/* $NetBSD: fd.c,v 1.88 2008/12/18 03:18:27 isaki Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum and Minoura Makoto. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ #include __KERNEL_RCSID(0, "$NetBSD: fd.c,v 1.88 2008/12/18 03:18:27 isaki Exp $"); #include "rnd.h" #include "opt_ddb.h" #include "opt_m680x0.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #include #include #include #include #include #include /* for CT1 access */ #include "locators.h" #ifdef FDDEBUG #define DPRINTF(x) if (fddebug) printf x int fddebug = 0; #else #define DPRINTF(x) #endif #define FDUNIT(dev) (minor(dev) / 8) #define FDTYPE(dev) (minor(dev) % 8) enum fdc_state { DEVIDLE = 0, MOTORWAIT, DOSEEK, SEEKWAIT, SEEKTIMEDOUT, SEEKCOMPLETE, DOIO, IOCOMPLETE, IOTIMEDOUT, DORESET, RESETCOMPLETE, RESETTIMEDOUT, DORECAL, RECALWAIT, RECALTIMEDOUT, RECALCOMPLETE, DOCOPY, DOIOHALF, COPYCOMPLETE, }; /* software state, per controller */ struct fdc_softc { device_t sc_dev; /* boilerplate */ bus_space_tag_t sc_iot; /* intio i/o space identifier */ bus_space_handle_t sc_ioh; /* intio io handle */ struct callout sc_timo_ch; /* timeout callout */ struct callout sc_intr_ch; /* pseudo-intr callout */ bus_dma_tag_t sc_dmat; /* intio DMA tag */ bus_dmamap_t sc_dmamap; /* DMA map */ u_int8_t *sc_addr; /* physical address */ struct dmac_channel_stat *sc_dmachan; /* intio DMA channel */ struct dmac_dma_xfer *sc_xfer; /* DMA transfer */ struct fd_softc *sc_fd[4]; /* pointers to children */ TAILQ_HEAD(drivehead, fd_softc) sc_drives; enum fdc_state sc_state; int sc_errors; /* number of retries so far */ u_char sc_status[7]; /* copy of registers */ } fdc_softc; int fdcintr(void *); void fdcreset(struct fdc_softc *); /* controller driver configuration */ int fdcprobe(device_t, cfdata_t, void *); void fdcattach(device_t, device_t, void *); int fdprint(void *, const char *); CFATTACH_DECL_NEW(fdc, sizeof(struct fdc_softc), fdcprobe, fdcattach, NULL, NULL); extern struct cfdriver fdc_cd; /* * Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how * we tell them apart. */ struct fd_type { int sectrac; /* sectors per track */ int heads; /* number of heads */ int seccyl; /* sectors per cylinder */ int secsize; /* size code for sectors */ int datalen; /* data len when secsize = 0 */ int steprate; /* step rate and head unload time */ int gap1; /* gap len between sectors */ int gap2; /* formatting gap */ int cyls; /* total num of cylinders */ int size; /* size of disk in sectors */ int step; /* steps per cylinder */ int rate; /* transfer speed code */ const char *name; }; /* The order of entries in the following table is important -- BEWARE! */ struct fd_type fd_types[] = { { 8,2,16,3,0xff,0xdf,0x35,0x74,77,1232,1,FDC_500KBPS, "1.2MB/[1024bytes/sector]" }, /* 1.2 MB japanese format */ { 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB" }, /* 1.44MB diskette */ { 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB" }, /* 1.2 MB AT-diskettes */ { 9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" }, /* 360kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" }, /* 360kB PC diskettes */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" }, /* 3.5" 720kB diskette */ { 9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x" }, /* 720kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" }, /* 360kB in 720kB drive */ }; /* software state, per disk (with up to 4 disks per ctlr) */ struct fd_softc { device_t sc_dev; struct disk sc_dk; struct fd_type *sc_deftype; /* default type descriptor */ struct fd_type *sc_type; /* current type descriptor */ struct callout sc_motoron_ch; struct callout sc_motoroff_ch; daddr_t sc_blkno; /* starting block number */ int sc_bcount; /* byte count left */ int sc_opts; /* user-set options */ int sc_skip; /* bytes already transferred */ int sc_nblks; /* number of blocks currently transferring */ int sc_nbytes; /* number of bytes currently transferring */ int sc_drive; /* physical unit number */ int sc_flags; #define FD_BOPEN 0x01 /* it's open */ #define FD_COPEN 0x02 /* it's open */ #define FD_OPEN (FD_BOPEN|FD_COPEN) /* it's open */ #define FD_MOTOR 0x04 /* motor should be on */ #define FD_MOTOR_WAIT 0x08 /* motor coming up */ #define FD_ALIVE 0x10 /* alive */ int sc_cylin; /* where we think the head is */ TAILQ_ENTRY(fd_softc) sc_drivechain; int sc_ops; /* I/O ops since last switch */ struct bufq_state *sc_q;/* pending I/O requests */ int sc_active; /* number of active I/O operations */ u_char *sc_copybuf; /* for secsize >=3 */ u_char sc_part; /* for secsize >=3 */ #define SEC_P10 0x02 /* first part */ #define SEC_P01 0x01 /* second part */ #define SEC_P11 0x03 /* both part */ #if NRND > 0 rndsource_element_t rnd_source; #endif }; /* floppy driver configuration */ int fdprobe(device_t, cfdata_t, void *); void fdattach(device_t, device_t, void *); CFATTACH_DECL_NEW(fd, sizeof(struct fd_softc), fdprobe, fdattach, NULL, NULL); extern struct cfdriver fd_cd; dev_type_open(fdopen); dev_type_close(fdclose); dev_type_read(fdread); dev_type_write(fdwrite); dev_type_ioctl(fdioctl); dev_type_strategy(fdstrategy); const struct bdevsw fd_bdevsw = { fdopen, fdclose, fdstrategy, fdioctl, nodump, nosize, D_DISK }; const struct cdevsw fd_cdevsw = { fdopen, fdclose, fdread, fdwrite, fdioctl, nostop, notty, nopoll, nommap, nokqfilter, D_DISK }; void fdstart(struct fd_softc *); struct dkdriver fddkdriver = { fdstrategy }; void fd_set_motor(struct fdc_softc *, int); void fd_motor_off(void *); void fd_motor_on(void *); int fdcresult(struct fdc_softc *); int out_fdc(bus_space_tag_t, bus_space_handle_t, u_char); void fdcstart(struct fdc_softc *); void fdcstatus(device_t, int, const char *); void fdctimeout(void *); void fdcpseudointr(void *); void fdcretry(struct fdc_softc *); void fdfinish(struct fd_softc *, struct buf *); inline struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t); static int fdcpoll(struct fdc_softc *); static int fdgetdisklabel(struct fd_softc *, dev_t); static void fd_do_eject(struct fdc_softc *, int); void fd_mountroot_hook(device_t); /* DMA transfer routines */ inline static void fdc_dmastart(struct fdc_softc *, int, void *, vsize_t); static int fdcdmaintr(void *); static int fdcdmaerrintr(void *); inline static void fdc_dmastart(struct fdc_softc *fdc, int read, void *addr, vsize_t count) { int error; DPRINTF(("fdc_dmastart: %s, addr = %p, count = %ld\n", read ? "read" : "write", (void *) addr, count)); error = bus_dmamap_load(fdc->sc_dmat, fdc->sc_dmamap, addr, count, 0, BUS_DMA_NOWAIT); if (error) { panic ("fdc_dmastart: cannot load dmamap"); } bus_dmamap_sync(fdc->sc_dmat, fdc->sc_dmamap, 0, count, read?BUS_DMASYNC_PREREAD:BUS_DMASYNC_PREWRITE); fdc->sc_xfer = dmac_prepare_xfer(fdc->sc_dmachan, fdc->sc_dmat, fdc->sc_dmamap, (read? DMAC_OCR_DIR_DTM:DMAC_OCR_DIR_MTD), (DMAC_SCR_MAC_COUNT_UP| DMAC_SCR_DAC_NO_COUNT), (u_int8_t*) (fdc->sc_addr + fddata)); /* XXX */ dmac_start_xfer(fdc->sc_dmachan->ch_softc, fdc->sc_xfer); } static int fdcdmaintr(void *arg) { struct fdc_softc *fdc = arg; bus_dmamap_unload(fdc->sc_dmat, fdc->sc_dmamap); return 0; } static int fdcdmaerrintr(void *dummy) { DPRINTF(("fdcdmaerrintr\n")); return 0; } /* ARGSUSED */ int fdcprobe(device_t parent, cfdata_t cf, void *aux) { struct intio_attach_args *ia = aux; if (strcmp(ia->ia_name, "fdc") != 0) return 0; if (ia->ia_addr == INTIOCF_ADDR_DEFAULT) ia->ia_addr = FDC_ADDR; if (ia->ia_intr == INTIOCF_INTR_DEFAULT) ia->ia_intr = FDC_INTR; if (ia->ia_dma == INTIOCF_DMA_DEFAULT) ia->ia_dma = FDC_DMA; if (ia->ia_dmaintr == INTIOCF_DMAINTR_DEFAULT) ia->ia_dmaintr = FDC_DMAINTR; if ((ia->ia_intr & 0x03) != 0) return 0; ia->ia_size = 0x2000; if (intio_map_allocate_region (parent, ia, INTIO_MAP_TESTONLY)) return 0; /* builtin device; always there */ return 1; } /* * Arguments passed between fdcattach and fdprobe. */ struct fdc_attach_args { int fa_drive; struct fd_type *fa_deftype; }; /* * Print the location of a disk drive (called just before attaching the * the drive). If `fdc' is not NULL, the drive was found but was not * in the system config file; print the drive name as well. * Return QUIET (config_find ignores this if the device was configured) to * avoid printing `fdN not configured' messages. */ int fdprint(void *aux, const char *fdc) { struct fdc_attach_args *fa = aux; if (!fdc) aprint_normal(" drive %d", fa->fa_drive); return QUIET; } void fdcattach(device_t parent, device_t self, void *aux) { struct fdc_softc *fdc = device_private(self); bus_space_tag_t iot; bus_space_handle_t ioh; struct intio_attach_args *ia = aux; struct fdc_attach_args fa; fdc->sc_dev = self; iot = ia->ia_bst; aprint_normal("\n"); callout_init(&fdc->sc_timo_ch, 0); callout_init(&fdc->sc_intr_ch, 0); /* Re-map the I/O space. */ bus_space_map(iot, ia->ia_addr, 0x2000, BUS_SPACE_MAP_SHIFTED, &ioh); fdc->sc_iot = iot; fdc->sc_ioh = ioh; fdc->sc_addr = (void *)ia->ia_addr; fdc->sc_dmat = ia->ia_dmat; fdc->sc_state = DEVIDLE; TAILQ_INIT(&fdc->sc_drives); /* Initialize DMAC channel */ fdc->sc_dmachan = dmac_alloc_channel(parent, ia->ia_dma, "fdc", ia->ia_dmaintr, fdcdmaintr, fdc, ia->ia_dmaintr+1, fdcdmaerrintr, fdc); if (bus_dmamap_create(fdc->sc_dmat, FDC_MAXIOSIZE, 1, DMAC_MAXSEGSZ, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &fdc->sc_dmamap)) { aprint_error_dev(self, "can't set up intio DMA map\n"); return; } if (intio_intr_establish(ia->ia_intr, "fdc", fdcintr, fdc)) panic ("Could not establish interrupt (duplicated vector?)."); intio_set_ivec(ia->ia_intr); /* reset */ intio_disable_intr(SICILIAN_INTR_FDD); intio_enable_intr(SICILIAN_INTR_FDC); fdcresult(fdc); fdcreset(fdc); aprint_normal_dev(self, "uPD72065 FDC\n"); out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */ out_fdc(iot, ioh, 0xd0); out_fdc(iot, ioh, 0x10); /* physical limit: four drives per controller. */ for (fa.fa_drive = 0; fa.fa_drive < 4; fa.fa_drive++) { (void)config_found(self, (void *)&fa, fdprint); } intio_enable_intr(SICILIAN_INTR_FDC); } void fdcreset(struct fdc_softc *fdc) { bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdsts, NE7CMD_RESET); } static int fdcpoll(struct fdc_softc *fdc) { int i = 25000, n; while (--i > 0) { if ((intio_get_sicilian_intr() & SICILIAN_STAT_FDC)) { out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI); n = fdcresult(fdc); break; } DELAY(100); } return i; } int fdprobe(device_t parent, cfdata_t cf, void *aux) { struct fdc_softc *fdc = device_private(parent); struct fd_type *type; struct fdc_attach_args *fa = aux; int drive = fa->fa_drive; bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; int n = 0; int found = 0; int i; if (cf->cf_loc[FDCCF_UNIT] != FDCCF_UNIT_DEFAULT && cf->cf_loc[FDCCF_UNIT] != drive) return 0; type = &fd_types[0]; /* XXX 1.2MB */ intio_disable_intr(SICILIAN_INTR_FDC); /* select drive and turn on motor */ bus_space_write_1(iot, ioh, fdctl, 0x80 | (type->rate << 4)| drive); fdc_force_ready(FDCRDY); fdcpoll(fdc); retry: out_fdc(iot, ioh, NE7CMD_RECAL); out_fdc(iot, ioh, drive); i = 25000; while (--i > 0) { if ((intio_get_sicilian_intr() & SICILIAN_STAT_FDC)) { out_fdc(iot, ioh, NE7CMD_SENSEI); n = fdcresult(fdc); break; } DELAY(100); } #ifdef FDDEBUG { int _i; DPRINTF(("fdprobe: status")); for (_i = 0; _i < n; _i++) DPRINTF((" %x", fdc->sc_status[_i])); DPRINTF(("\n")); } #endif if (n == 2) { if ((fdc->sc_status[0] & 0xf0) == 0x20) found = 1; else if ((fdc->sc_status[0] & 0xf0) == 0xc0) goto retry; } /* turn off motor */ bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdctl, (type->rate << 4)| drive); fdc_force_ready(FDCSTBY); if (!found) { intio_enable_intr(SICILIAN_INTR_FDC); return 0; } return 1; } /* * Controller is working, and drive responded. Attach it. */ void fdattach(device_t parent, device_t self, void *aux) { struct fdc_softc *fdc = device_private(parent); struct fd_softc *fd = device_private(self); struct fdc_attach_args *fa = aux; struct fd_type *type = &fd_types[0]; /* XXX 1.2MB */ int drive = fa->fa_drive; callout_init(&fd->sc_motoron_ch, 0); callout_init(&fd->sc_motoroff_ch, 0); fd->sc_dev = self; fd->sc_flags = 0; if (type) aprint_normal(": %s, %d cyl, %d head, %d sec\n", type->name, type->cyls, type->heads, type->sectrac); else aprint_normal(": density unknown\n"); bufq_alloc(&fd->sc_q, "disksort", BUFQ_SORT_CYLINDER); fd->sc_cylin = -1; fd->sc_drive = drive; fd->sc_deftype = type; fdc->sc_fd[drive] = fd; fd->sc_copybuf = (u_char *)malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK); if (fd->sc_copybuf == 0) aprint_error("%s: WARNING!! malloc() failed.\n", __func__); fd->sc_flags |= FD_ALIVE; /* * Initialize and attach the disk structure. */ disk_init(&fd->sc_dk, device_xname(fd->sc_dev), &fddkdriver); disk_attach(&fd->sc_dk); /* * Establish a mountroot_hook anyway in case we booted * with RB_ASKNAME and get selected as the boot device. */ mountroothook_establish(fd_mountroot_hook, fd->sc_dev); #if NRND > 0 rnd_attach_source(&fd->rnd_source, device_xname(fd->sc_dev), RND_TYPE_DISK, 0); #endif } inline struct fd_type * fd_dev_to_type(struct fd_softc *fd, dev_t dev) { int type = FDTYPE(dev); if (type > (sizeof(fd_types) / sizeof(fd_types[0]))) return NULL; return &fd_types[type]; } void fdstrategy(struct buf *bp) { struct fd_softc *fd; int unit; int sz; int s; unit = FDUNIT(bp->b_dev); fd = device_lookup_private(&fd_cd, unit); if (fd == NULL) { bp->b_error = EINVAL; goto done; } if (bp->b_blkno < 0 || (bp->b_bcount % FDC_BSIZE) != 0) { DPRINTF(("fdstrategy: unit=%d, blkno=%" PRId64 ", " "bcount=%d\n", unit, bp->b_blkno, bp->b_bcount)); bp->b_error = EINVAL; goto done; } /* If it's a null transfer, return immediately. */ if (bp->b_bcount == 0) goto done; sz = howmany(bp->b_bcount, FDC_BSIZE); if (bp->b_blkno + sz > (fd->sc_type->size << (fd->sc_type->secsize - 2))) { sz = (fd->sc_type->size << (fd->sc_type->secsize - 2)) - bp->b_blkno; if (sz == 0) { /* If exactly at end of disk, return EOF. */ bp->b_resid = bp->b_bcount; goto done; } if (sz < 0) { /* If past end of disk, return EINVAL. */ bp->b_error = EINVAL; goto done; } /* Otherwise, truncate request. */ bp->b_bcount = sz << DEV_BSHIFT; } bp->b_rawblkno = bp->b_blkno; bp->b_cylinder = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE) / (fd->sc_type->seccyl * (1 << (fd->sc_type->secsize - 2))); DPRINTF(("fdstrategy: %s b_blkno %" PRId64 " b_bcount %d cylin %d\n", bp->b_flags & B_READ ? "read" : "write", bp->b_blkno, bp->b_bcount, bp->b_cylinder)); /* Queue transfer on drive, activate drive and controller if idle. */ s = splbio(); BUFQ_PUT(fd->sc_q, bp); callout_stop(&fd->sc_motoroff_ch); /* a good idea */ if (fd->sc_active == 0) fdstart(fd); #ifdef DIAGNOSTIC else { struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); if (fdc->sc_state == DEVIDLE) { printf("fdstrategy: controller inactive\n"); fdcstart(fdc); } } #endif splx(s); return; done: /* Toss transfer; we're done early. */ biodone(bp); } void fdstart(struct fd_softc *fd) { struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); int active = !TAILQ_EMPTY(&fdc->sc_drives); /* Link into controller queue. */ fd->sc_active = 1; TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); /* If controller not already active, start it. */ if (!active) fdcstart(fdc); } void fdfinish(struct fd_softc *fd, struct buf *bp) { struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); /* * Move this drive to the end of the queue to give others a `fair' * chance. We only force a switch if N operations are completed while * another drive is waiting to be serviced, since there is a long motor * startup delay whenever we switch. */ (void)BUFQ_GET(fd->sc_q); if (TAILQ_NEXT(fd, sc_drivechain) && ++fd->sc_ops >= 8) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); if (BUFQ_PEEK(fd->sc_q) != NULL) { TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); } else fd->sc_active = 0; } bp->b_resid = fd->sc_bcount; fd->sc_skip = 0; #if NRND > 0 rnd_add_uint32(&fd->rnd_source, bp->b_blkno); #endif biodone(bp); /* turn off motor 5s from now */ callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd); fdc->sc_state = DEVIDLE; } int fdread(dev_t dev, struct uio *uio, int flags) { return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio)); } int fdwrite(dev_t dev, struct uio *uio, int flags) { return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio)); } void fd_set_motor(struct fdc_softc *fdc, int reset) { struct fd_softc *fd; int n; DPRINTF(("fd_set_motor:\n")); for (n = 0; n < 4; n++) if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) { bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdctl, 0x80 | (fd->sc_type->rate << 4)| n); } } void fd_motor_off(void *arg) { struct fd_softc *fd = arg; struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); int s; DPRINTF(("fd_motor_off:\n")); s = splbio(); fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); bus_space_write_1 (fdc->sc_iot, fdc->sc_ioh, fdctl, (fd->sc_type->rate << 4) | fd->sc_drive); #if 0 fd_set_motor(fdc, 0); /* XXX */ #endif splx(s); } void fd_motor_on(void *arg) { struct fd_softc *fd = arg; struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); int s; DPRINTF(("fd_motor_on:\n")); s = splbio(); fd->sc_flags &= ~FD_MOTOR_WAIT; if ((TAILQ_FIRST(&fdc->sc_drives) == fd) && (fdc->sc_state == MOTORWAIT)) (void) fdcintr(fdc); splx(s); } int fdcresult(struct fdc_softc *fdc) { bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; u_char i; int j = 100000, n = 0; for (; j; j--) { i = bus_space_read_1(iot, ioh, fdsts) & (NE7_DIO | NE7_RQM | NE7_CB); if (i == NE7_RQM) return n; if (i == (NE7_DIO | NE7_RQM | NE7_CB)) { if (n >= sizeof(fdc->sc_status)) { log(LOG_ERR, "fdcresult: overrun\n"); return -1; } fdc->sc_status[n++] = bus_space_read_1(iot, ioh, fddata); } delay(10); } log(LOG_ERR, "fdcresult: timeout\n"); return -1; } int out_fdc(bus_space_tag_t iot, bus_space_handle_t ioh, u_char x) { int i = 100000; while ((bus_space_read_1(iot, ioh, fdsts) & NE7_DIO) && i-- > 0); if (i <= 0) return -1; while ((bus_space_read_1(iot, ioh, fdsts) & NE7_RQM) == 0 && i-- > 0); if (i <= 0) return -1; bus_space_write_1(iot, ioh, fddata, x); return 0; } int fdopen(dev_t dev, int flags, int mode, struct lwp *l) { int unit; struct fd_softc *fd; struct fd_type *type; struct fdc_softc *fdc; unit = FDUNIT(dev); fd = device_lookup_private(&fd_cd, unit); if (fd == NULL) return ENXIO; type = fd_dev_to_type(fd, dev); if (type == NULL) return ENXIO; if ((fd->sc_flags & FD_OPEN) != 0 && fd->sc_type != type) return EBUSY; fdc = device_private(device_parent(fd->sc_dev)); if ((fd->sc_flags & FD_OPEN) == 0) { /* Lock eject button */ bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x40 | ( 1 << unit)); bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x40); } fd->sc_type = type; fd->sc_cylin = -1; switch (mode) { case S_IFCHR: fd->sc_flags |= FD_COPEN; break; case S_IFBLK: fd->sc_flags |= FD_BOPEN; break; } fdgetdisklabel(fd, dev); return 0; } int fdclose(dev_t dev, int flags, int mode, struct lwp *l) { int unit = FDUNIT(dev); struct fd_softc *fd = device_lookup_private(&fd_cd, unit); struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); DPRINTF(("fdclose %d\n", unit)); switch (mode) { case S_IFCHR: fd->sc_flags &= ~FD_COPEN; break; case S_IFBLK: fd->sc_flags &= ~FD_BOPEN; break; } if ((fd->sc_flags & FD_OPEN) == 0) { bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, ( 1 << unit)); bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0); } return 0; } void fdcstart(struct fdc_softc *fdc) { #ifdef DIAGNOSTIC /* only got here if controller's drive queue was inactive; should be in idle state */ if (fdc->sc_state != DEVIDLE) { printf("fdcstart: not idle\n"); return; } #endif (void) fdcintr(fdc); } static void fdcpstatus(int n, struct fdc_softc *fdc) { char bits[64]; switch (n) { case 0: printf("\n"); break; case 2: snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]); printf(" (st0 %s cyl %d)\n", bits, fdc->sc_status[1]); break; case 7: snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]); printf(" (st0 %s", bits); snprintb(bits, sizeof(bits), NE7_ST1BITS, fdc->sc_status[1]); printf(" st1 %s", bits); snprintb(bits, sizeof(bits), NE7_ST2BITS, fdc->sc_status[2]); printf(" st2 %s", bits); printf(" cyl %d head %d sec %d)\n", fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); break; #ifdef DIAGNOSTIC default: printf("\nfdcstatus: weird size"); break; #endif } } void fdcstatus(device_t dv, int n, const char *s) { struct fdc_softc *fdc = device_private(device_parent(dv)); if (n == 0) { out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI); (void) fdcresult(fdc); n = 2; } printf("%s: %s: state %d", device_xname(dv), s, fdc->sc_state); fdcpstatus(n, fdc); } void fdctimeout(void *arg) { struct fdc_softc *fdc = arg; struct fd_softc *fd = TAILQ_FIRST(&fdc->sc_drives); int s; s = splbio(); fdcstatus(fd->sc_dev, 0, "timeout"); if (BUFQ_PEEK(fd->sc_q) != NULL) fdc->sc_state++; else fdc->sc_state = DEVIDLE; (void) fdcintr(fdc); splx(s); } #if 0 void fdcpseudointr(void *arg) { int s; struct fdc_softc *fdc = arg; /* just ensure it has the right spl */ s = splbio(); (void) fdcintr(fdc); splx(s); } #endif int fdcintr(void *arg) { struct fdc_softc *fdc = arg; #define st0 fdc->sc_status[0] #define cyl fdc->sc_status[1] struct fd_softc *fd; struct buf *bp; bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; int read, head, sec, pos, i, sectrac, nblks; int tmp; struct fd_type *type; loop: fd = TAILQ_FIRST(&fdc->sc_drives); if (fd == NULL) { DPRINTF(("fdcintr: set DEVIDLE\n")); if (fdc->sc_state == DEVIDLE) { if (intio_get_sicilian_intr() & SICILIAN_STAT_FDC) { out_fdc(iot, ioh, NE7CMD_SENSEI); if ((tmp = fdcresult(fdc)) != 2 || (st0 & 0xf8) != 0x20) { goto loop; } } } /* no drives waiting; end */ fdc->sc_state = DEVIDLE; return 1; } /* Is there a transfer to this drive? If not, deactivate drive. */ bp = BUFQ_PEEK(fd->sc_q); if (bp == NULL) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); fd->sc_active = 0; goto loop; } switch (fdc->sc_state) { case DEVIDLE: DPRINTF(("fdcintr: in DEVIDLE\n")); fdc->sc_errors = 0; fd->sc_skip = 0; fd->sc_bcount = bp->b_bcount; fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE); callout_stop(&fd->sc_motoroff_ch); if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) { fdc->sc_state = MOTORWAIT; return 1; } if ((fd->sc_flags & FD_MOTOR) == 0) { /* Turn on the motor */ /* being careful about other drives. */ for (i = 0; i < 4; i++) { struct fd_softc *ofd = fdc->sc_fd[i]; if (ofd && ofd->sc_flags & FD_MOTOR) { callout_stop(&ofd->sc_motoroff_ch); ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); break; } } fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT; fd_set_motor(fdc, 0); fdc->sc_state = MOTORWAIT; /* allow .5s for motor to stabilize */ callout_reset(&fd->sc_motoron_ch, hz / 2, fd_motor_on, fd); return 1; } /* Make sure the right drive is selected. */ fd_set_motor(fdc, 0); /* fall through */ case DOSEEK: doseek: DPRINTF(("fdcintr: in DOSEEK\n")); if (fd->sc_cylin == bp->b_cylinder) goto doio; out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */ out_fdc(iot, ioh, 0xd0); /* XXX const */ out_fdc(iot, ioh, 0x10); out_fdc(iot, ioh, NE7CMD_SEEK); /* seek function */ out_fdc(iot, ioh, fd->sc_drive); /* drive number */ out_fdc(iot, ioh, bp->b_cylinder * fd->sc_type->step); fd->sc_cylin = -1; fdc->sc_state = SEEKWAIT; iostat_seek(fd->sc_dk.dk_stats); disk_busy(&fd->sc_dk); callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc); return 1; case DOIO: doio: DPRINTF(("fdcintr: DOIO: ")); type = fd->sc_type; sectrac = type->sectrac; pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2))); sec = pos / (1 << (type->secsize - 2)); if (type->secsize == 2) { fd->sc_part = SEC_P11; nblks = (sectrac - sec) << (type->secsize - 2); nblks = min(nblks, fd->sc_bcount / FDC_BSIZE); DPRINTF(("nblks(0)")); } else if ((fd->sc_blkno % 2) == 0) { if (fd->sc_bcount & 0x00000200) { if (fd->sc_bcount == FDC_BSIZE) { fd->sc_part = SEC_P10; nblks = 1; DPRINTF(("nblks(1)")); } else { fd->sc_part = SEC_P11; nblks = (sectrac - sec) * 2; nblks = min(nblks, fd->sc_bcount / FDC_BSIZE - 1); DPRINTF(("nblks(2)")); } } else { fd->sc_part = SEC_P11; nblks = (sectrac - sec) << (type->secsize - 2); nblks = min(nblks, fd->sc_bcount / FDC_BSIZE); DPRINTF(("nblks(3)")); } } else { fd->sc_part = SEC_P01; nblks = 1; DPRINTF(("nblks(4)")); } nblks = min(nblks, FDC_MAXIOSIZE / FDC_BSIZE); DPRINTF((" %d\n", nblks)); fd->sc_nblks = nblks; fd->sc_nbytes = nblks * FDC_BSIZE; head = (fd->sc_blkno % (type->seccyl * (1 << (type->secsize - 2)))) / (type->sectrac * (1 << (type->secsize - 2))); #ifdef DIAGNOSTIC {int block; block = ((fd->sc_cylin * type->heads + head) * type->sectrac + sec) * (1 << (type->secsize - 2)); block += (fd->sc_part == SEC_P01) ? 1 : 0; if (block != fd->sc_blkno) { printf("C H R N: %d %d %d %d\n", fd->sc_cylin, head, sec, type->secsize); printf("fdcintr: doio: block %d != blkno %" PRId64 "\n", block, fd->sc_blkno); #ifdef DDB Debugger(); #endif } } #endif read = bp->b_flags & B_READ; DPRINTF(("fdcintr: %s drive %d track %d " "head %d sec %d nblks %d, skip %d\n", read ? "read" : "write", fd->sc_drive, fd->sc_cylin, head, sec, nblks, fd->sc_skip)); DPRINTF(("C H R N: %d %d %d %d\n", fd->sc_cylin, head, sec, type->secsize)); if (fd->sc_part != SEC_P11) goto docopy; fdc_dmastart(fdc, read, (char *)bp->b_data + fd->sc_skip, fd->sc_nbytes); if (read) out_fdc(iot, ioh, NE7CMD_READ); /* READ */ else out_fdc(iot, ioh, NE7CMD_WRITE); /* WRITE */ out_fdc(iot, ioh, (head << 2) | fd->sc_drive); out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */ out_fdc(iot, ioh, head); out_fdc(iot, ioh, sec + 1); /* sector +1 */ out_fdc(iot, ioh, type->secsize); /* sector size */ out_fdc(iot, ioh, type->sectrac); /* sectors/track */ out_fdc(iot, ioh, type->gap1); /* gap1 size */ out_fdc(iot, ioh, type->datalen); /* data length */ fdc->sc_state = IOCOMPLETE; disk_busy(&fd->sc_dk); /* allow 2 seconds for operation */ callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc); return 1; /* will return later */ case DOCOPY: docopy: DPRINTF(("fdcintr: DOCOPY:\n")); type = fd->sc_type; head = (fd->sc_blkno % (type->seccyl * (1 << (type->secsize - 2)))) / (type->sectrac * (1 << (type->secsize - 2))); pos = fd->sc_blkno % (type->sectrac * (1 << (type->secsize - 2))); sec = pos / (1 << (type->secsize - 2)); fdc_dmastart(fdc, B_READ, fd->sc_copybuf, 1024); out_fdc(iot, ioh, NE7CMD_READ); /* READ */ out_fdc(iot, ioh, (head << 2) | fd->sc_drive); out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */ out_fdc(iot, ioh, head); out_fdc(iot, ioh, sec + 1); /* sector +1 */ out_fdc(iot, ioh, type->secsize); /* sector size */ out_fdc(iot, ioh, type->sectrac); /* sectors/track */ out_fdc(iot, ioh, type->gap1); /* gap1 size */ out_fdc(iot, ioh, type->datalen); /* data length */ fdc->sc_state = COPYCOMPLETE; /* allow 2 seconds for operation */ callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc); return 1; /* will return later */ case DOIOHALF: doiohalf: DPRINTF((" DOIOHALF:\n")); type = fd->sc_type; sectrac = type->sectrac; pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2))); sec = pos / (1 << (type->secsize - 2)); head = (fd->sc_blkno % (type->seccyl * (1 << (type->secsize - 2)))) / (type->sectrac * (1 << (type->secsize - 2))); #ifdef DIAGNOSTIC {int block; block = ((fd->sc_cylin * type->heads + head) * type->sectrac + sec) * (1 << (type->secsize - 2)); block += (fd->sc_part == SEC_P01) ? 1 : 0; if (block != fd->sc_blkno) { printf("fdcintr: block %d != blkno %" PRId64 "\n", block, fd->sc_blkno); #ifdef DDB Debugger(); #endif } } #endif if ((read = bp->b_flags & B_READ)) { memcpy((char *)bp->b_data + fd->sc_skip, fd->sc_copybuf + (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0), FDC_BSIZE); fdc->sc_state = IOCOMPLETE; goto iocomplete2; } else { memcpy((char *)fd->sc_copybuf + (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0), (char *)bp->b_data + fd->sc_skip, FDC_BSIZE); fdc_dmastart(fdc, read, fd->sc_copybuf, 1024); } out_fdc(iot, ioh, NE7CMD_WRITE); /* WRITE */ out_fdc(iot, ioh, (head << 2) | fd->sc_drive); out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */ out_fdc(iot, ioh, head); out_fdc(iot, ioh, sec + 1); /* sector +1 */ out_fdc(iot, ioh, fd->sc_type->secsize); /* sector size */ out_fdc(iot, ioh, sectrac); /* sectors/track */ out_fdc(iot, ioh, fd->sc_type->gap1); /* gap1 size */ out_fdc(iot, ioh, fd->sc_type->datalen); /* data length */ fdc->sc_state = IOCOMPLETE; /* allow 2 seconds for operation */ callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc); return 1; /* will return later */ case SEEKWAIT: callout_stop(&fdc->sc_timo_ch); fdc->sc_state = SEEKCOMPLETE; /* allow 1/50 second for heads to settle */ #if 0 callout_reset(&fdc->sc_intr_ch, hz / 50, fdcpseudointr, fdc); #endif return 1; case SEEKCOMPLETE: /* Make sure seek really happened */ DPRINTF(("fdcintr: SEEKCOMPLETE: FDC status = %x\n", bus_space_read_1(fdc->sc_iot, fdc->sc_ioh, fdsts))); out_fdc(iot, ioh, NE7CMD_SENSEI); tmp = fdcresult(fdc); if ((st0 & 0xf8) == 0xc0) { DPRINTF(("fdcintr: first seek!\n")); fdc->sc_state = DORECAL; goto loop; } else if (tmp != 2 || (st0 & 0xf8) != 0x20 || cyl != bp->b_cylinder) { #ifdef FDDEBUG fdcstatus(fd->sc_dev, 2, "seek failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = bp->b_cylinder; goto doio; case IOTIMEDOUT: #if 0 isa_dmaabort(fdc->sc_drq); #endif case SEEKTIMEDOUT: case RECALTIMEDOUT: case RESETTIMEDOUT: fdcretry(fdc); goto loop; case IOCOMPLETE: /* IO DONE, post-analyze */ callout_stop(&fdc->sc_timo_ch); DPRINTF(("fdcintr: in IOCOMPLETE\n")); if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) { printf("fdcintr: resnum=%d, st0=%x\n", tmp, st0); #if 0 isa_dmaabort(fdc->sc_drq); #endif fdcstatus(fd->sc_dev, 7, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %" PRId64 " nblks %d\n", fd->sc_blkno, fd->sc_nblks); fdcretry(fdc); goto loop; } #if 0 isa_dmadone(bp->b_flags & B_READ, bp->b_data + fd->sc_skip, nblks * FDC_BSIZE, fdc->sc_drq); #endif iocomplete2: if (fdc->sc_errors) { diskerr(bp, "fd", "soft error (corrected)", LOG_PRINTF, fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL); printf("\n"); fdc->sc_errors = 0; } fd->sc_blkno += fd->sc_nblks; fd->sc_skip += fd->sc_nbytes; fd->sc_bcount -= fd->sc_nbytes; DPRINTF(("fd->sc_bcount = %d\n", fd->sc_bcount)); if (fd->sc_bcount > 0) { bp->b_cylinder = fd->sc_blkno / (fd->sc_type->seccyl * (1 << (fd->sc_type->secsize - 2))); goto doseek; } fdfinish(fd, bp); goto loop; case COPYCOMPLETE: /* IO DONE, post-analyze */ DPRINTF(("fdcintr: COPYCOMPLETE:")); callout_stop(&fdc->sc_timo_ch); if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) { printf("fdcintr: resnum=%d, st0=%x\n", tmp, st0); #if 0 isa_dmaabort(fdc->sc_drq); #endif fdcstatus(fd->sc_dev, 7, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %" PRId64 " nblks %d\n", fd->sc_blkno, fd->sc_nblks); fdcretry(fdc); goto loop; } goto doiohalf; case DORESET: DPRINTF(("fdcintr: in DORESET\n")); /* try a reset, keep motor on */ fd_set_motor(fdc, 1); DELAY(100); fd_set_motor(fdc, 0); fdc->sc_state = RESETCOMPLETE; callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc); return 1; /* will return later */ case RESETCOMPLETE: DPRINTF(("fdcintr: in RESETCOMPLETE\n")); callout_stop(&fdc->sc_timo_ch); /* clear the controller output buffer */ for (i = 0; i < 4; i++) { out_fdc(iot, ioh, NE7CMD_SENSEI); (void) fdcresult(fdc); } /* fall through */ case DORECAL: DPRINTF(("fdcintr: in DORECAL\n")); out_fdc(iot, ioh, NE7CMD_RECAL); /* recalibrate function */ out_fdc(iot, ioh, fd->sc_drive); fdc->sc_state = RECALWAIT; callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc); return 1; /* will return later */ case RECALWAIT: DPRINTF(("fdcintr: in RECALWAIT\n")); callout_stop(&fdc->sc_timo_ch); fdc->sc_state = RECALCOMPLETE; /* allow 1/30 second for heads to settle */ #if 0 callout_reset(&fdc->sc_intr_ch, hz / 30, fdcpseudointr, fdc); #endif return 1; /* will return later */ case RECALCOMPLETE: DPRINTF(("fdcintr: in RECALCOMPLETE\n")); out_fdc(iot, ioh, NE7CMD_SENSEI); tmp = fdcresult(fdc); if ((st0 & 0xf8) == 0xc0) { DPRINTF(("fdcintr: first seek!\n")); fdc->sc_state = DORECAL; goto loop; } else if (tmp != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) { #ifdef FDDEBUG fdcstatus(fd->sc_dev, 2, "recalibrate failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = 0; goto doseek; case MOTORWAIT: if (fd->sc_flags & FD_MOTOR_WAIT) return 1; /* time's not up yet */ goto doseek; default: fdcstatus(fd->sc_dev, 0, "stray interrupt"); return 1; } #ifdef DIAGNOSTIC panic("fdcintr: impossible"); #endif #undef st0 #undef cyl } void fdcretry(struct fdc_softc *fdc) { struct fd_softc *fd; struct buf *bp; DPRINTF(("fdcretry:\n")); fd = TAILQ_FIRST(&fdc->sc_drives); bp = BUFQ_PEEK(fd->sc_q); switch (fdc->sc_errors) { case 0: /* try again */ fdc->sc_state = SEEKCOMPLETE; break; case 1: case 2: case 3: /* didn't work; try recalibrating */ fdc->sc_state = DORECAL; break; case 4: /* still no go; reset the bastard */ fdc->sc_state = DORESET; break; default: diskerr(bp, "fd", "hard error", LOG_PRINTF, fd->sc_skip, (struct disklabel *)NULL); fdcpstatus(7, fdc); bp->b_error = EIO; fdfinish(fd, bp); } fdc->sc_errors++; } int fdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l) { struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev)); struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); int part = DISKPART(dev); struct disklabel buffer; int error; DPRINTF(("fdioctl:\n")); switch (cmd) { case DIOCGDINFO: #if 1 *(struct disklabel *)addr = *(fd->sc_dk.dk_label); return(0); #else memset(&buffer, 0, sizeof(buffer)); buffer.d_secpercyl = fd->sc_type->seccyl; buffer.d_type = DTYPE_FLOPPY; buffer.d_secsize = 128 << fd->sc_type->secsize; if (readdisklabel(dev, fdstrategy, &buffer, NULL) != NULL) return EINVAL; *(struct disklabel *)addr = buffer; return 0; #endif case DIOCGPART: ((struct partinfo *)addr)->disklab = fd->sc_dk.dk_label; ((struct partinfo *)addr)->part = &fd->sc_dk.dk_label->d_partitions[part]; return(0); case DIOCWLABEL: if ((flag & FWRITE) == 0) return EBADF; /* XXX do something */ return 0; case DIOCWDINFO: if ((flag & FWRITE) == 0) return EBADF; error = setdisklabel(&buffer, (struct disklabel *)addr, 0, NULL); if (error) return error; error = writedisklabel(dev, fdstrategy, &buffer, NULL); return error; case DIOCLOCK: /* * Nothing to do here, really. */ return 0; /* XXX */ case DIOCEJECT: if (*(int *)addr == 0) { /* * Don't force eject: check that we are the only * partition open. If so, unlock it. */ if ((fd->sc_dk.dk_openmask & ~(1 << part)) != 0 || fd->sc_dk.dk_bopenmask + fd->sc_dk.dk_copenmask != fd->sc_dk.dk_openmask) { return (EBUSY); } } /* FALLTHROUGH */ case ODIOCEJECT: fd_do_eject(fdc, FDUNIT(dev)); return 0; default: return ENOTTY; } #ifdef DIAGNOSTIC panic("fdioctl: impossible"); #endif } void fd_do_eject(struct fdc_softc *fdc, int unit) { bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x20 | ( 1 << unit)); DELAY(1); /* XXX */ bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x20); } /* * Build disk label. For now we only create a label from what we know * from 'sc'. */ static int fdgetdisklabel(struct fd_softc *sc, dev_t dev) { struct disklabel *lp; int part; DPRINTF(("fdgetdisklabel()\n")); part = DISKPART(dev); lp = sc->sc_dk.dk_label; memset(lp, 0, sizeof(struct disklabel)); lp->d_secsize = 128 << sc->sc_type->secsize; lp->d_ntracks = sc->sc_type->heads; lp->d_nsectors = sc->sc_type->sectrac; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; lp->d_ncylinders = sc->sc_type->size / lp->d_secpercyl; lp->d_secperunit = sc->sc_type->size; lp->d_type = DTYPE_FLOPPY; lp->d_rpm = 300; /* XXX */ lp->d_interleave = 1; /* FIXME: is this OK? */ lp->d_bbsize = 0; lp->d_sbsize = 0; lp->d_npartitions = part + 1; #define STEP_DELAY 6000 /* 6ms (6000us) delay after stepping */ lp->d_trkseek = STEP_DELAY; /* XXX */ lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); lp->d_partitions[part].p_size = lp->d_secperunit; lp->d_partitions[part].p_fstype = FS_UNUSED; lp->d_partitions[part].p_fsize = 1024; lp->d_partitions[part].p_frag = 8; return(0); } #include /* * Mountroot hook: prompt the user to enter the root file system * floppy. */ void fd_mountroot_hook(device_t dev) { struct fd_softc *fd = device_private(dev); struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev)); int c; /* XXX device_unit() abuse */ fd_do_eject(fdc, device_unit(dev)); printf("Insert filesystem floppy and press return."); for (;;) { c = cngetc(); if ((c == '\r') || (c == '\n')) { printf("\n"); break; } } }