sc->wi_create_ibss = wreq->wi_val[0]; break; case WI_RID_OWN_CHNL: sc->wi_channel = wreq->wi_val[0]; break; case WI_RID_NODENAME: error = wi_set_ssid(&sc->wi_nodeid, (u_int8_t *)&wreq->wi_val[1], wreq->wi_val[0]); break; case WI_RID_DESIRED_SSID: error = wi_set_ssid(&sc->wi_netid, (u_int8_t *)&wreq->wi_val[1], wreq->wi_val[0]); break; case WI_RID_OWN_SSID: error = wi_set_ssid(&sc->wi_ibssid, (u_int8_t *)&wreq->wi_val[1], wreq->wi_val[0]); break; case WI_RID_PM_ENABLED: sc->wi_pm_enabled = wreq->wi_val[0]; break; case WI_RID_MAX_SLEEP: sc->wi_max_sleep = wreq->wi_val[0]; break; case WI_RID_ENCRYPTION: sc->wi_use_wep = wreq->wi_val[0]; break; case WI_RID_TX_CRYPT_KEY: sc->wi_tx_key = wreq->wi_val[0]; break; case WI_RID_DEFLT_CRYPT_KEYS: bcopy((char *)wreq, (char *)&sc->wi_keys, sizeof(struct wi_ltv_keys)); break; default: error = EINVAL; break; } return (error); } static int wi_getdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifnet *ifp; int error = 0; ifp = &sc->sc_ethercom.ec_if; wreq->wi_len = 2; /* XXX */ switch (wreq->wi_type) { case WI_RID_MAC_NODE: wreq->wi_len += ETHER_ADDR_LEN / 2 - 1; sdl = (struct sockaddr_dl *)ifp->if_sadl; bcopy(&sc->sc_macaddr, &wreq->wi_val, ETHER_ADDR_LEN); bcopy(LLADDR(sdl), &wreq->wi_val, ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: wreq->wi_val[0] = sc->wi_ptype; break; case WI_RID_TX_RATE: wreq->wi_val[0] = sc->wi_tx_rate; break; case WI_RID_MAX_DATALEN: wreq->wi_val[0] = sc->wi_max_data_len; break; case WI_RID_RTS_THRESH: wreq->wi_val[0] = sc->wi_rts_thresh; break; case WI_RID_SYSTEM_SCALE: wreq->wi_val[0] = sc->wi_ap_density; break; case WI_RID_CREATE_IBSS: wreq->wi_val[0] = sc->wi_create_ibss; break; case WI_RID_OWN_CHNL: wreq->wi_val[0] = sc->wi_channel; break; case WI_RID_NODENAME: wi_request_fill_ssid(wreq, &sc->wi_nodeid); break; case WI_RID_DESIRED_SSID: wi_request_fill_ssid(wreq, &sc->wi_netid); break; case WI_RID_OWN_SSID: wi_request_fill_ssid(wreq, &sc->wi_ibssid); break; case WI_RID_PM_ENABLED: wreq->wi_val[0] = sc->wi_pm_enabled; break; case WI_RID_MAX_SLEEP: wreq->wi_val[0] = sc->wi_max_sleep; break; case WI_RID_WEP_AVAIL: wreq->wi_val[0] = sc->wi_has_wep; break; case WI_RID_ENCRYPTION: wreq->wi_val[0] = sc->wi_use_wep; break; case WI_RID_TX_CRYPT_KEY: wreq->wi_val[0] = sc->wi_tx_key; break; case WI_RID_DEFLT_CRYPT_KEYS: wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1; bcopy(&sc->wi_keys, wreq, sizeof(struct wi_ltv_keys)); break; default: #if 0 error = EIO; #else #ifdef DIAGNOSTIC printf("%s: wi_getdef: unknown request %d\n", sc->sc_dev.dv_xname, wreq->wi_type); #endif #endif break; } return (error); } static int wi_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; struct wi_softc *sc = ifp->if_softc; struct wi_req wreq; struct ifreq *ifr; struct proc *p = curproc; struct ifaddr *ifa = (struct ifaddr *)data; struct ieee80211_nwid nwid; if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (ENXIO); s = splimp(); ifr = (struct ifreq *)data; switch (command) { case SIOCSIFADDR: if ((error = wi_enable(sc)) != 0) break; ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: wi_init(sc); arp_ifinit(ifp, ifa); break; #endif default: wi_init(sc); break; } break; #if 0 case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; #endif case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ wi_stop(sc); wi_disable(sc); } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ if ((error = wi_enable(sc)) != 0) break; wi_init(sc); } else if ((ifp->if_flags & IFF_UP) != 0) { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ #if 0 /* XXX We need to call wi_setmulti(), don't we? */ if ((ifp->if_flags & IFF_PROMISC) ^ (sc->wi_if_flags & IFF_PROMISC)) WI_SETVAL(WI_RID_PROMISC, (ifp->if_flags & IFF_PROMISC) != 0); else #endif wi_init(sc); } sc->wi_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: if (sc->sc_enabled == 0) { error = EIO; break; } /* Update our multicast list. */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ethercom) : ether_delmulti(ifr, &sc->sc_ethercom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ wi_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); break; case SIOCGWAVELAN: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val, sizeof(sc->wi_stats)); wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1; } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) { /* For non-root user, return all-zeroes keys */ if (suser(p->p_ucred, &p->p_acflag)) bzero((char *)&wreq, sizeof(struct wi_ltv_keys)); else bcopy((char *)&sc->wi_keys, (char *)&wreq, sizeof(struct wi_ltv_keys)); } else { if (sc->sc_enabled == 0) error = wi_getdef(sc, &wreq); else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) error = EINVAL; } if (error == 0) error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); break; case SIOCSWAVELAN: error = suser(p->p_ucred, &p->p_acflag); if (error) break; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { error = EINVAL; break; } else if (wreq.wi_type == WI_RID_MGMT_XMIT) { error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val, wreq.wi_len); } else { if (sc->sc_enabled != 0) error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error == 0) error = wi_setdef(sc, &wreq); if (error == 0 && sc->sc_enabled != 0) /* Reinitialize WaveLAN. */ wi_init(sc); } break; case SIOCG80211NWID: if (sc->sc_enabled == 0) { /* Return the desired ID */ error = copyout(&sc->wi_netid, ifr->ifr_data, sizeof(sc->wi_netid)); } else { wreq.wi_type = WI_RID_CURRENT_SSID; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) || wreq.wi_val[0] > IEEE80211_NWID_LEN) error = EINVAL; else { wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1], wreq.wi_val[0]); error = copyout(&nwid, ifr->ifr_data, sizeof(nwid)); } } break; case SIOCS80211NWID: error = copyin(ifr->ifr_data, &nwid, sizeof(nwid)); if (error != 0) break; if (nwid.i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } if (sc->wi_netid.i_len == nwid.i_len && memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0) break; wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len); if (sc->sc_enabled != 0) /* Reinitialize WaveLAN. */ wi_init(sc); break; default: error = EINVAL; break; } splx(s); return (error); } static void wi_init(sc) struct wi_softc *sc; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct wi_req wreq; struct wi_ltv_macaddr mac; int s, id = 0; wi_stop(sc); wi_reset(sc); s = splimp(); /* Program max data length. */ WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); /* Enable/disable IBSS creation. */ WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); /* Set the port type. */ WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); /* Program the RTS/CTS threshold. */ WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); /* Program the TX rate */ WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); /* Access point density */ WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); /* Power Management Enabled */ WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); /* Power Managment Max Sleep */ WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); /* Specify the IBSS name */ wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid); /* Specify the network name */ wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid); /* Specify the frequency to use */ WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); /* Program the nodename. */ wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid); /* Set our MAC address. */ mac.wi_len = 4; mac.wi_type = WI_RID_MAC_NODE; memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN); wi_write_record(sc, (struct wi_ltv_gen *)&mac); /* Configure WEP. */ if (sc->wi_has_wep) { WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep); WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key); sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1; sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS; wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys); } /* Initialize promisc mode. */ if (ifp->if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 1); } else { WI_SETVAL(WI_RID_PROMISC, 0); } /* Set multicast filter. */ wi_setmulti(sc); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0); if (wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) printf("%s: tx buffer allocation failed\n", sc->sc_dev.dv_xname); sc->wi_tx_data_id = id; if (wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) printf("%s: mgmt. buffer allocation failed\n", sc->sc_dev.dv_xname); sc->wi_tx_mgmt_id = id; /* Enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); splx(s); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); } static void wi_start(ifp) struct ifnet *ifp; { struct wi_softc *sc; struct mbuf *m0; struct wi_frame tx_frame; struct ether_header *eh; int id; sc = ifp->if_softc; if (ifp->if_flags & IFF_OACTIVE) return; IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) return; bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_data_id; eh = mtod(m0, struct ether_header *); /* * Use RFC1042 encoding for IP and ARP datagrams, * 802.3 for anything else. */ if (ntohs(eh->ether_type) == ETHERTYPE_IP || ntohs(eh->ether_type) == ETHERTYPE_ARP || ntohs(eh->ether_type) == ETHERTYPE_REVARP || ntohs(eh->ether_type) == ETHERTYPE_IPV6) { bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN); tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN; tx_frame.wi_frame_ctl = WI_FTYPE_DATA; tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_type = eh->ether_type; m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); } else { tx_frame.wi_dat_len = m0->m_pkthdr.len; m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2); } #if NBPFILTER > 0 /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif m_freem(m0); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) printf("%s: xmit failed\n", sc->sc_dev.dv_xname); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static int wi_mgmt_xmit(sc, data, len) struct wi_softc *sc; caddr_t data; int len; { struct wi_frame tx_frame; int id; struct wi_80211_hdr *hdr; caddr_t dptr; hdr = (struct wi_80211_hdr *)data; dptr = data + sizeof(struct wi_80211_hdr); bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_mgmt_id; bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl, sizeof(struct wi_80211_hdr)); tx_frame.wi_dat_len = len - WI_SNAPHDR_LEN; tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, (len - sizeof(struct wi_80211_hdr)) + 2); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) { printf("%s: xmit failed\n", sc->sc_dev.dv_xname); return(EIO); } return(0); } static void wi_stop(sc) struct wi_softc *sc; { struct ifnet *ifp; ifp = &sc->sc_ethercom.ec_if; CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0); callout_stop(&sc->wi_inquire_ch); ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); ifp->if_timer = 0; } static void wi_watchdog(ifp) struct ifnet *ifp; { struct wi_softc *sc; sc = ifp->if_softc; printf("%s: device timeout\n", sc->sc_dev.dv_xname); wi_init(sc); ifp->if_oerrors++; return; } static void wi_shutdown(arg) void *arg; { struct wi_softc *sc; sc = arg; wi_disable(sc); return; } static int wi_activate(self, act) struct device *self; enum devact act; { struct wi_softc *sc = (struct wi_softc *)self; int rv = 0, s; s = splnet(); switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ethercom.ec_if); break; } splx(s); return (rv); } static int wi_detach(self, flags) struct device *self; int flags; { struct wi_softc *sc = (struct wi_softc *)self; struct ifnet *ifp = &sc->sc_ethercom.ec_if; if (sc->sc_iowin == -1) /* Nothing to detach. */ return (0); callout_stop(&sc->wi_inquire_ch); if (sc->sc_sdhook != NULL) shutdownhook_disestablish(sc->sc_sdhook); wi_disable(sc); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY); #if NBPFILTER > 0 bpfdetach(ifp); #endif ether_ifdetach(ifp); if_detach(ifp); /* Unmap and free our i/o windows */ pcmcia_io_unmap(sc->sc_pf, sc->sc_iowin); pcmcia_io_free(sc->sc_pf, &sc->sc_pcioh); return (0); } static int wi_set_ssid(ws, id, len) struct ieee80211_nwid *ws; u_int8_t *id; int len; { if (len > IEEE80211_NWID_LEN) return (EINVAL); ws->i_len = len; memcpy(ws->i_nwid, id, len); return (0); } static void wi_request_fill_ssid(wreq, ws) struct wi_req *wreq; struct ieee80211_nwid *ws; { memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val)); wreq->wi_val[0] = ws->i_len; wreq->wi_len = roundup(wreq->wi_val[0], 2) / 2 + 2; memcpy(&wreq->wi_val[1], ws->i_nwid, wreq->wi_val[0]); } static int wi_write_ssid(sc, type, wreq, ws) struct wi_softc *sc; int type; struct wi_req *wreq; struct ieee80211_nwid *ws; { wreq->wi_type = type; wi_request_fill_ssid(wreq, ws); return (wi_write_record(sc, (struct wi_ltv_gen *)wreq)); } static int wi_media_change(ifp) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; int otype = sc->wi_ptype; int orate = sc->wi_tx_rate; if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0) sc->wi_ptype = WI_PORTTYPE_ADHOC; else sc->wi_ptype = WI_PORTTYPE_BSS; switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) { case IFM_IEEE80211_DS1: sc->wi_tx_rate = 1; break; case IFM_IEEE80211_DS2: sc->wi_tx_rate = 2; break; case IFM_AUTO: sc->wi_tx_rate = 3; break; case IFM_IEEE80211_DS11: sc->wi_tx_rate = 11; break; } if (sc->sc_enabled != 0) { if (otype != sc->wi_ptype || orate != sc->wi_tx_rate) wi_init(sc); } ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media); return (0); } static void wi_media_status(ifp, imr) struct ifnet *ifp; struct ifmediareq *imr; { struct wi_softc *sc = ifp->if_softc; if (sc->sc_enabled == 0) { imr->ifm_active = IFM_IEEE80211|IFM_NONE; imr->ifm_status = 0; return; } imr->ifm_active = sc->sc_media.ifm_cur->ifm_media; imr->ifm_status = IFM_AVALID|IFM_ACTIVE; }