/* $NetBSD: mpii.c,v 1.8 2016/05/02 19:18:29 christos Exp $ */ /* OpenBSD: mpii.c,v 1.51 2012/04/11 13:29:14 naddy Exp */ /* * Copyright (c) 2010 Mike Belopuhov * Copyright (c) 2009 James Giannoules * Copyright (c) 2005 - 2010 David Gwynne * Copyright (c) 2005 - 2010 Marco Peereboom * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __KERNEL_RCSID(0, "$NetBSD: mpii.c,v 1.8 2016/05/02 19:18:29 christos Exp $"); #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MPII_DOORBELL (0x00) /* doorbell read bits */ #define MPII_DOORBELL_STATE (0xf<<28) /* ioc state */ #define MPII_DOORBELL_STATE_RESET (0x0<<28) #define MPII_DOORBELL_STATE_READY (0x1<<28) #define MPII_DOORBELL_STATE_OPER (0x2<<28) #define MPII_DOORBELL_STATE_FAULT (0x4<<28) #define MPII_DOORBELL_INUSE (0x1<<27) /* doorbell used */ #define MPII_DOORBELL_WHOINIT (0x7<<24) /* last to reset ioc */ #define MPII_DOORBELL_WHOINIT_NOONE (0x0<<24) /* not initialized */ #define MPII_DOORBELL_WHOINIT_SYSBIOS (0x1<<24) /* system bios */ #define MPII_DOORBELL_WHOINIT_ROMBIOS (0x2<<24) /* rom bios */ #define MPII_DOORBELL_WHOINIT_PCIPEER (0x3<<24) /* pci peer */ #define MPII_DOORBELL_WHOINIT_DRIVER (0x4<<24) /* host driver */ #define MPII_DOORBELL_WHOINIT_MANUFACT (0x5<<24) /* manufacturing */ #define MPII_DOORBELL_FAULT (0xffff<<0) /* fault code */ /* doorbell write bits */ #define MPII_DOORBELL_FUNCTION_SHIFT (24) #define MPII_DOORBELL_FUNCTION_MASK (0xff << MPII_DOORBELL_FUNCTION_SHIFT) #define MPII_DOORBELL_FUNCTION(x) \ (((x) << MPII_DOORBELL_FUNCTION_SHIFT) & MPII_DOORBELL_FUNCTION_MASK) #define MPII_DOORBELL_DWORDS_SHIFT 16 #define MPII_DOORBELL_DWORDS_MASK (0xff << MPII_DOORBELL_DWORDS_SHIFT) #define MPII_DOORBELL_DWORDS(x) \ (((x) << MPII_DOORBELL_DWORDS_SHIFT) & MPII_DOORBELL_DWORDS_MASK) #define MPII_DOORBELL_DATA_MASK (0xffff) #define MPII_WRITESEQ (0x04) #define MPII_WRITESEQ_KEY_VALUE_MASK (0x0000000f) /* key value */ #define MPII_WRITESEQ_FLUSH (0x00) #define MPII_WRITESEQ_1 (0x0f) #define MPII_WRITESEQ_2 (0x04) #define MPII_WRITESEQ_3 (0x0b) #define MPII_WRITESEQ_4 (0x02) #define MPII_WRITESEQ_5 (0x07) #define MPII_WRITESEQ_6 (0x0d) #define MPII_HOSTDIAG (0x08) #define MPII_HOSTDIAG_BDS_MASK (0x00001800) /* boot device select */ #define MPII_HOSTDIAG_BDS_DEFAULT (0<<11) /* default address map, flash */ #define MPII_HOSTDIAG_BDS_HCDW (1<<11) /* host code and data window */ #define MPII_HOSTDIAG_CLEARFBS (1<<10) /* clear flash bad sig */ #define MPII_HOSTDIAG_FORCE_HCB_ONBOOT (1<<9) /* force host controlled boot */ #define MPII_HOSTDIAG_HCB_MODE (1<<8) /* host controlled boot mode */ #define MPII_HOSTDIAG_DWRE (1<<7) /* diag reg write enabled */ #define MPII_HOSTDIAG_FBS (1<<6) /* flash bad sig */ #define MPII_HOSTDIAG_RESET_HIST (1<<5) /* reset history */ #define MPII_HOSTDIAG_DIAGWR_EN (1<<4) /* diagnostic write enabled */ #define MPII_HOSTDIAG_RESET_ADAPTER (1<<2) /* reset adapter */ #define MPII_HOSTDIAG_HOLD_IOC_RESET (1<<1) /* hold ioc in reset */ #define MPII_HOSTDIAG_DIAGMEM_EN (1<<0) /* diag mem enable */ #define MPII_DIAGRWDATA (0x10) #define MPII_DIAGRWADDRLOW (0x14) #define MPII_DIAGRWADDRHIGH (0x18) #define MPII_INTR_STATUS (0x30) #define MPII_INTR_STATUS_SYS2IOCDB (1<<31) /* ioc written to by host */ #define MPII_INTR_STATUS_RESET (1<<30) /* physical ioc reset */ #define MPII_INTR_STATUS_REPLY (1<<3) /* reply message interrupt */ #define MPII_INTR_STATUS_IOC2SYSDB (1<<0) /* ioc write to doorbell */ #define MPII_INTR_MASK (0x34) #define MPII_INTR_MASK_RESET (1<<30) /* ioc reset intr mask */ #define MPII_INTR_MASK_REPLY (1<<3) /* reply message intr mask */ #define MPII_INTR_MASK_DOORBELL (1<<0) /* doorbell interrupt mask */ #define MPII_DCR_DATA (0x38) #define MPII_DCR_ADDRESS (0x3c) #define MPII_REPLY_FREE_HOST_INDEX (0x48) #define MPII_REPLY_POST_HOST_INDEX (0x6c) #define MPII_HCB_SIZE (0x74) #define MPII_HCB_ADDRESS_LOW (0x78) #define MPII_HCB_ADDRESS_HIGH (0x7c) #define MPII_REQ_DESCR_POST_LOW (0xc0) #define MPII_REQ_DESCR_POST_HIGH (0xc4) /* * Scatter Gather Lists */ #define MPII_SGE_FL_LAST (0x1<<31) /* last element in segment */ #define MPII_SGE_FL_EOB (0x1<<30) /* last element of buffer */ #define MPII_SGE_FL_TYPE (0x3<<28) /* element type */ #define MPII_SGE_FL_TYPE_SIMPLE (0x1<<28) /* simple element */ #define MPII_SGE_FL_TYPE_CHAIN (0x3<<28) /* chain element */ #define MPII_SGE_FL_TYPE_XACTCTX (0x0<<28) /* transaction context */ #define MPII_SGE_FL_LOCAL (0x1<<27) /* local address */ #define MPII_SGE_FL_DIR (0x1<<26) /* direction */ #define MPII_SGE_FL_DIR_OUT (0x1<<26) #define MPII_SGE_FL_DIR_IN (0x0<<26) #define MPII_SGE_FL_SIZE (0x1<<25) /* address size */ #define MPII_SGE_FL_SIZE_32 (0x0<<25) #define MPII_SGE_FL_SIZE_64 (0x1<<25) #define MPII_SGE_FL_EOL (0x1<<24) /* end of list */ struct mpii_sge { u_int32_t sg_hdr; u_int32_t sg_lo_addr; u_int32_t sg_hi_addr; } __packed; struct mpii_fw_tce { u_int8_t reserved1; u_int8_t context_size; u_int8_t details_length; u_int8_t flags; u_int32_t reserved2; u_int32_t image_offset; u_int32_t image_size; } __packed; /* * Messages */ /* functions */ #define MPII_FUNCTION_SCSI_IO_REQUEST (0x00) #define MPII_FUNCTION_SCSI_TASK_MGMT (0x01) #define MPII_FUNCTION_IOC_INIT (0x02) #define MPII_FUNCTION_IOC_FACTS (0x03) #define MPII_FUNCTION_CONFIG (0x04) #define MPII_FUNCTION_PORT_FACTS (0x05) #define MPII_FUNCTION_PORT_ENABLE (0x06) #define MPII_FUNCTION_EVENT_NOTIFICATION (0x07) #define MPII_FUNCTION_EVENT_ACK (0x08) #define MPII_FUNCTION_FW_DOWNLOAD (0x09) #define MPII_FUNCTION_TARGET_CMD_BUFFER_POST (0x0a) #define MPII_FUNCTION_TARGET_ASSIST (0x0b) #define MPII_FUNCTION_TARGET_STATUS_SEND (0x0c) #define MPII_FUNCTION_TARGET_MODE_ABORT (0x0d) #define MPII_FUNCTION_FW_UPLOAD (0x12) #define MPII_FUNCTION_RAID_ACTION (0x15) #define MPII_FUNCTION_RAID_SCSI_IO_PASSTHROUGH (0x16) #define MPII_FUNCTION_TOOLBOX (0x17) #define MPII_FUNCTION_SCSI_ENCLOSURE_PROCESSOR (0x18) #define MPII_FUNCTION_SMP_PASSTHROUGH (0x1a) #define MPII_FUNCTION_SAS_IO_UNIT_CONTROL (0x1b) #define MPII_FUNCTION_SATA_PASSTHROUGH (0x1c) #define MPII_FUNCTION_DIAG_BUFFER_POST (0x1d) #define MPII_FUNCTION_DIAG_RELEASE (0x1e) #define MPII_FUNCTION_TARGET_CMD_BUF_BASE_POST (0x24) #define MPII_FUNCTION_TARGET_CMD_BUF_LIST_POST (0x25) #define MPII_FUNCTION_IOC_MESSAGE_UNIT_RESET (0x40) #define MPII_FUNCTION_IO_UNIT_RESET (0x41) #define MPII_FUNCTION_HANDSHAKE (0x42) /* Common IOCStatus values for all replies */ #define MPII_IOCSTATUS_MASK (0x7fff) #define MPII_IOCSTATUS_SUCCESS (0x0000) #define MPII_IOCSTATUS_INVALID_FUNCTION (0x0001) #define MPII_IOCSTATUS_BUSY (0x0002) #define MPII_IOCSTATUS_INVALID_SGL (0x0003) #define MPII_IOCSTATUS_INTERNAL_ERROR (0x0004) #define MPII_IOCSTATUS_INVALID_VPID (0x0005) #define MPII_IOCSTATUS_INSUFFICIENT_RESOURCES (0x0006) #define MPII_IOCSTATUS_INVALID_FIELD (0x0007) #define MPII_IOCSTATUS_INVALID_STATE (0x0008) #define MPII_IOCSTATUS_OP_STATE_NOT_SUPPORTED (0x0009) /* Config IOCStatus values */ #define MPII_IOCSTATUS_CONFIG_INVALID_ACTION (0x0020) #define MPII_IOCSTATUS_CONFIG_INVALID_TYPE (0x0021) #define MPII_IOCSTATUS_CONFIG_INVALID_PAGE (0x0022) #define MPII_IOCSTATUS_CONFIG_INVALID_DATA (0x0023) #define MPII_IOCSTATUS_CONFIG_NO_DEFAULTS (0x0024) #define MPII_IOCSTATUS_CONFIG_CANT_COMMIT (0x0025) /* SCSIIO Reply initiator values */ #define MPII_IOCSTATUS_SCSI_RECOVERED_ERROR (0x0040) #define MPII_IOCSTATUS_SCSI_INVALID_DEVHANDLE (0x0042) #define MPII_IOCSTATUS_SCSI_DEVICE_NOT_THERE (0x0043) #define MPII_IOCSTATUS_SCSI_DATA_OVERRUN (0x0044) #define MPII_IOCSTATUS_SCSI_DATA_UNDERRUN (0x0045) #define MPII_IOCSTATUS_SCSI_IO_DATA_ERROR (0x0046) #define MPII_IOCSTATUS_SCSI_PROTOCOL_ERROR (0x0047) #define MPII_IOCSTATUS_SCSI_TASK_TERMINATED (0x0048) #define MPII_IOCSTATUS_SCSI_RESIDUAL_MISMATCH (0x0049) #define MPII_IOCSTATUS_SCSI_TASK_MGMT_FAILED (0x004a) #define MPII_IOCSTATUS_SCSI_IOC_TERMINATED (0x004b) #define MPII_IOCSTATUS_SCSI_EXT_TERMINATED (0x004c) /* For use by SCSI Initiator and SCSI Target end-to-end data protection */ #define MPII_IOCSTATUS_EEDP_GUARD_ERROR (0x004d) #define MPII_IOCSTATUS_EEDP_REF_TAG_ERROR (0x004e) #define MPII_IOCSTATUS_EEDP_APP_TAG_ERROR (0x004f) /* SCSI (SPI & FCP) target values */ #define MPII_IOCSTATUS_TARGET_INVALID_IO_INDEX (0x0062) #define MPII_IOCSTATUS_TARGET_ABORTED (0x0063) #define MPII_IOCSTATUS_TARGET_NO_CONN_RETRYABLE (0x0064) #define MPII_IOCSTATUS_TARGET_NO_CONNECTION (0x0065) #define MPII_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH (0x006a) #define MPII_IOCSTATUS_TARGET_DATA_OFFSET_ERROR (0x006d) #define MPII_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA (0x006e) #define MPII_IOCSTATUS_TARGET_IU_TOO_SHORT (0x006f) #define MPII_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT (0x0070) #define MPII_IOCSTATUS_TARGET_NAK_RECEIVED (0x0071) /* Serial Attached SCSI values */ #define MPII_IOCSTATUS_SAS_SMP_REQUEST_FAILED (0x0090) #define MPII_IOCSTATUS_SAS_SMP_DATA_OVERRUN (0x0091) /* Diagnostic Tools values */ #define MPII_IOCSTATUS_DIAGNOSTIC_RELEASED (0x00a0) #define MPII_REP_IOCLOGINFO_TYPE (0xf<<28) #define MPII_REP_IOCLOGINFO_TYPE_NONE (0x0<<28) #define MPII_REP_IOCLOGINFO_TYPE_SCSI (0x1<<28) #define MPII_REP_IOCLOGINFO_TYPE_FC (0x2<<28) #define MPII_REP_IOCLOGINFO_TYPE_SAS (0x3<<28) #define MPII_REP_IOCLOGINFO_TYPE_ISCSI (0x4<<28) #define MPII_REP_IOCLOGINFO_DATA (0x0fffffff) /* event notification types */ #define MPII_EVENT_NONE (0x00) #define MPII_EVENT_LOG_DATA (0x01) #define MPII_EVENT_STATE_CHANGE (0x02) #define MPII_EVENT_HARD_RESET_RECEIVED (0x05) #define MPII_EVENT_EVENT_CHANGE (0x0a) #define MPII_EVENT_TASK_SET_FULL (0x0e) #define MPII_EVENT_SAS_DEVICE_STATUS_CHANGE (0x0f) #define MPII_EVENT_IR_OPERATION_STATUS (0x14) #define MPII_EVENT_SAS_DISCOVERY (0x16) #define MPII_EVENT_SAS_BROADCAST_PRIMITIVE (0x17) #define MPII_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE (0x18) #define MPII_EVENT_SAS_INIT_TABLE_OVERFLOW (0x19) #define MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST (0x1c) #define MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE (0x1d) #define MPII_EVENT_IR_VOLUME (0x1e) #define MPII_EVENT_IR_PHYSICAL_DISK (0x1f) #define MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST (0x20) #define MPII_EVENT_LOG_ENTRY_ADDED (0x21) /* messages */ #define MPII_WHOINIT_NOONE (0x00) #define MPII_WHOINIT_SYSTEM_BIOS (0x01) #define MPII_WHOINIT_ROM_BIOS (0x02) #define MPII_WHOINIT_PCI_PEER (0x03) #define MPII_WHOINIT_HOST_DRIVER (0x04) #define MPII_WHOINIT_MANUFACTURER (0x05) /* default messages */ struct mpii_msg_request { u_int8_t reserved1; u_int8_t reserved2; u_int8_t chain_offset; u_int8_t function; u_int8_t reserved3; u_int8_t reserved4; u_int8_t reserved5; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved6; } __packed; struct mpii_msg_reply { u_int16_t reserved1; u_int8_t msg_length; u_int8_t function; u_int16_t reserved2; u_int8_t reserved3; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_if; u_int16_t reserved4; u_int16_t reserved5; u_int16_t ioc_status; u_int32_t ioc_loginfo; } __packed; /* ioc init */ struct mpii_msg_iocinit_request { u_int8_t whoinit; u_int8_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t reserved2; u_int8_t reserved3; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved4; u_int8_t msg_version_min; u_int8_t msg_version_maj; u_int8_t hdr_version_unit; u_int8_t hdr_version_dev; u_int32_t reserved5; u_int32_t reserved6; u_int16_t reserved7; u_int16_t system_request_frame_size; u_int16_t reply_descriptor_post_queue_depth; u_int16_t reply_free_queue_depth; u_int32_t sense_buffer_address_high; u_int32_t system_reply_address_high; u_int64_t system_request_frame_base_address; u_int64_t reply_descriptor_post_queue_address; u_int64_t reply_free_queue_address; u_int64_t timestamp; } __packed; struct mpii_msg_iocinit_reply { u_int8_t whoinit; u_int8_t reserved1; u_int8_t msg_length; u_int8_t function; u_int16_t reserved2; u_int8_t reserved3; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved4; u_int16_t reserved5; u_int16_t ioc_status; u_int32_t ioc_loginfo; } __packed; struct mpii_msg_iocfacts_request { u_int16_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t reserved2; u_int8_t reserved3; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved4; } __packed; struct mpii_msg_iocfacts_reply { u_int8_t msg_version_min; u_int8_t msg_version_maj; u_int8_t msg_length; u_int8_t function; u_int8_t header_version_dev; u_int8_t header_version_unit; u_int8_t ioc_number; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved1; u_int16_t ioc_exceptions; #define MPII_IOCFACTS_EXCEPT_CONFIG_CHECKSUM_FAIL (1<<0) #define MPII_IOCFACTS_EXCEPT_RAID_CONFIG_INVALID (1<<1) #define MPII_IOCFACTS_EXCEPT_FW_CHECKSUM_FAIL (1<<2) #define MPII_IOCFACTS_EXCEPT_MANUFACT_CHECKSUM_FAIL (1<<3) #define MPII_IOCFACTS_EXCEPT_METADATA_UNSUPPORTED (1<<4) #define MPII_IOCFACTS_EXCEPT_IR_FOREIGN_CONFIG_MAC (1<<8) /* XXX JPG BOOT_STATUS in bits[7:5] */ /* XXX JPG all these #defines need to be fixed up */ u_int16_t ioc_status; u_int32_t ioc_loginfo; u_int8_t max_chain_depth; u_int8_t whoinit; u_int8_t number_of_ports; u_int8_t reserved2; u_int16_t request_credit; u_int16_t product_id; u_int32_t ioc_capabilities; #define MPII_IOCFACTS_CAPABILITY_EVENT_REPLAY (1<<13) #define MPII_IOCFACTS_CAPABILITY_INTEGRATED_RAID (1<<12) #define MPII_IOCFACTS_CAPABILITY_TLR (1<<11) #define MPII_IOCFACTS_CAPABILITY_MULTICAST (1<<8) #define MPII_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET (1<<7) #define MPII_IOCFACTS_CAPABILITY_EEDP (1<<6) #define MPII_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER (1<<4) #define MPII_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER (1<<3) #define MPII_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING (1<<2) u_int8_t fw_version_dev; u_int8_t fw_version_unit; u_int8_t fw_version_min; u_int8_t fw_version_maj; u_int16_t ioc_request_frame_size; u_int16_t reserved3; u_int16_t max_initiators; u_int16_t max_targets; u_int16_t max_sas_expanders; u_int16_t max_enclosures; u_int16_t protocol_flags; u_int16_t high_priority_credit; u_int16_t max_reply_descriptor_post_queue_depth; u_int8_t reply_frame_size; u_int8_t max_volumes; u_int16_t max_dev_handle; u_int16_t max_persistent_entries; u_int32_t reserved4; } __packed; struct mpii_msg_portfacts_request { u_int16_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t reserved2; u_int8_t port_number; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; } __packed; struct mpii_msg_portfacts_reply { u_int16_t reserved1; u_int8_t msg_length; u_int8_t function; u_int16_t reserved2; u_int8_t port_number; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int16_t reserved4; u_int16_t ioc_status; u_int32_t ioc_loginfo; u_int8_t reserved5; u_int8_t port_type; #define MPII_PORTFACTS_PORTTYPE_INACTIVE (0x00) #define MPII_PORTFACTS_PORTTYPE_FC (0x10) #define MPII_PORTFACTS_PORTTYPE_ISCSI (0x20) #define MPII_PORTFACTS_PORTTYPE_SAS_PHYSICAL (0x30) #define MPII_PORTFACTS_PORTTYPE_SAS_VIRTUAL (0x31) u_int16_t reserved6; u_int16_t max_posted_cmd_buffers; u_int16_t reserved7; } __packed; struct mpii_msg_portenable_request { u_int16_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int8_t reserved2; u_int8_t port_flags; u_int8_t reserved3; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved4; } __packed; struct mpii_msg_portenable_reply { u_int16_t reserved1; u_int8_t msg_length; u_int8_t function; u_int8_t reserved2; u_int8_t port_flags; u_int8_t reserved3; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved4; u_int16_t reserved5; u_int16_t ioc_status; u_int32_t ioc_loginfo; } __packed; struct mpii_msg_event_request { u_int16_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t reserved2; u_int8_t reserved3; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved4; u_int32_t reserved5; u_int32_t reserved6; u_int32_t event_masks[4]; u_int16_t sas_broadcase_primitive_masks; u_int16_t reserved7; u_int32_t reserved8; } __packed; struct mpii_msg_event_reply { u_int16_t event_data_length; u_int8_t msg_length; u_int8_t function; u_int16_t reserved1; u_int8_t ack_required; #define MPII_EVENT_ACK_REQUIRED (0x01) u_int8_t msg_flags; #define MPII_EVENT_FLAGS_REPLY_KEPT (1<<7) u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved2; u_int16_t reserved3; u_int16_t ioc_status; u_int32_t ioc_loginfo; u_int16_t event; u_int16_t reserved4; u_int32_t event_context; /* event data follows */ } __packed; struct mpii_msg_eventack_request { u_int16_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int8_t reserved2[3]; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int16_t event; u_int16_t reserved4; u_int32_t event_context; } __packed; struct mpii_msg_eventack_reply { u_int16_t reserved1; u_int8_t msg_length; u_int8_t function; u_int8_t reserved2[3]; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int16_t reserved4; u_int16_t ioc_status; u_int32_t ioc_loginfo; } __packed; struct mpii_msg_fwupload_request { u_int8_t image_type; #define MPII_FWUPLOAD_IMAGETYPE_IOC_FW (0x00) #define MPII_FWUPLOAD_IMAGETYPE_NV_FW (0x01) #define MPII_FWUPLOAD_IMAGETYPE_NV_BACKUP (0x05) #define MPII_FWUPLOAD_IMAGETYPE_NV_MANUFACTURING (0x06) #define MPII_FWUPLOAD_IMAGETYPE_NV_CONFIG_1 (0x07) #define MPII_FWUPLOAD_IMAGETYPE_NV_CONFIG_2 (0x08) #define MPII_FWUPLOAD_IMAGETYPE_NV_MEGARAID (0x09) #define MPII_FWUPLOAD_IMAGETYPE_NV_COMPLETE (0x0a) #define MPII_FWUPLOAD_IMAGETYPE_COMMON_BOOT_BLOCK (0x0b) u_int8_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int8_t reserved2[3]; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int32_t reserved4; u_int32_t reserved5; struct mpii_fw_tce tce; /* followed by an sgl */ } __packed; struct mpii_msg_fwupload_reply { u_int8_t image_type; u_int8_t reserved1; u_int8_t msg_length; u_int8_t function; u_int8_t reserved2[3]; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int16_t reserved4; u_int16_t ioc_status; u_int32_t ioc_loginfo; u_int32_t actual_image_size; } __packed; struct mpii_msg_scsi_io { u_int16_t dev_handle; u_int8_t chain_offset; u_int8_t function; u_int16_t reserved1; u_int8_t reserved2; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int32_t sense_buffer_low_address; u_int16_t sgl_flags; u_int8_t sense_buffer_length; u_int8_t reserved4; u_int8_t sgl_offset0; u_int8_t sgl_offset1; u_int8_t sgl_offset2; u_int8_t sgl_offset3; u_int32_t skip_count; u_int32_t data_length; u_int32_t bidirectional_data_length; u_int16_t io_flags; u_int16_t eedp_flags; u_int32_t eedp_block_size; u_int32_t secondary_reference_tag; u_int16_t secondary_application_tag; u_int16_t application_tag_translation_mask; u_int16_t lun[4]; /* the following 16 bits are defined in MPI2 as the control field */ u_int8_t reserved5; u_int8_t tagging; #define MPII_SCSIIO_ATTR_SIMPLE_Q (0x0) #define MPII_SCSIIO_ATTR_HEAD_OF_Q (0x1) #define MPII_SCSIIO_ATTR_ORDERED_Q (0x2) #define MPII_SCSIIO_ATTR_ACA_Q (0x4) #define MPII_SCSIIO_ATTR_UNTAGGED (0x5) #define MPII_SCSIIO_ATTR_NO_DISCONNECT (0x7) u_int8_t reserved6; u_int8_t direction; #define MPII_SCSIIO_DIR_NONE (0x0) #define MPII_SCSIIO_DIR_WRITE (0x1) #define MPII_SCSIIO_DIR_READ (0x2) #define MPII_CDB_LEN (32) u_int8_t cdb[MPII_CDB_LEN]; /* followed by an sgl */ } __packed; struct mpii_msg_scsi_io_error { u_int16_t dev_handle; u_int8_t msg_length; u_int8_t function; u_int16_t reserved1; u_int8_t reserved2; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int8_t scsi_status; #define MPII_SCSIIO_ERR_STATUS_SUCCESS (0x00) #define MPII_SCSIIO_ERR_STATUS_CHECK_COND (0x02) #define MPII_SCSIIO_ERR_STATUS_BUSY (0x04) #define MPII_SCSIIO_ERR_STATUS_INTERMEDIATE (0x08) #define MPII_SCSIIO_ERR_STATUS_INTERMEDIATE_CONDMET (0x10) #define MPII_SCSIIO_ERR_STATUS_RESERVATION_CONFLICT (0x14) #define MPII_SCSIIO_ERR_STATUS_CMD_TERM (0x22) #define MPII_SCSIIO_ERR_STATUS_TASK_SET_FULL (0x28) #define MPII_SCSIIO_ERR_STATUS_ACA_ACTIVE (0x30) #define MPII_SCSIIO_ERR_STATUS_TASK_ABORTED (0x40) u_int8_t scsi_state; #define MPII_SCSIIO_ERR_STATE_AUTOSENSE_VALID (1<<0) #define MPII_SCSIIO_ERR_STATE_AUTOSENSE_FAILED (1<<1) #define MPII_SCSIIO_ERR_STATE_NO_SCSI_STATUS (1<<2) #define MPII_SCSIIO_ERR_STATE_TERMINATED (1<<3) #define MPII_SCSIIO_ERR_STATE_RESPONSE_INFO_VALID (1<<4) #define MPII_SCSIIO_ERR_STATE_QUEUE_TAG_REJECTED (0xffff) u_int16_t ioc_status; u_int32_t ioc_loginfo; u_int32_t transfer_count; u_int32_t sense_count; u_int32_t response_info; u_int16_t task_tag; u_int16_t reserved4; u_int32_t bidirectional_transfer_count; u_int32_t reserved5; u_int32_t reserved6; } __packed; struct mpii_request_descr { u_int8_t request_flags; #define MPII_REQ_DESCR_TYPE_MASK (0x0e) #define MPII_REQ_DESCR_SCSI_IO (0x00) #define MPII_REQ_DESCR_SCSI_TARGET (0x02) #define MPII_REQ_DESCR_HIGH_PRIORITY (0x06) #define MPII_REQ_DESCR_DEFAULT (0x08) u_int8_t vf_id; u_int16_t smid; u_int16_t lmid; u_int16_t dev_handle; } __packed; struct mpii_reply_descr { u_int8_t reply_flags; #define MPII_REPLY_DESCR_TYPE_MASK (0x0f) #define MPII_REPLY_DESCR_SCSI_IO_SUCCESS (0x00) #define MPII_REPLY_DESCR_ADDRESS_REPLY (0x01) #define MPII_REPLY_DESCR_TARGET_ASSIST_SUCCESS (0x02) #define MPII_REPLY_DESCR_TARGET_COMMAND_BUFFER (0x03) #define MPII_REPLY_DESCR_UNUSED (0x0f) u_int8_t vf_id; u_int16_t smid; union { u_int32_t data; u_int32_t frame_addr; /* Address Reply */ }; } __packed; struct mpii_request_header { u_int16_t function_dependent1; u_int8_t chain_offset; u_int8_t function; u_int16_t function_dependent2; u_int8_t function_dependent3; u_int8_t message_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved; } __packed; struct mpii_msg_scsi_task_request { u_int16_t dev_handle; u_int8_t chain_offset; u_int8_t function; u_int8_t reserved1; u_int8_t task_type; #define MPII_SCSI_TASK_ABORT_TASK (0x01) #define MPII_SCSI_TASK_ABRT_TASK_SET (0x02) #define MPII_SCSI_TASK_TARGET_RESET (0x03) #define MPII_SCSI_TASK_RESET_BUS (0x04) #define MPII_SCSI_TASK_LOGICAL_UNIT_RESET (0x05) u_int8_t reserved2; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved3; u_int16_t lun[4]; u_int32_t reserved4[7]; u_int16_t task_mid; u_int16_t reserved5; } __packed; struct mpii_msg_scsi_task_reply { u_int16_t dev_handle; u_int8_t msg_length; u_int8_t function; u_int8_t response_code; u_int8_t task_type; u_int8_t reserved1; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved2; u_int16_t reserved3; u_int16_t ioc_status; u_int32_t ioc_loginfo; u_int32_t termination_count; } __packed; struct mpii_msg_sas_oper_request { u_int8_t operation; #define MPII_SAS_OP_CLEAR_PERSISTENT (0x02) #define MPII_SAS_OP_PHY_LINK_RESET (0x06) #define MPII_SAS_OP_PHY_HARD_RESET (0x07) #define MPII_SAS_OP_PHY_CLEAR_ERROR_LOG (0x08) #define MPII_SAS_OP_SEND_PRIMITIVE (0x0a) #define MPII_SAS_OP_FORCE_FULL_DISCOVERY (0x0b) #define MPII_SAS_OP_TRANSMIT_PORT_SELECT (0x0c) #define MPII_SAS_OP_REMOVE_DEVICE (0x0d) #define MPII_SAS_OP_LOOKUP_MAPPING (0x0e) #define MPII_SAS_OP_SET_IOC_PARAM (0x0f) u_int8_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t dev_handle; u_int8_t ioc_param; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved2; u_int16_t reserved3; u_int8_t phy_num; u_int8_t prim_flags; u_int32_t primitive; u_int8_t lookup_method; #define MPII_SAS_LOOKUP_METHOD_SAS_ADDR (0x01) #define MPII_SAS_LOOKUP_METHOD_SAS_ENCL (0x02) #define MPII_SAS_LOOKUP_METHOD_SAS_DEVNAME (0x03) u_int8_t reserved4; u_int16_t slot_num; u_int64_t lookup_addr; u_int32_t ioc_param_value; u_int64_t reserved5; } __packed; struct mpii_msg_sas_oper_reply { u_int8_t operation; u_int8_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t dev_handle; u_int8_t ioc_param; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved2; u_int16_t reserved3; u_int16_t ioc_status; u_int32_t ioc_loginfo; } __packed; struct mpii_msg_raid_action_request { u_int8_t action; #define MPII_RAID_ACTION_CHANGE_VOL_WRITE_CACHE (0x17) u_int8_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t vol_dev_handle; u_int8_t phys_disk_num; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_if; u_int16_t reserved2; u_int32_t reserved3; u_int32_t action_data; #define MPII_RAID_VOL_WRITE_CACHE_MASK (0x03) #define MPII_RAID_VOL_WRITE_CACHE_DISABLE (0x01) #define MPII_RAID_VOL_WRITE_CACHE_ENABLE (0x02) struct mpii_sge action_sge; } __packed; struct mpii_msg_raid_action_reply { u_int8_t action; u_int8_t reserved1; u_int8_t chain_offset; u_int8_t function; u_int16_t vol_dev_handle; u_int8_t phys_disk_num; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_if; u_int16_t reserved2; u_int16_t reserved3; u_int16_t ioc_status; u_int32_t action_data[5]; } __packed; struct mpii_cfg_hdr { u_int8_t page_version; u_int8_t page_length; u_int8_t page_number; u_int8_t page_type; #define MPII_CONFIG_REQ_PAGE_TYPE_ATTRIBUTE (0xf0) #define MPI2_CONFIG_PAGEATTR_READ_ONLY (0x00) #define MPI2_CONFIG_PAGEATTR_CHANGEABLE (0x10) #define MPI2_CONFIG_PAGEATTR_PERSISTENT (0x20) #define MPII_CONFIG_REQ_PAGE_TYPE_MASK (0x0f) #define MPII_CONFIG_REQ_PAGE_TYPE_IO_UNIT (0x00) #define MPII_CONFIG_REQ_PAGE_TYPE_IOC (0x01) #define MPII_CONFIG_REQ_PAGE_TYPE_BIOS (0x02) #define MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL (0x08) #define MPII_CONFIG_REQ_PAGE_TYPE_MANUFACTURING (0x09) #define MPII_CONFIG_REQ_PAGE_TYPE_RAID_PD (0x0a) #define MPII_CONFIG_REQ_PAGE_TYPE_EXTENDED (0x0f) } __packed; struct mpii_ecfg_hdr { u_int8_t page_version; u_int8_t reserved1; u_int8_t page_number; u_int8_t page_type; u_int16_t ext_page_length; u_int8_t ext_page_type; #define MPII_CONFIG_REQ_PAGE_TYPE_SAS_DEVICE (0x12) #define MPII_CONFIG_REQ_PAGE_TYPE_RAID_CONFIG (0x16) #define MPII_CONFIG_REQ_PAGE_TYPE_DRIVER_MAPPING (0x17) u_int8_t reserved2; } __packed; struct mpii_msg_config_request { u_int8_t action; #define MPII_CONFIG_REQ_ACTION_PAGE_HEADER (0x00) #define MPII_CONFIG_REQ_ACTION_PAGE_READ_CURRENT (0x01) #define MPII_CONFIG_REQ_ACTION_PAGE_WRITE_CURRENT (0x02) #define MPII_CONFIG_REQ_ACTION_PAGE_DEFAULT (0x03) #define MPII_CONFIG_REQ_ACTION_PAGE_WRITE_NVRAM (0x04) #define MPII_CONFIG_REQ_ACTION_PAGE_READ_DEFAULT (0x05) #define MPII_CONFIG_REQ_ACTION_PAGE_READ_NVRAM (0x06) u_int8_t sgl_flags; u_int8_t chain_offset; u_int8_t function; u_int16_t ext_page_len; u_int8_t ext_page_type; #define MPII_CONFIG_REQ_EXTPAGE_TYPE_SAS_IO_UNIT (0x10) #define MPII_CONFIG_REQ_EXTPAGE_TYPE_SAS_EXPANDER (0x11) #define MPII_CONFIG_REQ_EXTPAGE_TYPE_SAS_DEVICE (0x12) #define MPII_CONFIG_REQ_EXTPAGE_TYPE_SAS_PHY (0x13) #define MPII_CONFIG_REQ_EXTPAGE_TYPE_LOG (0x14) #define MPI2_CONFIG_EXTPAGETYPE_ENCLOSURE (0x15) #define MPI2_CONFIG_EXTPAGETYPE_RAID_CONFIG (0x16) #define MPI2_CONFIG_EXTPAGETYPE_DRIVER_MAPPING (0x17) #define MPI2_CONFIG_EXTPAGETYPE_SAS_PORT (0x18) u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved1; u_int32_t reserved2[2]; struct mpii_cfg_hdr config_header; u_int32_t page_address; /* XXX lots of defns here */ struct mpii_sge page_buffer; } __packed; struct mpii_msg_config_reply { u_int8_t action; u_int8_t sgl_flags; u_int8_t msg_length; u_int8_t function; u_int16_t ext_page_length; u_int8_t ext_page_type; u_int8_t msg_flags; u_int8_t vp_id; u_int8_t vf_id; u_int16_t reserved1; u_int16_t reserved2; u_int16_t ioc_status; u_int32_t ioc_loginfo; struct mpii_cfg_hdr config_header; } __packed; struct mpii_cfg_manufacturing_pg0 { struct mpii_cfg_hdr config_header; char chip_name[16]; char chip_revision[8]; char board_name[16]; char board_assembly[16]; char board_tracer_number[16]; } __packed; struct mpii_cfg_ioc_pg1 { struct mpii_cfg_hdr config_header; u_int32_t flags; u_int32_t coalescing_timeout; #define MPII_CFG_IOC_1_REPLY_COALESCING (1<<0) u_int8_t coalescing_depth; u_int8_t pci_slot_num; u_int8_t pci_bus_num; u_int8_t pci_domain_segment; u_int32_t reserved1; u_int32_t reserved2; } __packed; struct mpii_cfg_ioc_pg3 { struct mpii_cfg_hdr config_header; u_int8_t no_phys_disks; u_int8_t reserved[3]; /* followed by a list of mpii_cfg_raid_physdisk structs */ } __packed; struct mpii_cfg_ioc_pg8 { struct mpii_cfg_hdr config_header; u_int8_t num_devs_per_enclosure; u_int8_t reserved1; u_int16_t reserved2; u_int16_t max_persistent_entries; u_int16_t max_num_physical_mapped_ids; u_int16_t flags; #define MPII_IOC_PG8_FLAGS_DA_START_SLOT_1 (1<<5) #define MPII_IOC_PG8_FLAGS_RESERVED_TARGETID_0 (1<<4) #define MPII_IOC_PG8_FLAGS_MAPPING_MODE_MASK (0x0000000e) #define MPII_IOC_PG8_FLAGS_DEVICE_PERSISTENCE_MAPPING (0<<1) #define MPII_IOC_PG8_FLAGS_ENCLOSURE_SLOT_MAPPING (1<<1) #define MPII_IOC_PG8_FLAGS_DISABLE_PERSISTENT_MAPPING (1<<0) #define MPII_IOC_PG8_FLAGS_ENABLE_PERSISTENT_MAPPING (0<<0) u_int16_t reserved3; u_int16_t ir_volume_mapping_flags; #define MPII_IOC_PG8_IRFLAGS_VOLUME_MAPPING_MODE_MASK (0x00000003) #define MPII_IOC_PG8_IRFLAGS_LOW_VOLUME_MAPPING (0<<0) #define MPII_IOC_PG8_IRFLAGS_HIGH_VOLUME_MAPPING (1<<0) u_int16_t reserved4; u_int32_t reserved5; } __packed; struct mpii_cfg_raid_physdisk { u_int8_t phys_disk_id; u_int8_t phys_disk_bus; u_int8_t phys_disk_ioc; u_int8_t phys_disk_num; } __packed; struct mpii_cfg_fc_port_pg0 { struct mpii_cfg_hdr config_header; u_int32_t flags; u_int8_t mpii_port_nr; u_int8_t link_type; u_int8_t port_state; u_int8_t reserved1; u_int32_t port_id; u_int64_t wwnn; u_int64_t wwpn; u_int32_t supported_service_class; u_int32_t supported_speeds; u_int32_t current_speed; u_int32_t max_frame_size; u_int64_t fabric_wwnn; u_int64_t fabric_wwpn; u_int32_t discovered_port_count; u_int32_t max_initiators; u_int8_t max_aliases_supported; u_int8_t max_hard_aliases_supported; u_int8_t num_current_aliases; u_int8_t reserved2; } __packed; struct mpii_cfg_fc_port_pg1 { struct mpii_cfg_hdr config_header; u_int32_t flags; u_int64_t noseepromwwnn; u_int64_t noseepromwwpn; u_int8_t hard_alpa; u_int8_t link_config; u_int8_t topology_config; u_int8_t alt_connector; u_int8_t num_req_aliases; u_int8_t rr_tov; u_int8_t initiator_dev_to; u_int8_t initiator_lo_pend_to; } __packed; struct mpii_cfg_fc_device_pg0 { struct mpii_cfg_hdr config_header; u_int64_t wwnn; u_int64_t wwpn; u_int32_t port_id; u_int8_t protocol; u_int8_t flags; u_int16_t bb_credit; u_int16_t max_rx_frame_size; u_int8_t adisc_hard_alpa; u_int8_t port_nr; u_int8_t fc_ph_low_version; u_int8_t fc_ph_high_version; u_int8_t current_target_id; u_int8_t current_bus; } __packed; #define MPII_CFG_RAID_VOL_ADDR_HANDLE (1<<28) struct mpii_cfg_raid_vol_pg0 { struct mpii_cfg_hdr config_header; u_int16_t volume_handle; u_int8_t volume_state; #define MPII_CFG_RAID_VOL_0_STATE_MISSING (0x00) #define MPII_CFG_RAID_VOL_0_STATE_FAILED (0x01) #define MPII_CFG_RAID_VOL_0_STATE_INITIALIZING (0x02) #define MPII_CFG_RAID_VOL_0_STATE_ONLINE (0x03) #define MPII_CFG_RAID_VOL_0_STATE_DEGRADED (0x04) #define MPII_CFG_RAID_VOL_0_STATE_OPTIMAL (0x05) u_int8_t volume_type; #define MPII_CFG_RAID_VOL_0_TYPE_RAID0 (0x00) #define MPII_CFG_RAID_VOL_0_TYPE_RAID1E (0x01) #define MPII_CFG_RAID_VOL_0_TYPE_RAID1 (0x02) #define MPII_CFG_RAID_VOL_0_TYPE_RAID10 (0x05) #define MPII_CFG_RAID_VOL_0_TYPE_UNKNOWN (0xff) u_int32_t volume_status; #define MPII_CFG_RAID_VOL_0_STATUS_SCRUB (1<<20) #define MPII_CFG_RAID_VOL_0_STATUS_RESYNC (1<<16) u_int16_t volume_settings; #define MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_MASK (0x3<<0) #define MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_UNCHANGED (0x0<<0) #define MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_DISABLED (0x1<<0) #define MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_ENABLED (0x2<<0) u_int8_t hot_spare_pool; u_int8_t reserved1; u_int64_t max_lba; u_int32_t stripe_size; u_int16_t block_size; u_int16_t reserved2; u_int8_t phys_disk_types; u_int8_t resync_rate; u_int16_t data_scrub_rate; u_int8_t num_phys_disks; u_int16_t reserved3; u_int8_t inactive_status; #define MPII_CFG_RAID_VOL_0_INACTIVE_UNKNOWN (0x00) #define MPII_CFG_RAID_VOL_0_INACTIVE_STALE_META (0x01) #define MPII_CFG_RAID_VOL_0_INACTIVE_FOREIGN_VOL (0x02) #define MPII_CFG_RAID_VOL_0_INACTIVE_NO_RESOURCES (0x03) #define MPII_CFG_RAID_VOL_0_INACTIVE_CLONED_VOL (0x04) #define MPII_CFG_RAID_VOL_0_INACTIVE_INSUF_META (0x05) /* followed by a list of mpii_cfg_raid_vol_pg0_physdisk structs */ } __packed; struct mpii_cfg_raid_vol_pg0_physdisk { u_int8_t raid_set_num; u_int8_t phys_disk_map; u_int8_t phys_disk_num; u_int8_t reserved; } __packed; struct mpii_cfg_raid_vol_pg1 { struct mpii_cfg_hdr config_header; u_int8_t volume_id; u_int8_t volume_bus; u_int8_t volume_ioc; u_int8_t reserved1; u_int8_t guid[24]; u_int8_t name[32]; u_int64_t wwid; u_int32_t reserved2; u_int32_t reserved3; } __packed; #define MPII_CFG_RAID_PHYS_DISK_ADDR_NUMBER (1<<28) struct mpii_cfg_raid_physdisk_pg0 { struct mpii_cfg_hdr config_header; u_int16_t dev_handle; u_int8_t reserved1; u_int8_t phys_disk_num; u_int8_t enc_id; u_int8_t enc_bus; u_int8_t hot_spare_pool; u_int8_t enc_type; #define MPII_CFG_RAID_PHYDISK_0_ENCTYPE_NONE (0x0) #define MPII_CFG_RAID_PHYDISK_0_ENCTYPE_SAFTE (0x1) #define MPII_CFG_RAID_PHYDISK_0_ENCTYPE_SES (0x2) u_int32_t reserved2; u_int8_t vendor_id[8]; u_int8_t product_id[16]; u_int8_t product_rev[4]; u_int8_t serial[32]; u_int32_t reserved3; u_int8_t phys_disk_state; #define MPII_CFG_RAID_PHYDISK_0_STATE_NOTCONFIGURED (0x00) #define MPII_CFG_RAID_PHYDISK_0_STATE_NOTCOMPATIBLE (0x01) #define MPII_CFG_RAID_PHYDISK_0_STATE_OFFLINE (0x02) #define MPII_CFG_RAID_PHYDISK_0_STATE_ONLINE (0x03) #define MPII_CFG_RAID_PHYDISK_0_STATE_HOTSPARE (0x04) #define MPII_CFG_RAID_PHYDISK_0_STATE_DEGRADED (0x05) #define MPII_CFG_RAID_PHYDISK_0_STATE_REBUILDING (0x06) #define MPII_CFG_RAID_PHYDISK_0_STATE_OPTIMAL (0x07) u_int8_t offline_reason; #define MPII_CFG_RAID_PHYDISK_0_OFFLINE_MISSING (0x01) #define MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILED (0x03) #define MPII_CFG_RAID_PHYDISK_0_OFFLINE_INITIALIZING (0x04) #define MPII_CFG_RAID_PHYDISK_0_OFFLINE_REQUESTED (0x05) #define MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILEDREQ (0x06) #define MPII_CFG_RAID_PHYDISK_0_OFFLINE_OTHER (0xff) u_int8_t incompat_reason; u_int8_t phys_disk_attrs; u_int32_t phys_disk_status; #define MPII_CFG_RAID_PHYDISK_0_STATUS_OUTOFSYNC (1<<0) #define MPII_CFG_RAID_PHYDISK_0_STATUS_QUIESCED (1<<1) u_int64_t dev_max_lba; u_int64_t host_max_lba; u_int64_t coerced_max_lba; u_int16_t block_size; u_int16_t reserved4; u_int32_t reserved5; } __packed; struct mpii_cfg_raid_physdisk_pg1 { struct mpii_cfg_hdr config_header; u_int8_t num_phys_disk_paths; u_int8_t phys_disk_num; u_int16_t reserved1; u_int32_t reserved2; /* followed by mpii_cfg_raid_physdisk_path structs */ } __packed; struct mpii_cfg_raid_physdisk_path { u_int8_t phys_disk_id; u_int8_t phys_disk_bus; u_int16_t reserved1; u_int64_t wwwid; u_int64_t owner_wwid; u_int8_t ownder_id; u_int8_t reserved2; u_int16_t flags; #define MPII_CFG_RAID_PHYDISK_PATH_INVALID (1<<0) #define MPII_CFG_RAID_PHYDISK_PATH_BROKEN (1<<1) } __packed; #define MPII_CFG_SAS_DEV_ADDR_NEXT (0<<28) #define MPII_CFG_SAS_DEV_ADDR_BUS (1<<28) #define MPII_CFG_SAS_DEV_ADDR_HANDLE (2<<28) struct mpii_cfg_sas_dev_pg0 { struct mpii_ecfg_hdr config_header; u_int16_t slot; u_int16_t enc_handle; u_int64_t sas_addr; u_int16_t parent_dev_handle; u_int8_t phy_num; u_int8_t access_status; u_int16_t dev_handle; u_int8_t target; u_int8_t bus; u_int32_t device_info; #define MPII_CFG_SAS_DEV_0_DEVINFO_TYPE (0x7) #define MPII_CFG_SAS_DEV_0_DEVINFO_TYPE_NONE (0x0) #define MPII_CFG_SAS_DEV_0_DEVINFO_TYPE_END (0x1) #define MPII_CFG_SAS_DEV_0_DEVINFO_TYPE_EDGE_EXPANDER (0x2) #define MPII_CFG_SAS_DEV_0_DEVINFO_TYPE_FANOUT_EXPANDER (0x3) #define MPII_CFG_SAS_DEV_0_DEVINFO_SATA_HOST (1<<3) #define MPII_CFG_SAS_DEV_0_DEVINFO_SMP_INITIATOR (1<<4) #define MPII_CFG_SAS_DEV_0_DEVINFO_STP_INITIATOR (1<<5) #define MPII_CFG_SAS_DEV_0_DEVINFO_SSP_INITIATOR (1<<6) #define MPII_CFG_SAS_DEV_0_DEVINFO_SATA_DEVICE (1<<7) #define MPII_CFG_SAS_DEV_0_DEVINFO_SMP_TARGET (1<<8) #define MPII_CFG_SAS_DEV_0_DEVINFO_STP_TARGET (1<<9) #define MPII_CFG_SAS_DEV_0_DEVINFO_SSP_TARGET (1<<10) #define MPII_CFG_SAS_DEV_0_DEVINFO_DIRECT_ATTACHED (1<<11) #define MPII_CFG_SAS_DEV_0_DEVINFO_LSI_DEVICE (1<<12) #define MPII_CFG_SAS_DEV_0_DEVINFO_ATAPI_DEVICE (1<<13) #define MPII_CFG_SAS_DEV_0_DEVINFO_SEP_DEVICE (1<<14) u_int16_t flags; #define MPII_CFG_SAS_DEV_0_FLAGS_DEV_PRESENT (1<<0) #define MPII_CFG_SAS_DEV_0_FLAGS_DEV_MAPPED (1<<1) #define MPII_CFG_SAS_DEV_0_FLAGS_DEV_MAPPED_PERSISTENT (1<<2) #define MPII_CFG_SAS_DEV_0_FLAGS_SATA_PORT_SELECTOR (1<<3) #define MPII_CFG_SAS_DEV_0_FLAGS_SATA_FUA (1<<4) #define MPII_CFG_SAS_DEV_0_FLAGS_SATA_NCQ (1<<5) #define MPII_CFG_SAS_DEV_0_FLAGS_SATA_SMART (1<<6) #define MPII_CFG_SAS_DEV_0_FLAGS_SATA_LBA48 (1<<7) #define MPII_CFG_SAS_DEV_0_FLAGS_UNSUPPORTED (1<<8) #define MPII_CFG_SAS_DEV_0_FLAGS_SATA_SETTINGS (1<<9) u_int8_t physical_port; u_int8_t max_port_conn; u_int64_t device_name; u_int8_t port_groups; u_int8_t dma_group; u_int8_t ctrl_group; u_int8_t reserved1; u_int64_t reserved2; } __packed; #define MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG (2<<28) struct mpii_cfg_raid_config_pg0 { struct mpii_ecfg_hdr config_header; u_int8_t num_hot_spares; u_int8_t num_phys_disks; u_int8_t num_volumes; u_int8_t config_num; u_int32_t flags; #define MPII_CFG_RAID_CONFIG_0_FLAGS_NATIVE (0<<0) #define MPII_CFG_RAID_CONFIG_0_FLAGS_FOREIGN (1<<0) u_int32_t config_guid[6]; u_int32_t reserved1; u_int8_t num_elements; u_int8_t reserved2[3]; /* followed by struct mpii_raid_config_element structs */ } __packed; struct mpii_raid_config_element { u_int16_t element_flags; #define MPII_RAID_CONFIG_ELEMENT_FLAG_VOLUME (0x0) #define MPII_RAID_CONFIG_ELEMENT_FLAG_VOLUME_PHYS_DISK (0x1) #define MPII_RAID_CONFIG_ELEMENT_FLAG_HSP_PHYS_DISK (0x2) #define MPII_RAID_CONFIG_ELEMENT_ONLINE_CE_PHYS_DISK (0x3) u_int16_t vol_dev_handle; u_int8_t hot_spare_pool; u_int8_t phys_disk_num; u_int16_t phys_disk_dev_handle; } __packed; struct mpii_cfg_dpm_pg0 { struct mpii_ecfg_hdr config_header; #define MPII_DPM_ADDRESS_FORM_MASK (0xf0000000) #define MPII_DPM_ADDRESS_FORM_ENTRY_RANGE (0x00000000) #define MPII_DPM_ADDRESS_ENTRY_COUNT_MASK (0x0fff0000) #define MPII_DPM_ADDRESS_ENTRY_COUNT_SHIFT (16) #define MPII_DPM_ADDRESS_START_ENTRY_MASK (0x0000ffff) /* followed by struct mpii_dpm_entry structs */ } __packed; struct mpii_dpm_entry { u_int64_t physical_identifier; u_int16_t mapping_information; u_int16_t device_index; u_int32_t physical_bits_mapping; u_int32_t reserved1; } __packed; struct mpii_evt_sas_discovery { u_int8_t flags; #define MPII_EVENT_SAS_DISC_FLAGS_DEV_CHANGE_MASK (1<<1) #define MPII_EVENT_SAS_DISC_FLAGS_DEV_CHANGE_NO_CHANGE (0<<1) #define MPII_EVENT_SAS_DISC_FLAGS_DEV_CHANGE_CHANGE (1<<1) #define MPII_EVENT_SAS_DISC_FLAGS_DISC_IN_PROG_MASK (1<<0) #define MPII_EVENT_SAS_DISC_FLAGS_DISC_NOT_IN_PROGRESS (1<<0) #define MPII_EVENT_SAS_DISC_FLAGS_DISC_IN_PROGRESS (0<<0) u_int8_t reason_code; #define MPII_EVENT_SAS_DISC_REASON_CODE_STARTED (0x01) #define MPII_EVENT_SAS_DISC_REASON_CODE_COMPLETED (0x02) u_int8_t physical_port; u_int8_t reserved1; u_int32_t discovery_status; } __packed; struct mpii_evt_ir_status { u_int16_t vol_dev_handle; u_int16_t reserved1; u_int8_t operation; #define MPII_EVENT_IR_RAIDOP_RESYNC (0x00) #define MPII_EVENT_IR_RAIDOP_OCE (0x01) #define MPII_EVENT_IR_RAIDOP_CONS_CHECK (0x02) #define MPII_EVENT_IR_RAIDOP_BG_INIT (0x03) #define MPII_EVENT_IR_RAIDOP_MAKE_CONS (0x04) u_int8_t percent; u_int16_t reserved2; u_int32_t reserved3; }; struct mpii_evt_ir_volume { u_int16_t vol_dev_handle; u_int8_t reason_code; #define MPII_EVENT_IR_VOL_RC_SETTINGS_CHANGED (0x01) #define MPII_EVENT_IR_VOL_RC_STATUS_CHANGED (0x02) #define MPII_EVENT_IR_VOL_RC_STATE_CHANGED (0x03) u_int8_t reserved1; u_int32_t new_value; u_int32_t prev_value; } __packed; struct mpii_evt_ir_physical_disk { u_int16_t reserved1; u_int8_t reason_code; #define MPII_EVENT_IR_PD_RC_SETTINGS_CHANGED (0x01) #define MPII_EVENT_IR_PD_RC_STATUS_FLAGS_CHANGED (0x02) #define MPII_EVENT_IR_PD_RC_STATUS_CHANGED (0x03) u_int8_t phys_disk_num; u_int16_t phys_disk_dev_handle; u_int16_t reserved2; u_int16_t slot; u_int16_t enclosure_handle; u_int32_t new_value; u_int32_t previous_value; } __packed; struct mpii_evt_sas_tcl { u_int16_t enclosure_handle; u_int16_t expander_handle; u_int8_t num_phys; u_int8_t reserved1[3]; u_int8_t num_entries; u_int8_t start_phy_num; u_int8_t expn_status; #define MPII_EVENT_SAS_TOPO_ES_ADDED (0x01) #define MPII_EVENT_SAS_TOPO_ES_NOT_RESPONDING (0x02) #define MPII_EVENT_SAS_TOPO_ES_RESPONDING (0x03) #define MPII_EVENT_SAS_TOPO_ES_DELAY_NOT_RESPONDING (0x04) u_int8_t physical_port; /* followed by num_entries number of struct mpii_evt_phy_entry */ } __packed; struct mpii_evt_phy_entry { u_int16_t dev_handle; u_int8_t link_rate; u_int8_t phy_status; #define MPII_EVENT_SAS_TOPO_PS_RC_MASK (0x0f) #define MPII_EVENT_SAS_TOPO_PS_RC_ADDED (0x01) #define MPII_EVENT_SAS_TOPO_PS_RC_MISSING (0x02) } __packed; struct mpii_evt_ir_cfg_change_list { u_int8_t num_elements; u_int16_t reserved; u_int8_t config_num; u_int32_t flags; #define MPII_EVT_IR_CFG_CHANGE_LIST_FOREIGN (0x1) /* followed by num_elements struct mpii_evt_ir_cfg_elements */ } __packed; struct mpii_evt_ir_cfg_element { u_int16_t element_flags; #define MPII_EVT_IR_CFG_ELEMENT_TYPE_MASK (0xf) #define MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME (0x0) #define MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME_DISK (0x1) #define MPII_EVT_IR_CFG_ELEMENT_TYPE_HOT_SPARE (0x2) u_int16_t vol_dev_handle; u_int8_t reason_code; #define MPII_EVT_IR_CFG_ELEMENT_RC_ADDED (0x01) #define MPII_EVT_IR_CFG_ELEMENT_RC_REMOVED (0x02) #define MPII_EVT_IR_CFG_ELEMENT_RC_NO_CHANGE (0x03) #define MPII_EVT_IR_CFG_ELEMENT_RC_HIDE (0x04) #define MPII_EVT_IR_CFG_ELEMENT_RC_UNHIDE (0x05) #define MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_CREATED (0x06) #define MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_DELETED (0x07) #define MPII_EVT_IR_CFG_ELEMENT_RC_PD_CREATED (0x08) #define MPII_EVT_IR_CFG_ELEMENT_RC_PD_DELETED (0x09) u_int8_t phys_disk_num; u_int16_t phys_disk_dev_handle; } __packed; /* #define MPII_DEBUG */ #ifdef MPII_DEBUG #define DPRINTF(x...) do { if (mpii_debug) printf(x); } while(0) #define DNPRINTF(n,x...) do { if (mpii_debug & (n)) printf(x); } while(0) #define MPII_D_CMD (0x0001) #define MPII_D_INTR (0x0002) #define MPII_D_MISC (0x0004) #define MPII_D_DMA (0x0008) #define MPII_D_IOCTL (0x0010) #define MPII_D_RW (0x0020) #define MPII_D_MEM (0x0040) #define MPII_D_CCB (0x0080) #define MPII_D_PPR (0x0100) #define MPII_D_RAID (0x0200) #define MPII_D_EVT (0x0400) #define MPII_D_CFG (0x0800) #define MPII_D_MAP (0x1000) #if 0 u_int32_t mpii_debug = 0 | MPII_D_CMD | MPII_D_INTR | MPII_D_MISC | MPII_D_DMA | MPII_D_IOCTL | MPII_D_RW | MPII_D_MEM | MPII_D_CCB | MPII_D_PPR | MPII_D_RAID | MPII_D_EVT | MPII_D_CFG | MPII_D_MAP ; #endif u_int32_t mpii_debug = MPII_D_MISC; #else #define DPRINTF(x...) #define DNPRINTF(n,x...) #endif #define MPII_REQUEST_SIZE (512) #define MPII_REPLY_SIZE (128) #define MPII_REPLY_COUNT PAGE_SIZE / MPII_REPLY_SIZE /* * this is the max number of sge's we can stuff in a request frame: * sizeof(scsi_io) + sizeof(sense) + sizeof(sge) * 32 = MPII_REQUEST_SIZE */ #define MPII_MAX_SGL (32) #define MPII_MAX_REQUEST_CREDIT (128) #define MPII_MAXFER MAXPHYS /* XXX bogus */ struct mpii_dmamem { bus_dmamap_t mdm_map; bus_dma_segment_t mdm_seg; size_t mdm_size; void *mdm_kva; }; #define MPII_DMA_MAP(_mdm) (_mdm)->mdm_map #define MPII_DMA_DVA(_mdm) (_mdm)->mdm_map->dm_segs[0].ds_addr #define MPII_DMA_KVA(_mdm) (void *)(_mdm)->mdm_kva struct mpii_ccb_bundle { struct mpii_msg_scsi_io mcb_io; /* sgl must follow */ struct mpii_sge mcb_sgl[MPII_MAX_SGL]; struct scsi_sense_data mcb_sense; } __packed; struct mpii_softc; struct mpii_rcb { union { struct work rcb_wk; /* has to be first in struct */ SIMPLEQ_ENTRY(mpii_rcb) rcb_link; } u; void *rcb_reply; u_int32_t rcb_reply_dva; }; SIMPLEQ_HEAD(mpii_rcb_list, mpii_rcb); struct mpii_device { int flags; #define MPII_DF_ATTACH (0x0001) #define MPII_DF_DETACH (0x0002) #define MPII_DF_HIDDEN (0x0004) #define MPII_DF_UNUSED (0x0008) #define MPII_DF_VOLUME (0x0010) #define MPII_DF_VOLUME_DISK (0x0020) #define MPII_DF_HOT_SPARE (0x0040) short slot; short percent; u_int16_t dev_handle; u_int16_t enclosure; u_int16_t expander; u_int8_t phy_num; u_int8_t physical_port; }; struct mpii_ccb { union { struct work ccb_wk; /* has to be first in struct */ SIMPLEQ_ENTRY(mpii_ccb) ccb_link; } u; struct mpii_softc *ccb_sc; int ccb_smid; void * ccb_cookie; bus_dmamap_t ccb_dmamap; bus_addr_t ccb_offset; void *ccb_cmd; bus_addr_t ccb_cmd_dva; u_int16_t ccb_dev_handle; volatile enum { MPII_CCB_FREE, MPII_CCB_READY, MPII_CCB_QUEUED, MPII_CCB_TIMEOUT } ccb_state; void (*ccb_done)(struct mpii_ccb *); struct mpii_rcb *ccb_rcb; }; struct mpii_ccb_wait { kmutex_t mpii_ccbw_mtx; kcondvar_t mpii_ccbw_cv; }; SIMPLEQ_HEAD(mpii_ccb_list, mpii_ccb); struct mpii_softc { device_t sc_dev; pci_chipset_tag_t sc_pc; pcitag_t sc_tag; void *sc_ih; int sc_flags; #define MPII_F_RAID (1<<1) struct scsipi_adapter sc_adapt; struct scsipi_channel sc_chan; device_t sc_child; /* our scsibus */ struct mpii_device **sc_devs; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_size_t sc_ios; bus_dma_tag_t sc_dmat; kmutex_t sc_req_mtx; kmutex_t sc_rep_mtx; u_int8_t sc_porttype; int sc_request_depth; int sc_num_reply_frames; int sc_reply_free_qdepth; int sc_reply_post_qdepth; int sc_maxchdepth; int sc_first_sgl_len; int sc_chain_len; int sc_max_sgl_len; u_int8_t sc_ioc_event_replay; u_int16_t sc_max_enclosures; u_int16_t sc_max_expanders; u_int8_t sc_max_volumes; u_int16_t sc_max_devices; u_int16_t sc_max_dpm_entries; u_int16_t sc_vd_count; u_int16_t sc_vd_id_low; u_int16_t sc_pd_id_start; u_int8_t sc_num_channels; int sc_ioc_number; u_int8_t sc_vf_id; u_int8_t sc_num_ports; struct mpii_ccb *sc_ccbs; struct mpii_ccb_list sc_ccb_free; kmutex_t sc_ccb_free_mtx; kcondvar_t sc_ccb_free_cv; kmutex_t sc_ccb_mtx; /* * this protects the ccb state and list entry * between mpii_scsi_cmd and scsidone. */ struct workqueue *sc_ssb_tmowk; struct mpii_dmamem *sc_requests; struct mpii_dmamem *sc_replies; struct mpii_rcb *sc_rcbs; struct mpii_dmamem *sc_reply_postq; struct mpii_reply_descr *sc_reply_postq_kva; int sc_reply_post_host_index; struct mpii_dmamem *sc_reply_freeq; int sc_reply_free_host_index; struct workqueue *sc_ssb_evt_ackwk; struct sysmon_envsys *sc_sme; envsys_data_t *sc_sensors; }; static int mpii_match(device_t, cfdata_t, void *); static void mpii_attach(device_t, device_t, void *); static int mpii_detach(device_t, int); static void mpii_childdetached(device_t, device_t); static int mpii_rescan(device_t, const char *, const int *); static int mpii_intr(void *); CFATTACH_DECL3_NEW(mpii, sizeof(struct mpii_softc), mpii_match, mpii_attach, mpii_detach, NULL, mpii_rescan, mpii_childdetached, DVF_DETACH_SHUTDOWN); #define PREAD(s, r) pci_conf_read((s)->sc_pc, (s)->sc_tag, (r)) #define PWRITE(s, r, v) pci_conf_write((s)->sc_pc, (s)->sc_tag, (r), (v)) static void mpii_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t, void *); static void mpii_scsi_cmd_done(struct mpii_ccb *); static void mpii_minphys(struct buf *bp); static struct mpii_dmamem *mpii_dmamem_alloc(struct mpii_softc *, size_t); static void mpii_dmamem_free(struct mpii_softc *, struct mpii_dmamem *); static int mpii_alloc_ccbs(struct mpii_softc *); static struct mpii_ccb *mpii_get_ccb(struct mpii_softc *, int); #define MPII_NOSLEEP 0x0001 static void mpii_put_ccb(struct mpii_softc *, struct mpii_ccb *); static int mpii_alloc_replies(struct mpii_softc *); static int mpii_alloc_queues(struct mpii_softc *); static void mpii_push_reply(struct mpii_softc *, struct mpii_rcb *); static void mpii_push_replies(struct mpii_softc *); static void mpii_scsi_cmd_tmo(void *); static void mpii_scsi_cmd_tmo_handler(struct work *, void *); static void mpii_scsi_cmd_tmo_done(struct mpii_ccb *); static int mpii_alloc_dev(struct mpii_softc *); static int mpii_insert_dev(struct mpii_softc *, struct mpii_device *); static int mpii_remove_dev(struct mpii_softc *, struct mpii_device *); static struct mpii_device *mpii_find_dev(struct mpii_softc *, u_int16_t); static void mpii_start(struct mpii_softc *, struct mpii_ccb *); static int mpii_poll(struct mpii_softc *, struct mpii_ccb *); static void mpii_poll_done(struct mpii_ccb *); static struct mpii_rcb *mpii_reply(struct mpii_softc *, struct mpii_reply_descr *); static void mpii_wait(struct mpii_softc *, struct mpii_ccb *); static void mpii_wait_done(struct mpii_ccb *); static void mpii_init_queues(struct mpii_softc *); static int mpii_load_xs(struct mpii_ccb *); static u_int32_t mpii_read(struct mpii_softc *, bus_size_t); static void mpii_write(struct mpii_softc *, bus_size_t, u_int32_t); static int mpii_wait_eq(struct mpii_softc *, bus_size_t, u_int32_t, u_int32_t); static int mpii_wait_ne(struct mpii_softc *, bus_size_t, u_int32_t, u_int32_t); static int mpii_init(struct mpii_softc *); static int mpii_reset_soft(struct mpii_softc *); static int mpii_reset_hard(struct mpii_softc *); static int mpii_handshake_send(struct mpii_softc *, void *, size_t); static int mpii_handshake_recv_dword(struct mpii_softc *, u_int32_t *); static int mpii_handshake_recv(struct mpii_softc *, void *, size_t); static void mpii_empty_done(struct mpii_ccb *); static int mpii_iocinit(struct mpii_softc *); static int mpii_iocfacts(struct mpii_softc *); static int mpii_portfacts(struct mpii_softc *); static int mpii_portenable(struct mpii_softc *); static int mpii_cfg_coalescing(struct mpii_softc *); static int mpii_eventnotify(struct mpii_softc *); static void mpii_eventnotify_done(struct mpii_ccb *); static void mpii_eventack(struct work *, void *); static void mpii_eventack_done(struct mpii_ccb *); static void mpii_event_process(struct mpii_softc *, struct mpii_rcb *); static void mpii_event_sas(struct mpii_softc *, struct mpii_msg_event_reply *); static void mpii_event_raid(struct mpii_softc *, struct mpii_msg_event_reply *); static void mpii_event_defer(void *, void *); static void mpii_sas_remove_device(struct mpii_softc *, u_int16_t); static int mpii_req_cfg_header(struct mpii_softc *, u_int8_t, u_int8_t, u_int32_t, int, void *); static int mpii_req_cfg_page(struct mpii_softc *, u_int32_t, int, void *, int, void *, size_t); static int mpii_get_ioc_pg8(struct mpii_softc *); #if 0 static int mpii_ioctl_cache(struct scsi_link *, u_long, struct dk_cache *); #endif static int mpii_cache_enable(struct mpii_softc *, struct mpii_device *); #if NBIO > 0 static int mpii_ioctl(device_t, u_long, void *); static int mpii_ioctl_inq(struct mpii_softc *, struct bioc_inq *); static int mpii_ioctl_vol(struct mpii_softc *, struct bioc_vol *); static int mpii_ioctl_disk(struct mpii_softc *, struct bioc_disk *); static int mpii_bio_hs(struct mpii_softc *, struct bioc_disk *, int, int, int *); static int mpii_bio_disk(struct mpii_softc *, struct bioc_disk *, u_int8_t); static struct mpii_device *mpii_find_vol(struct mpii_softc *, int); static int mpii_bio_volstate(struct mpii_softc *, struct bioc_vol *); static int mpii_create_sensors(struct mpii_softc *); static int mpii_destroy_sensors(struct mpii_softc *); static void mpii_refresh_sensors(struct sysmon_envsys *, envsys_data_t *); #endif /* NBIO > 0 */ #define DEVNAME(_s) (device_xname((_s)->sc_dev)) #define dwordsof(s) (sizeof(s) / sizeof(u_int32_t)) #define dwordn(p, n) (((u_int32_t *)(p))[(n)]) #define mpii_read_db(s) mpii_read((s), MPII_DOORBELL) #define mpii_write_db(s, v) mpii_write((s), MPII_DOORBELL, (v)) #define mpii_read_intr(s) mpii_read((s), MPII_INTR_STATUS) #define mpii_write_intr(s, v) mpii_write((s), MPII_INTR_STATUS, (v)) #define mpii_reply_waiting(s) ((mpii_read_intr((s)) & MPII_INTR_STATUS_REPLY)\ == MPII_INTR_STATUS_REPLY) #define mpii_read_reply_free(s) mpii_read((s), \ MPII_REPLY_FREE_HOST_INDEX) #define mpii_write_reply_free(s, v) mpii_write((s), \ MPII_REPLY_FREE_HOST_INDEX, (v)) #define mpii_read_reply_post(s) mpii_read((s), \ MPII_REPLY_POST_HOST_INDEX) #define mpii_write_reply_post(s, v) mpii_write((s), \ MPII_REPLY_POST_HOST_INDEX, (v)) #define mpii_wait_db_int(s) mpii_wait_ne((s), MPII_INTR_STATUS, \ MPII_INTR_STATUS_IOC2SYSDB, 0) #define mpii_wait_db_ack(s) mpii_wait_eq((s), MPII_INTR_STATUS, \ MPII_INTR_STATUS_SYS2IOCDB, 0) #define MPII_PG_EXTENDED (1<<0) #define MPII_PG_POLL (1<<1) #define MPII_PG_FMT "\020" "\002POLL" "\001EXTENDED" #define mpii_cfg_header(_s, _t, _n, _a, _h) \ mpii_req_cfg_header((_s), (_t), (_n), (_a), \ MPII_PG_POLL, (_h)) #define mpii_ecfg_header(_s, _t, _n, _a, _h) \ mpii_req_cfg_header((_s), (_t), (_n), (_a), \ MPII_PG_POLL|MPII_PG_EXTENDED, (_h)) #define mpii_cfg_page(_s, _a, _h, _r, _p, _l) \ mpii_req_cfg_page((_s), (_a), MPII_PG_POLL, \ (_h), (_r), (_p), (_l)) #define mpii_ecfg_page(_s, _a, _h, _r, _p, _l) \ mpii_req_cfg_page((_s), (_a), MPII_PG_POLL|MPII_PG_EXTENDED, \ (_h), (_r), (_p), (_l)) static const struct mpii_pci_product { pci_vendor_id_t mpii_vendor; pci_product_id_t mpii_product; } mpii_devices[] = { { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2004 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2008 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_3 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_4 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_5 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_2 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_2 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_3 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_4 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_5 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_6 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_2 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_3 }, { 0, 0 } }; static int mpii_match(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = aux; const struct mpii_pci_product *mpii; for (mpii = mpii_devices; mpii->mpii_vendor != 0; mpii++) { if (PCI_VENDOR(pa->pa_id) == mpii->mpii_vendor && PCI_PRODUCT(pa->pa_id) == mpii->mpii_product) return (1); } return (0); } static void mpii_attach(device_t parent, device_t self, void *aux) { struct mpii_softc *sc = device_private(self); struct pci_attach_args *pa = aux; pcireg_t memtype; int r; pci_intr_handle_t ih; const char *intrstr; struct mpii_ccb *ccb; struct scsipi_adapter *adapt = &sc->sc_adapt; struct scsipi_channel *chan = &sc->sc_chan; char wkname[15]; char intrbuf[PCI_INTRSTR_LEN]; pci_aprint_devinfo(pa, NULL); sc->sc_pc = pa->pa_pc; sc->sc_tag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; sc->sc_dev = self; mutex_init(&sc->sc_req_mtx, MUTEX_DEFAULT, IPL_BIO); mutex_init(&sc->sc_rep_mtx, MUTEX_DEFAULT, IPL_BIO); mutex_init(&sc->sc_ccb_free_mtx, MUTEX_DEFAULT, IPL_BIO); cv_init(&sc->sc_ccb_free_cv, "mpii_ccbs"); mutex_init(&sc->sc_ccb_mtx, MUTEX_DEFAULT, IPL_BIO); snprintf(wkname, sizeof(wkname), "%s_tmo", DEVNAME(sc)); if (workqueue_create(&sc->sc_ssb_tmowk, wkname, mpii_scsi_cmd_tmo_handler, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) { aprint_error_dev(self, "can't create %s workqueue\n", wkname); return; } snprintf(wkname, sizeof(wkname), "%s_evt", DEVNAME(sc)); if (workqueue_create(&sc->sc_ssb_evt_ackwk, wkname, mpii_eventack, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) { aprint_error_dev(self, "can't create %s workqueue\n", wkname); return; } /* find the appropriate memory base */ for (r = PCI_MAPREG_START; r < PCI_MAPREG_END; r += sizeof(memtype)) { memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, r); if ((memtype & PCI_MAPREG_TYPE_MASK) == PCI_MAPREG_TYPE_MEM) break; } if (r >= PCI_MAPREG_END) { aprint_error_dev(self, "unable to locate system interface registers\n"); return; } if (pci_mapreg_map(pa, r, memtype, 0, &sc->sc_iot, &sc->sc_ioh, NULL, &sc->sc_ios) != 0) { aprint_error_dev(self, "unable to map system interface registers\n"); return; } /* disable the expansion rom */ PWRITE(sc, PCI_MAPREG_ROM, PREAD(sc, PCI_MAPREG_ROM) & ~PCI_MAPREG_ROM_ENABLE); /* disable interrupts */ mpii_write(sc, MPII_INTR_MASK, MPII_INTR_MASK_RESET | MPII_INTR_MASK_REPLY | MPII_INTR_MASK_DOORBELL); /* hook up the interrupt */ if (pci_intr_map(pa, &ih) != 0) { aprint_error_dev(self, "unable to map interrupt\n"); goto unmap; } intrstr = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf)); if (mpii_init(sc) != 0) { aprint_error_dev(self, "unable to initialize ioc\n"); goto unmap; } if (mpii_iocfacts(sc) != 0) { aprint_error_dev(self, "unable to get iocfacts\n"); goto unmap; } if (mpii_alloc_ccbs(sc) != 0) { /* error already printed */ goto unmap; } if (mpii_alloc_replies(sc) != 0) { aprint_error_dev(self, "unable to allocated reply space\n"); goto free_ccbs; } if (mpii_alloc_queues(sc) != 0) { aprint_error_dev(self, "unable to allocate reply queues\n"); goto free_replies; } if (mpii_iocinit(sc) != 0) { aprint_error_dev(self, "unable to send iocinit\n"); goto free_queues; } if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_OPER) != 0) { aprint_error_dev(self, "state: 0x%08x\n", mpii_read_db(sc) & MPII_DOORBELL_STATE); aprint_error_dev(self, "operational state timeout\n"); goto free_queues; } mpii_push_replies(sc); mpii_init_queues(sc); if (mpii_portfacts(sc) != 0) { aprint_error_dev(self, "unable to get portfacts\n"); goto free_queues; } if (mpii_get_ioc_pg8(sc) != 0) { aprint_error_dev(self, "unable to get ioc page 8\n"); goto free_queues; } if (mpii_cfg_coalescing(sc) != 0) { aprint_error_dev(self, "unable to configure coalescing\n"); goto free_queues; } /* XXX bail on unsupported porttype? */ if ((sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_PHYSICAL) || (sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_VIRTUAL)) { if (mpii_eventnotify(sc) != 0) { aprint_error_dev(self, "unable to enable events\n"); goto free_queues; } } if (mpii_alloc_dev(sc) != 0) { aprint_error_dev(self, "unable to allocate memory for mpii_device\n"); goto free_queues; } if (mpii_portenable(sc) != 0) { aprint_error_dev(self, "unable to enable port\n"); goto free_dev; } sc->sc_ih = pci_intr_establish(sc->sc_pc, ih, IPL_BIO, mpii_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "can't establish interrupt"); if (intrstr) aprint_error(" at %s", intrstr); aprint_error("\n"); goto free_dev; } memset(adapt, 0, sizeof(*adapt)); adapt->adapt_dev = sc->sc_dev; adapt->adapt_nchannels = 1; adapt->adapt_openings = sc->sc_request_depth - 1; adapt->adapt_max_periph = adapt->adapt_openings; adapt->adapt_request = mpii_scsipi_request; adapt->adapt_minphys = mpii_minphys; memset(chan, 0, sizeof(*chan)); chan->chan_adapter = adapt; chan->chan_bustype = &scsi_sas_bustype; chan->chan_channel = 0; chan->chan_flags = 0; chan->chan_nluns = 8; chan->chan_ntargets = sc->sc_max_devices; chan->chan_id = -1; mpii_rescan(self, "scsi", NULL); /* enable interrupts */ mpii_write(sc, MPII_INTR_MASK, MPII_INTR_MASK_DOORBELL | MPII_INTR_MASK_RESET); #if NBIO > 0 if (ISSET(sc->sc_flags, MPII_F_RAID)) { if (bio_register(sc->sc_dev, mpii_ioctl) != 0) panic("%s: controller registration failed", DEVNAME(sc)); if (mpii_create_sensors(sc) != 0) aprint_error_dev(self, "unable to create sensors\n"); } #endif return; free_dev: if (sc->sc_devs) free(sc->sc_devs, M_DEVBUF); free_queues: bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq), 0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_reply_freeq); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_reply_postq); free_replies: bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 0, PAGE_SIZE, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_replies); free_ccbs: while ((ccb = mpii_get_ccb(sc, MPII_NOSLEEP)) != NULL) bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); mpii_dmamem_free(sc, sc->sc_requests); free(sc->sc_ccbs, M_DEVBUF); unmap: bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); sc->sc_ios = 0; } static int mpii_detach(device_t self, int flags) { struct mpii_softc *sc = device_private(self); int error; struct mpii_ccb *ccb; if ((error = config_detach_children(sc->sc_dev, flags)) != 0) return error; #if NBIO > 0 mpii_destroy_sensors(sc); bio_unregister(sc->sc_dev); #endif /* NBIO > 0 */ if (sc->sc_ih != NULL) { if (sc->sc_devs) free(sc->sc_devs, M_DEVBUF); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq), 0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_reply_freeq); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_reply_postq); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 0, PAGE_SIZE, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_replies); while ((ccb = mpii_get_ccb(sc, MPII_NOSLEEP)) != NULL) bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); mpii_dmamem_free(sc, sc->sc_requests); free(sc->sc_ccbs, M_DEVBUF); pci_intr_disestablish(sc->sc_pc, sc->sc_ih); sc->sc_ih = NULL; } if (sc->sc_ios != 0) { bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); sc->sc_ios = 0; } return (0); } static int mpii_rescan(device_t self, const char *ifattr, const int *locators) { struct mpii_softc *sc = device_private(self); if (sc->sc_child != NULL) return 0; sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan, scsiprint, NULL); return 0; } static void mpii_childdetached(device_t self, device_t child) { struct mpii_softc *sc = device_private(self); KASSERT(self == sc->sc_dev); KASSERT(child == sc->sc_child); if (child == sc->sc_child) sc->sc_child = NULL; } static int mpii_intr(void *arg) { struct mpii_rcb_list evts = SIMPLEQ_HEAD_INITIALIZER(evts); struct mpii_ccb_list ccbs = SIMPLEQ_HEAD_INITIALIZER(ccbs); struct mpii_softc *sc = arg; struct mpii_reply_descr *postq = sc->sc_reply_postq_kva, *rdp; struct mpii_ccb *ccb; struct mpii_rcb *rcb; int smid; int rv = 0; mutex_enter(&sc->sc_rep_mtx); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 0, 8 * sc->sc_reply_post_qdepth, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (;;) { rdp = &postq[sc->sc_reply_post_host_index]; if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == MPII_REPLY_DESCR_UNUSED) break; if (rdp->data == 0xffffffff) { /* * ioc is still writing to the reply post queue * race condition - bail! */ break; } smid = le16toh(rdp->smid); rcb = mpii_reply(sc, rdp); if (smid) { ccb = &sc->sc_ccbs[smid - 1]; ccb->ccb_state = MPII_CCB_READY; ccb->ccb_rcb = rcb; SIMPLEQ_INSERT_TAIL(&ccbs, ccb, u.ccb_link); } else SIMPLEQ_INSERT_TAIL(&evts, rcb, u.rcb_link); sc->sc_reply_post_host_index++; sc->sc_reply_post_host_index %= sc->sc_reply_post_qdepth; rv = 1; } bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 0, 8 * sc->sc_reply_post_qdepth, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (rv) mpii_write_reply_post(sc, sc->sc_reply_post_host_index); mutex_exit(&sc->sc_rep_mtx); if (rv == 0) return (0); while ((ccb = SIMPLEQ_FIRST(&ccbs)) != NULL) { SIMPLEQ_REMOVE_HEAD(&ccbs, u.ccb_link); ccb->ccb_done(ccb); } while ((rcb = SIMPLEQ_FIRST(&evts)) != NULL) { SIMPLEQ_REMOVE_HEAD(&evts, u.rcb_link); mpii_event_process(sc, rcb); } return (1); } static int mpii_load_xs(struct mpii_ccb *ccb) { struct mpii_softc *sc = ccb->ccb_sc; struct scsipi_xfer *xs = ccb->ccb_cookie; struct mpii_ccb_bundle *mcb = ccb->ccb_cmd; struct mpii_msg_scsi_io *io = &mcb->mcb_io; struct mpii_sge *sge = NULL, *nsge = &mcb->mcb_sgl[0]; struct mpii_sge *ce = NULL, *nce = NULL; u_int64_t ce_dva; bus_dmamap_t dmap = ccb->ccb_dmamap; u_int32_t addr, flags; int i, error; /* zero length transfer still requires an SGE */ if (xs->datalen == 0) { nsge->sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); return (0); } error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error) { aprint_error_dev(sc->sc_dev, "error %d loading dmamap\n", error); return (1); } /* safe default staring flags */ flags = MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_SIZE_64; /* if data out */ if (xs->xs_control & XS_CTL_DATA_OUT) flags |= MPII_SGE_FL_DIR_OUT; /* we will have to exceed the SGEs we can cram into the request frame */ if (dmap->dm_nsegs > sc->sc_first_sgl_len) { ce = &mcb->mcb_sgl[sc->sc_first_sgl_len - 1]; io->chain_offset = ((u_int8_t *)ce - (u_int8_t *)io) / 4; } for (i = 0; i < dmap->dm_nsegs; i++) { if (nsge == ce) { nsge++; sge->sg_hdr |= htole32(MPII_SGE_FL_LAST); DNPRINTF(MPII_D_DMA, "%s: - 0x%08x 0x%08x 0x%08x\n", DEVNAME(sc), sge->sg_hdr, sge->sg_hi_addr, sge->sg_lo_addr); if ((dmap->dm_nsegs - i) > sc->sc_chain_len) { nce = &nsge[sc->sc_chain_len - 1]; addr = ((u_int8_t *)nce - (u_int8_t *)nsge) / 4; addr = addr << 16 | sizeof(struct mpii_sge) * sc->sc_chain_len; } else { nce = NULL; addr = sizeof(struct mpii_sge) * (dmap->dm_nsegs - i); } ce->sg_hdr = htole32(MPII_SGE_FL_TYPE_CHAIN | MPII_SGE_FL_SIZE_64 | addr); ce_dva = ccb->ccb_cmd_dva + ((u_int8_t *)nsge - (u_int8_t *)mcb); addr = (u_int32_t)(ce_dva >> 32); ce->sg_hi_addr = htole32(addr); addr = (u_int32_t)ce_dva; ce->sg_lo_addr = htole32(addr); DNPRINTF(MPII_D_DMA, "%s: ce: 0x%08x 0x%08x 0x%08x\n", DEVNAME(sc), ce->sg_hdr, ce->sg_hi_addr, ce->sg_lo_addr); ce = nce; } DNPRINTF(MPII_D_DMA, "%s: %d: %" PRId64 " 0x%016" PRIx64 "\n", DEVNAME(sc), i, (int64_t)dmap->dm_segs[i].ds_len, (u_int64_t)dmap->dm_segs[i].ds_addr); sge = nsge; sge->sg_hdr = htole32(flags | dmap->dm_segs[i].ds_len); addr = (u_int32_t)((u_int64_t)dmap->dm_segs[i].ds_addr >> 32); sge->sg_hi_addr = htole32(addr); addr = (u_int32_t)dmap->dm_segs[i].ds_addr; sge->sg_lo_addr = htole32(addr); DNPRINTF(MPII_D_DMA, "%s: %d: 0x%08x 0x%08x 0x%08x\n", DEVNAME(sc), i, sge->sg_hdr, sge->sg_hi_addr, sge->sg_lo_addr); nsge = sge + 1; } /* terminate list */ sge->sg_hdr |= htole32(MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); return (0); } static u_int32_t mpii_read(struct mpii_softc *sc, bus_size_t r) { u_int32_t rv; bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_READ); rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r); DNPRINTF(MPII_D_RW, "%s: mpii_read %#" PRIx64 " %#x\n", DEVNAME(sc), (uint64_t)r, rv); return (rv); } static void mpii_write(struct mpii_softc *sc, bus_size_t r, u_int32_t v) { DNPRINTF(MPII_D_RW, "%s: mpii_write %#" PRIx64 " %#x\n", DEVNAME(sc), (uint64_t)r, v); bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v); bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_WRITE); } static int mpii_wait_eq(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, u_int32_t target) { int i; DNPRINTF(MPII_D_RW, "%s: mpii_wait_eq %#" PRIx64 " %#x %#x\n", DEVNAME(sc), (uint64_t)r, mask, target); for (i = 0; i < 15000; i++) { if ((mpii_read(sc, r) & mask) == target) return (0); delay(1000); } return (1); } static int mpii_wait_ne(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, u_int32_t target) { int i; DNPRINTF(MPII_D_RW, "%s: mpii_wait_ne %#" PRIx64 " %#x %#x\n", DEVNAME(sc), (uint64_t)r, mask, target); for (i = 0; i < 15000; i++) { if ((mpii_read(sc, r) & mask) != target) return (0); delay(1000); } return (1); } static int mpii_init(struct mpii_softc *sc) { u_int32_t db; int i; /* spin until the ioc leaves the reset state */ if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_RESET) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_init timeout waiting to leave " "reset state\n", DEVNAME(sc)); return (1); } /* check current ownership */ db = mpii_read_db(sc); if ((db & MPII_DOORBELL_WHOINIT) == MPII_DOORBELL_WHOINIT_PCIPEER) { DNPRINTF(MPII_D_MISC, "%s: mpii_init initialised by pci peer\n", DEVNAME(sc)); return (0); } for (i = 0; i < 5; i++) { switch (db & MPII_DOORBELL_STATE) { case MPII_DOORBELL_STATE_READY: DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is ready\n", DEVNAME(sc)); return (0); case MPII_DOORBELL_STATE_OPER: DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is oper\n", DEVNAME(sc)); if (sc->sc_ioc_event_replay) mpii_reset_soft(sc); else mpii_reset_hard(sc); break; case MPII_DOORBELL_STATE_FAULT: DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is being " "reset hard\n" , DEVNAME(sc)); mpii_reset_hard(sc); break; case MPII_DOORBELL_STATE_RESET: DNPRINTF(MPII_D_MISC, "%s: mpii_init waiting to come " "out of reset\n", DEVNAME(sc)); if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_RESET) != 0) return (1); break; } db = mpii_read_db(sc); } return (1); } static int mpii_reset_soft(struct mpii_softc *sc) { DNPRINTF(MPII_D_MISC, "%s: mpii_reset_soft\n", DEVNAME(sc)); if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) { return (1); } mpii_write_db(sc, MPII_DOORBELL_FUNCTION(MPII_FUNCTION_IOC_MESSAGE_UNIT_RESET)); /* XXX LSI waits 15 sec */ if (mpii_wait_db_ack(sc) != 0) return (1); /* XXX LSI waits 15 sec */ if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_READY) != 0) return (1); /* XXX wait for Sys2IOCDB bit to clear in HIS?? */ return (0); } static int mpii_reset_hard(struct mpii_softc *sc) { u_int16_t i; DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard\n", DEVNAME(sc)); mpii_write_intr(sc, 0); /* enable diagnostic register */ mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_FLUSH); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_1); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_2); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_3); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_4); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_5); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_6); delay(100); if ((mpii_read(sc, MPII_HOSTDIAG) & MPII_HOSTDIAG_DWRE) == 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard failure to enable " "diagnostic read/write\n", DEVNAME(sc)); return(1); } /* reset ioc */ mpii_write(sc, MPII_HOSTDIAG, MPII_HOSTDIAG_RESET_ADAPTER); /* 240 milliseconds */ delay(240000); /* XXX this whole function should be more robust */ /* XXX read the host diagnostic reg until reset adapter bit clears ? */ for (i = 0; i < 30000; i++) { if ((mpii_read(sc, MPII_HOSTDIAG) & MPII_HOSTDIAG_RESET_ADAPTER) == 0) break; delay(10000); } /* disable diagnostic register */ mpii_write(sc, MPII_WRITESEQ, 0xff); /* XXX what else? */ DNPRINTF(MPII_D_MISC, "%s: done with mpii_reset_hard\n", DEVNAME(sc)); return(0); } static int mpii_handshake_send(struct mpii_softc *sc, void *buf, size_t dwords) { u_int32_t *query = buf; int i; /* make sure the doorbell is not in use. */ if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) return (1); /* clear pending doorbell interrupts */ if (mpii_read_intr(sc) & MPII_INTR_STATUS_IOC2SYSDB) mpii_write_intr(sc, 0); /* * first write the doorbell with the handshake function and the * dword count. */ mpii_write_db(sc, MPII_DOORBELL_FUNCTION(MPII_FUNCTION_HANDSHAKE) | MPII_DOORBELL_DWORDS(dwords)); /* * the doorbell used bit will be set because a doorbell function has * started. wait for the interrupt and then ack it. */ if (mpii_wait_db_int(sc) != 0) return (1); mpii_write_intr(sc, 0); /* poll for the acknowledgement. */ if (mpii_wait_db_ack(sc) != 0) return (1); /* write the query through the doorbell. */ for (i = 0; i < dwords; i++) { mpii_write_db(sc, htole32(query[i])); if (mpii_wait_db_ack(sc) != 0) return (1); } return (0); } static int mpii_handshake_recv_dword(struct mpii_softc *sc, u_int32_t *dword) { u_int16_t *words = (u_int16_t *)dword; int i; for (i = 0; i < 2; i++) { if (mpii_wait_db_int(sc) != 0) return (1); words[i] = le16toh(mpii_read_db(sc) & MPII_DOORBELL_DATA_MASK); mpii_write_intr(sc, 0); } return (0); } static int mpii_handshake_recv(struct mpii_softc *sc, void *buf, size_t dwords) { struct mpii_msg_reply *reply = buf; u_int32_t *dbuf = buf, dummy; int i; /* get the first dword so we can read the length out of the header. */ if (mpii_handshake_recv_dword(sc, &dbuf[0]) != 0) return (1); DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dwords: %zd reply: %d\n", DEVNAME(sc), dwords, reply->msg_length); /* * the total length, in dwords, is in the message length field of the * reply header. */ for (i = 1; i < MIN(dwords, reply->msg_length); i++) { if (mpii_handshake_recv_dword(sc, &dbuf[i]) != 0) return (1); } /* if there's extra stuff to come off the ioc, discard it */ while (i++ < reply->msg_length) { if (mpii_handshake_recv_dword(sc, &dummy) != 0) return (1); DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dummy read: " "0x%08x\n", DEVNAME(sc), dummy); } /* wait for the doorbell used bit to be reset and clear the intr */ if (mpii_wait_db_int(sc) != 0) return (1); if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_INUSE, 0) != 0) return (1); mpii_write_intr(sc, 0); return (0); } static void mpii_empty_done(struct mpii_ccb *ccb) { /* nothing to do */ } static int mpii_iocfacts(struct mpii_softc *sc) { struct mpii_msg_iocfacts_request ifq; struct mpii_msg_iocfacts_reply ifp; DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts\n", DEVNAME(sc)); bzero(&ifq, sizeof(ifq)); bzero(&ifp, sizeof(ifp)); ifq.function = MPII_FUNCTION_IOC_FACTS; if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts send failed\n", DEVNAME(sc)); return (1); } if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts recv failed\n", DEVNAME(sc)); return (1); } DNPRINTF(MPII_D_MISC, "%s: func: 0x%02x length: %d msgver: %d.%d\n", DEVNAME(sc), ifp.function, ifp.msg_length, ifp.msg_version_maj, ifp.msg_version_min); DNPRINTF(MPII_D_MISC, "%s: msgflags: 0x%02x iocnumber: 0x%02x " "headerver: %d.%d\n", DEVNAME(sc), ifp.msg_flags, ifp.ioc_number, ifp.header_version_unit, ifp.header_version_dev); DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), ifp.vp_id, ifp.vf_id); DNPRINTF(MPII_D_MISC, "%s: iocstatus: 0x%04x ioexceptions: 0x%04x\n", DEVNAME(sc), le16toh(ifp.ioc_status), le16toh(ifp.ioc_exceptions)); DNPRINTF(MPII_D_MISC, "%s: iocloginfo: 0x%08x\n", DEVNAME(sc), le32toh(ifp.ioc_loginfo)); DNPRINTF(MPII_D_MISC, "%s: numberofports: 0x%02x whoinit: 0x%02x " "maxchaindepth: %d\n", DEVNAME(sc), ifp.number_of_ports, ifp.whoinit, ifp.max_chain_depth); DNPRINTF(MPII_D_MISC, "%s: productid: 0x%04x requestcredit: 0x%04x\n", DEVNAME(sc), le16toh(ifp.product_id), le16toh(ifp.request_credit)); DNPRINTF(MPII_D_MISC, "%s: ioc_capabilities: 0x%08x\n", DEVNAME(sc), le32toh(ifp.ioc_capabilities)); DNPRINTF(MPII_D_MISC, "%s: fw_version: %d.%d fw_version_unit: 0x%02x " "fw_version_dev: 0x%02x\n", DEVNAME(sc), ifp.fw_version_maj, ifp.fw_version_min, ifp.fw_version_unit, ifp.fw_version_dev); DNPRINTF(MPII_D_MISC, "%s: iocrequestframesize: 0x%04x\n", DEVNAME(sc), le16toh(ifp.ioc_request_frame_size)); DNPRINTF(MPII_D_MISC, "%s: maxtargets: 0x%04x " "maxinitiators: 0x%04x\n", DEVNAME(sc), le16toh(ifp.max_targets), le16toh(ifp.max_initiators)); DNPRINTF(MPII_D_MISC, "%s: maxenclosures: 0x%04x " "maxsasexpanders: 0x%04x\n", DEVNAME(sc), le16toh(ifp.max_enclosures), le16toh(ifp.max_sas_expanders)); DNPRINTF(MPII_D_MISC, "%s: highprioritycredit: 0x%04x " "protocolflags: 0x%02x\n", DEVNAME(sc), le16toh(ifp.high_priority_credit), le16toh(ifp.protocol_flags)); DNPRINTF(MPII_D_MISC, "%s: maxvolumes: 0x%02x replyframesize: 0x%02x " "mrdpqd: 0x%04x\n", DEVNAME(sc), ifp.max_volumes, ifp.reply_frame_size, le16toh(ifp.max_reply_descriptor_post_queue_depth)); DNPRINTF(MPII_D_MISC, "%s: maxpersistententries: 0x%04x " "maxdevhandle: 0x%02x\n", DEVNAME(sc), le16toh(ifp.max_persistent_entries), le16toh(ifp.max_dev_handle)); sc->sc_maxchdepth = ifp.max_chain_depth; sc->sc_ioc_number = ifp.ioc_number; sc->sc_vf_id = ifp.vf_id; sc->sc_num_ports = ifp.number_of_ports; sc->sc_ioc_event_replay = (le32toh(ifp.ioc_capabilities) & MPII_IOCFACTS_CAPABILITY_EVENT_REPLAY) ? 1 : 0; sc->sc_max_enclosures = le16toh(ifp.max_enclosures); sc->sc_max_expanders = le16toh(ifp.max_sas_expanders); sc->sc_max_volumes = ifp.max_volumes; sc->sc_max_devices = ifp.max_volumes + le16toh(ifp.max_targets); sc->sc_num_channels = 1; if (ISSET(le32toh(ifp.ioc_capabilities), MPII_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) SET(sc->sc_flags, MPII_F_RAID); sc->sc_request_depth = MIN(le16toh(ifp.request_credit), MPII_MAX_REQUEST_CREDIT); /* should not be multiple of 16 */ sc->sc_num_reply_frames = sc->sc_request_depth + 32; if (!(sc->sc_num_reply_frames % 16)) sc->sc_num_reply_frames--; /* must be multiple of 16 */ sc->sc_reply_free_qdepth = sc->sc_num_reply_frames + (16 - (sc->sc_num_reply_frames % 16)); sc->sc_reply_post_qdepth = ((sc->sc_request_depth + sc->sc_num_reply_frames + 1 + 15) / 16) * 16; if (sc->sc_reply_post_qdepth > ifp.max_reply_descriptor_post_queue_depth) sc->sc_reply_post_qdepth = ifp.max_reply_descriptor_post_queue_depth; DNPRINTF(MPII_D_MISC, "%s: sc_request_depth: %d " "sc_num_reply_frames: %d sc_reply_free_qdepth: %d " "sc_reply_post_qdepth: %d\n", DEVNAME(sc), sc->sc_request_depth, sc->sc_num_reply_frames, sc->sc_reply_free_qdepth, sc->sc_reply_post_qdepth); /* * you can fit sg elements on the end of the io cmd if they fit in the * request frame size. */ sc->sc_first_sgl_len = ((le16toh(ifp.ioc_request_frame_size) * 4) - sizeof(struct mpii_msg_scsi_io)) / sizeof(struct mpii_sge); DNPRINTF(MPII_D_MISC, "%s: first sgl len: %d\n", DEVNAME(sc), sc->sc_first_sgl_len); sc->sc_chain_len = (le16toh(ifp.ioc_request_frame_size) * 4) / sizeof(struct mpii_sge); DNPRINTF(MPII_D_MISC, "%s: chain len: %d\n", DEVNAME(sc), sc->sc_chain_len); /* the sgl tailing the io cmd loses an entry to the chain element. */ sc->sc_max_sgl_len = MPII_MAX_SGL - 1; /* the sgl chains lose an entry for each chain element */ sc->sc_max_sgl_len -= (MPII_MAX_SGL - sc->sc_first_sgl_len) / sc->sc_chain_len; DNPRINTF(MPII_D_MISC, "%s: max sgl len: %d\n", DEVNAME(sc), sc->sc_max_sgl_len); /* XXX we're ignoring the max chain depth */ return(0); } static int mpii_iocinit(struct mpii_softc *sc) { struct mpii_msg_iocinit_request iiq; struct mpii_msg_iocinit_reply iip; u_int32_t hi_addr; DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit\n", DEVNAME(sc)); bzero(&iiq, sizeof(iiq)); bzero(&iip, sizeof(iip)); iiq.function = MPII_FUNCTION_IOC_INIT; iiq.whoinit = MPII_WHOINIT_HOST_DRIVER; /* XXX JPG do something about vf_id */ iiq.vf_id = 0; iiq.msg_version_maj = 0x02; iiq.msg_version_min = 0x00; /* XXX JPG ensure compliance with some level and hard-code? */ iiq.hdr_version_unit = 0x00; iiq.hdr_version_dev = 0x00; iiq.system_request_frame_size = htole16(MPII_REQUEST_SIZE / 4); iiq.reply_descriptor_post_queue_depth = htole16(sc->sc_reply_post_qdepth); iiq.reply_free_queue_depth = htole16(sc->sc_reply_free_qdepth); hi_addr = (u_int32_t)((u_int64_t)MPII_DMA_DVA(sc->sc_requests) >> 32); iiq.sense_buffer_address_high = htole32(hi_addr); hi_addr = (u_int32_t) ((u_int64_t)MPII_DMA_DVA(sc->sc_replies) >> 32); iiq.system_reply_address_high = htole32(hi_addr); iiq.system_request_frame_base_address = (u_int64_t)MPII_DMA_DVA(sc->sc_requests); iiq.reply_descriptor_post_queue_address = (u_int64_t)MPII_DMA_DVA(sc->sc_reply_postq); iiq.reply_free_queue_address = (u_int64_t)MPII_DMA_DVA(sc->sc_reply_freeq); if (mpii_handshake_send(sc, &iiq, dwordsof(iiq)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit send failed\n", DEVNAME(sc)); return (1); } if (mpii_handshake_recv(sc, &iip, dwordsof(iip)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit recv failed\n", DEVNAME(sc)); return (1); } DNPRINTF(MPII_D_MISC, "%s: function: 0x%02x msg_length: %d " "whoinit: 0x%02x\n", DEVNAME(sc), iip.function, iip.msg_length, iip.whoinit); DNPRINTF(MPII_D_MISC, "%s: msg_flags: 0x%02x\n", DEVNAME(sc), iip.msg_flags); DNPRINTF(MPII_D_MISC, "%s: vf_id: 0x%02x vp_id: 0x%02x\n", DEVNAME(sc), iip.vf_id, iip.vp_id); DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), le16toh(iip.ioc_status)); DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), le32toh(iip.ioc_loginfo)); if ((iip.ioc_status != MPII_IOCSTATUS_SUCCESS) || (iip.ioc_loginfo)) return (1); return (0); } static void mpii_push_reply(struct mpii_softc *sc, struct mpii_rcb *rcb) { u_int32_t *rfp; if (rcb == NULL) return; rfp = MPII_DMA_KVA(sc->sc_reply_freeq); rfp[sc->sc_reply_free_host_index] = rcb->rcb_reply_dva; sc->sc_reply_free_host_index = (sc->sc_reply_free_host_index + 1) % sc->sc_reply_free_qdepth; mpii_write_reply_free(sc, sc->sc_reply_free_host_index); } static int mpii_portfacts(struct mpii_softc *sc) { struct mpii_msg_portfacts_request *pfq; struct mpii_msg_portfacts_reply *pfp; struct mpii_ccb *ccb; int rv = 1; DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts\n", DEVNAME(sc)); ccb = mpii_get_ccb(sc, 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts mpii_get_ccb fail\n", DEVNAME(sc)); return (rv); } ccb->ccb_done = mpii_empty_done; pfq = ccb->ccb_cmd; bzero(pfq, sizeof(*pfq)); pfq->function = MPII_FUNCTION_PORT_FACTS; pfq->chain_offset = 0; pfq->msg_flags = 0; pfq->port_number = 0; pfq->vp_id = 0; pfq->vf_id = 0; if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts poll\n", DEVNAME(sc)); goto err; } if (ccb->ccb_rcb == NULL) { DNPRINTF(MPII_D_MISC, "%s: empty portfacts reply\n", DEVNAME(sc)); goto err; } pfp = ccb->ccb_rcb->rcb_reply; DNPRINTF(MPII_D_MISC, "%s pfp: %p\n", DEVNAME(sc), pfp); DNPRINTF(MPII_D_MISC, "%s: function: 0x%02x msg_length: %d\n", DEVNAME(sc), pfp->function, pfp->msg_length); DNPRINTF(MPII_D_MISC, "%s: msg_flags: 0x%02x port_number: %d\n", DEVNAME(sc), pfp->msg_flags, pfp->port_number); DNPRINTF(MPII_D_MISC, "%s: vf_id: 0x%02x vp_id: 0x%02x\n", DEVNAME(sc), pfp->vf_id, pfp->vp_id); DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), le16toh(pfp->ioc_status)); DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), le32toh(pfp->ioc_loginfo)); DNPRINTF(MPII_D_MISC, "%s: port_type: 0x%02x\n", DEVNAME(sc), pfp->port_type); DNPRINTF(MPII_D_MISC, "%s: max_posted_cmd_buffers: %d\n", DEVNAME(sc), le16toh(pfp->max_posted_cmd_buffers)); sc->sc_porttype = pfp->port_type; mpii_push_reply(sc, ccb->ccb_rcb); rv = 0; err: mpii_put_ccb(sc, ccb); return (rv); } static void mpii_eventack(struct work *wk, void *cookie) { struct mpii_softc *sc = cookie; struct mpii_ccb *ccb; struct mpii_rcb *rcb = (void *)wk; struct mpii_msg_event_reply *enp; struct mpii_msg_eventack_request *eaq; ccb = mpii_get_ccb(sc, 0); enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; ccb->ccb_done = mpii_eventack_done; eaq = ccb->ccb_cmd; eaq->function = MPII_FUNCTION_EVENT_ACK; eaq->event = enp->event; eaq->event_context = enp->event_context; mpii_push_reply(sc, rcb); mpii_start(sc, ccb); } static void mpii_eventack_done(struct mpii_ccb *ccb) { struct mpii_softc *sc = ccb->ccb_sc; DNPRINTF(MPII_D_EVT, "%s: event ack done\n", DEVNAME(sc)); mpii_push_reply(sc, ccb->ccb_rcb); mpii_put_ccb(sc, ccb); } static int mpii_portenable(struct mpii_softc *sc) { struct mpii_msg_portenable_request *peq; struct mpii_ccb *ccb; DNPRINTF(MPII_D_MISC, "%s: mpii_portenable\n", DEVNAME(sc)); ccb = mpii_get_ccb(sc, 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_portenable ccb_get\n", DEVNAME(sc)); return (1); } ccb->ccb_done = mpii_empty_done; peq = ccb->ccb_cmd; peq->function = MPII_FUNCTION_PORT_ENABLE; peq->vf_id = sc->sc_vf_id; if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_portenable poll\n", DEVNAME(sc)); return (1); } if (ccb->ccb_rcb == NULL) { DNPRINTF(MPII_D_MISC, "%s: empty portenable reply\n", DEVNAME(sc)); return (1); } mpii_push_reply(sc, ccb->ccb_rcb); mpii_put_ccb(sc, ccb); return (0); } static int mpii_cfg_coalescing(struct mpii_softc *sc) { struct mpii_cfg_hdr hdr; struct mpii_cfg_ioc_pg1 pg; if (mpii_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_IOC, 1, 0, &hdr) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to fetch IOC page 1 " "header\n", DEVNAME(sc)); return (1); } if (mpii_cfg_page(sc, 0, &hdr, 1, &pg, sizeof(pg)) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to fetch IOC page 1\n" "page 1\n", DEVNAME(sc)); return (1); } DNPRINTF(MPII_D_MISC, "%s: IOC page 1\n", DEVNAME(sc)); DNPRINTF(MPII_D_MISC, "%s: flags: 0x08%x\n", DEVNAME(sc), le32toh(pg.flags)); DNPRINTF(MPII_D_MISC, "%s: coalescing_timeout: %d\n", DEVNAME(sc), le32toh(pg.coalescing_timeout)); DNPRINTF(MPII_D_MISC, "%s: coalescing_depth: %d pci_slot_num: %d\n", DEVNAME(sc), pg.coalescing_timeout, pg.pci_slot_num); if (!ISSET(le32toh(pg.flags), MPII_CFG_IOC_1_REPLY_COALESCING)) return (0); CLR(pg.flags, htole32(MPII_CFG_IOC_1_REPLY_COALESCING)); if (mpii_cfg_page(sc, 0, &hdr, 0, &pg, sizeof(pg)) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to clear coalescing\n", DEVNAME(sc)); return (1); } return (0); } #define MPII_EVENT_MASKALL(enq) do { \ enq->event_masks[0] = 0xffffffff; \ enq->event_masks[1] = 0xffffffff; \ enq->event_masks[2] = 0xffffffff; \ enq->event_masks[3] = 0xffffffff; \ } while (0) #define MPII_EVENT_UNMASK(enq, evt) do { \ enq->event_masks[evt / 32] &= \ htole32(~(1 << (evt % 32))); \ } while (0) static int mpii_eventnotify(struct mpii_softc *sc) { struct mpii_msg_event_request *enq; struct mpii_ccb *ccb; ccb = mpii_get_ccb(sc, 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_eventnotify ccb_get\n", DEVNAME(sc)); return (1); } ccb->ccb_done = mpii_eventnotify_done; enq = ccb->ccb_cmd; enq->function = MPII_FUNCTION_EVENT_NOTIFICATION; /* * Enable reporting of the following events: * * MPII_EVENT_SAS_DISCOVERY * MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST * MPII_EVENT_SAS_DEVICE_STATUS_CHANGE * MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE * MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST * MPII_EVENT_IR_VOLUME * MPII_EVENT_IR_PHYSICAL_DISK * MPII_EVENT_IR_OPERATION_STATUS */ MPII_EVENT_MASKALL(enq); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DISCOVERY); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DEVICE_STATUS_CHANGE); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_VOLUME); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_PHYSICAL_DISK); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_OPERATION_STATUS); mpii_start(sc, ccb); return (0); } static void mpii_eventnotify_done(struct mpii_ccb *ccb) { struct mpii_softc *sc = ccb->ccb_sc; struct mpii_rcb *rcb = ccb->ccb_rcb; DNPRINTF(MPII_D_EVT, "%s: mpii_eventnotify_done\n", DEVNAME(sc)); mpii_put_ccb(sc, ccb); mpii_event_process(sc, rcb); } static void mpii_event_raid(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) { struct mpii_evt_ir_cfg_change_list *ccl; struct mpii_evt_ir_cfg_element *ce; struct mpii_device *dev; u_int16_t type; int i; ccl = (struct mpii_evt_ir_cfg_change_list *)(enp + 1); if (ccl->num_elements == 0) return; if (ISSET(le32toh(ccl->flags), MPII_EVT_IR_CFG_CHANGE_LIST_FOREIGN)) /* bail on foreign configurations */ return; ce = (struct mpii_evt_ir_cfg_element *)(ccl + 1); for (i = 0; i < ccl->num_elements; i++, ce++) { type = (le16toh(ce->element_flags) & MPII_EVT_IR_CFG_ELEMENT_TYPE_MASK); switch (type) { case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME: switch (ce->reason_code) { case MPII_EVT_IR_CFG_ELEMENT_RC_ADDED: case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_CREATED: if (mpii_find_dev(sc, le16toh(ce->vol_dev_handle))) { printf("%s: device %#x is already " "configured\n", DEVNAME(sc), le16toh(ce->vol_dev_handle)); break; } dev = malloc(sizeof(*dev), M_DEVBUF, M_NOWAIT | M_ZERO); if (!dev) { printf("%s: failed to allocate a " "device structure\n", DEVNAME(sc)); break; } SET(dev->flags, MPII_DF_VOLUME); dev->slot = sc->sc_vd_id_low; dev->dev_handle = le16toh(ce->vol_dev_handle); if (mpii_insert_dev(sc, dev)) { free(dev, M_DEVBUF); break; } mpii_cache_enable(sc, dev); sc->sc_vd_count++; break; case MPII_EVT_IR_CFG_ELEMENT_RC_REMOVED: case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_DELETED: if (!(dev = mpii_find_dev(sc, le16toh(ce->vol_dev_handle)))) break; mpii_remove_dev(sc, dev); sc->sc_vd_count--; break; } break; case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME_DISK: if (ce->reason_code == MPII_EVT_IR_CFG_ELEMENT_RC_PD_CREATED || ce->reason_code == MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { /* there should be an underlying sas drive */ if (!(dev = mpii_find_dev(sc, le16toh(ce->phys_disk_dev_handle)))) break; /* promoted from a hot spare? */ CLR(dev->flags, MPII_DF_HOT_SPARE); SET(dev->flags, MPII_DF_VOLUME_DISK | MPII_DF_HIDDEN); } break; case MPII_EVT_IR_CFG_ELEMENT_TYPE_HOT_SPARE: if (ce->reason_code == MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { /* there should be an underlying sas drive */ if (!(dev = mpii_find_dev(sc, le16toh(ce->phys_disk_dev_handle)))) break; SET(dev->flags, MPII_DF_HOT_SPARE | MPII_DF_HIDDEN); } break; } } } static void mpii_event_sas(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) { struct mpii_evt_sas_tcl *tcl; struct mpii_evt_phy_entry *pe; struct mpii_device *dev; int i; tcl = (struct mpii_evt_sas_tcl *)(enp + 1); if (tcl->num_entries == 0) return; pe = (struct mpii_evt_phy_entry *)(tcl + 1); for (i = 0; i < tcl->num_entries; i++, pe++) { switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) { case MPII_EVENT_SAS_TOPO_PS_RC_ADDED: if (mpii_find_dev(sc, le16toh(pe->dev_handle))) { printf("%s: device %#x is already " "configured\n", DEVNAME(sc), le16toh(pe->dev_handle)); break; } dev = malloc(sizeof(*dev), M_DEVBUF, M_NOWAIT | M_ZERO); if (!dev) { printf("%s: failed to allocate a " "device structure\n", DEVNAME(sc)); break; } dev->slot = sc->sc_pd_id_start + tcl->start_phy_num + i; dev->dev_handle = le16toh(pe->dev_handle); dev->phy_num = tcl->start_phy_num + i; if (tcl->enclosure_handle) dev->physical_port = tcl->physical_port; dev->enclosure = le16toh(tcl->enclosure_handle); dev->expander = le16toh(tcl->expander_handle); if (mpii_insert_dev(sc, dev)) { free(dev, M_DEVBUF); break; } break; case MPII_EVENT_SAS_TOPO_PS_RC_MISSING: if (!(dev = mpii_find_dev(sc, le16toh(pe->dev_handle)))) break; mpii_remove_dev(sc, dev); #if 0 if (sc->sc_scsibus) { SET(dev->flags, MPII_DF_DETACH); scsi_activate(sc->sc_scsibus, dev->slot, -1, DVACT_DEACTIVATE); if (scsi_task(mpii_event_defer, sc, dev, 0) != 0) printf("%s: unable to run device " "detachment routine\n", DEVNAME(sc)); } #else mpii_event_defer(sc, dev); #endif /* XXX */ break; } } } static void mpii_event_process(struct mpii_softc *sc, struct mpii_rcb *rcb) { struct mpii_msg_event_reply *enp; enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; DNPRINTF(MPII_D_EVT, "%s: mpii_event_process: %#x\n", DEVNAME(sc), le32toh(enp->event)); switch (le32toh(enp->event)) { case MPII_EVENT_EVENT_CHANGE: /* should be properly ignored */ break; case MPII_EVENT_SAS_DISCOVERY: { struct mpii_evt_sas_discovery *esd = (struct mpii_evt_sas_discovery *)(enp + 1); if (esd->reason_code == MPII_EVENT_SAS_DISC_REASON_CODE_COMPLETED && esd->discovery_status != 0) printf("%s: sas discovery completed with status %#x\n", DEVNAME(sc), esd->discovery_status); } break; case MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST: mpii_event_sas(sc, enp); break; case MPII_EVENT_SAS_DEVICE_STATUS_CHANGE: break; case MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: break; case MPII_EVENT_IR_VOLUME: { struct mpii_evt_ir_volume *evd = (struct mpii_evt_ir_volume *)(enp + 1); struct mpii_device *dev; #if NBIO > 0 const char *vol_states[] = { BIOC_SVINVALID_S, BIOC_SVOFFLINE_S, BIOC_SVBUILDING_S, BIOC_SVONLINE_S, BIOC_SVDEGRADED_S, BIOC_SVONLINE_S, }; #endif if (cold) break; if (!(dev = mpii_find_dev(sc, le16toh(evd->vol_dev_handle)))) break; #if NBIO > 0 if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATE_CHANGED) printf("%s: volume %d state changed from %s to %s\n", DEVNAME(sc), dev->slot - sc->sc_vd_id_low, vol_states[evd->prev_value], vol_states[evd->new_value]); #endif if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATUS_CHANGED && ISSET(evd->new_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC) && !ISSET(evd->prev_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) printf("%s: started resync on a volume %d\n", DEVNAME(sc), dev->slot - sc->sc_vd_id_low); } break; case MPII_EVENT_IR_PHYSICAL_DISK: break; case MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST: mpii_event_raid(sc, enp); break; case MPII_EVENT_IR_OPERATION_STATUS: { struct mpii_evt_ir_status *evs = (struct mpii_evt_ir_status *)(enp + 1); struct mpii_device *dev; if (!(dev = mpii_find_dev(sc, le16toh(evs->vol_dev_handle)))) break; if (evs->operation == MPII_EVENT_IR_RAIDOP_RESYNC) dev->percent = evs->percent; break; } default: DNPRINTF(MPII_D_EVT, "%s: unhandled event 0x%02x\n", DEVNAME(sc), le32toh(enp->event)); } if (enp->ack_required) workqueue_enqueue(sc->sc_ssb_evt_ackwk, &rcb->u.rcb_wk, NULL); else mpii_push_reply(sc, rcb); } static void mpii_event_defer(void *xsc, void *arg) { struct mpii_softc *sc = xsc; struct mpii_device *dev = arg; if (ISSET(dev->flags, MPII_DF_DETACH)) { mpii_sas_remove_device(sc, dev->dev_handle); #if 0 if (!ISSET(dev->flags, MPII_DF_HIDDEN)) { scsi_detach_target(sc->sc_scsibus, dev->slot, DETACH_FORCE); } #endif /* XXX */ free(dev, M_DEVBUF); } else if (ISSET(dev->flags, MPII_DF_ATTACH)) { CLR(dev->flags, MPII_DF_ATTACH); #if 0 if (!ISSET(dev->flags, MPII_DF_HIDDEN)) scsi_probe_target(sc->sc_scsibus, dev->slot); #endif /* XXX */ } } static void mpii_sas_remove_device(struct mpii_softc *sc, u_int16_t handle) { struct mpii_msg_scsi_task_request *stq; struct mpii_msg_sas_oper_request *soq; struct mpii_ccb *ccb; ccb = mpii_get_ccb(sc, 0); if (ccb == NULL) return; stq = ccb->ccb_cmd; stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; stq->task_type = MPII_SCSI_TASK_TARGET_RESET; stq->dev_handle = htole16(handle); ccb->ccb_done = mpii_empty_done; mpii_wait(sc, ccb); if (ccb->ccb_rcb != NULL) mpii_push_reply(sc, ccb->ccb_rcb); /* reuse a ccb */ ccb->ccb_state = MPII_CCB_READY; ccb->ccb_rcb = NULL; soq = ccb->ccb_cmd; bzero(soq, sizeof(*soq)); soq->function = MPII_FUNCTION_SAS_IO_UNIT_CONTROL; soq->operation = MPII_SAS_OP_REMOVE_DEVICE; soq->dev_handle = htole16(handle); ccb->ccb_done = mpii_empty_done; mpii_wait(sc, ccb); if (ccb->ccb_rcb != NULL) mpii_push_reply(sc, ccb->ccb_rcb); } static int mpii_get_ioc_pg8(struct mpii_softc *sc) { struct mpii_cfg_hdr hdr; struct mpii_cfg_ioc_pg8 *page; size_t pagelen; u_int16_t flags; int pad = 0, rv = 0; DNPRINTF(MPII_D_RAID, "%s: mpii_get_ioc_pg8\n", DEVNAME(sc)); if (mpii_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_IOC, 8, 0, &hdr) != 0) { DNPRINTF(MPII_D_CFG, "%s: mpii_get_ioc_pg8 unable to fetch " "header for IOC page 8\n", DEVNAME(sc)); return (1); } pagelen = hdr.page_length * 4; /* dwords to bytes */ page = malloc(pagelen, M_TEMP, M_NOWAIT); if (page == NULL) { DNPRINTF(MPII_D_CFG, "%s: mpii_get_ioc_pg8 unable to allocate " "space for ioc config page 8\n", DEVNAME(sc)); return (1); } if (mpii_cfg_page(sc, 0, &hdr, 1, page, pagelen) != 0) { DNPRINTF(MPII_D_CFG, "%s: mpii_get_raid unable to fetch IOC " "page 8\n", DEVNAME(sc)); rv = 1; goto out; } DNPRINTF(MPII_D_CFG, "%s: numdevsperenclosure: 0x%02x\n", DEVNAME(sc), page->num_devs_per_enclosure); DNPRINTF(MPII_D_CFG, "%s: maxpersistententries: 0x%04x " "maxnumphysicalmappedids: 0x%04x\n", DEVNAME(sc), le16toh(page->max_persistent_entries), le16toh(page->max_num_physical_mapped_ids)); DNPRINTF(MPII_D_CFG, "%s: flags: 0x%04x\n", DEVNAME(sc), le16toh(page->flags)); DNPRINTF(MPII_D_CFG, "%s: irvolumemappingflags: 0x%04x\n", DEVNAME(sc), le16toh(page->ir_volume_mapping_flags)); if (page->flags & MPII_IOC_PG8_FLAGS_RESERVED_TARGETID_0) pad = 1; flags = page->ir_volume_mapping_flags & MPII_IOC_PG8_IRFLAGS_VOLUME_MAPPING_MODE_MASK; if (ISSET(sc->sc_flags, MPII_F_RAID)) { if (flags == MPII_IOC_PG8_IRFLAGS_LOW_VOLUME_MAPPING) { sc->sc_vd_id_low += pad; pad = sc->sc_max_volumes; /* for sc_pd_id_start */ } else sc->sc_vd_id_low = sc->sc_max_devices - sc->sc_max_volumes; } sc->sc_pd_id_start += pad; DNPRINTF(MPII_D_MAP, "%s: mpii_get_ioc_pg8 mapping: sc_pd_id_start: %d " "sc_vd_id_low: %d sc_max_volumes: %d\n", DEVNAME(sc), sc->sc_pd_id_start, sc->sc_vd_id_low, sc->sc_max_volumes); out: free(page, M_TEMP); return(rv); } static int mpii_req_cfg_header(struct mpii_softc *sc, u_int8_t type, u_int8_t number, u_int32_t address, int flags, void *p) { struct mpii_msg_config_request *cq; struct mpii_msg_config_reply *cp; struct mpii_cfg_hdr *hdr = p; struct mpii_ccb *ccb; struct mpii_ecfg_hdr *ehdr = p; int etype = 0; int rv = 0; DNPRINTF(MPII_D_MISC, "%s: mpii_req_cfg_header type: %#x number: %x " "address: 0x%08x flags: 0x%x\n", DEVNAME(sc), type, number, address, flags); ccb = mpii_get_ccb(sc, ISSET(flags, MPII_PG_POLL) ? MPII_NOSLEEP : 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header ccb_get\n", DEVNAME(sc)); return (1); } if (ISSET(flags, MPII_PG_EXTENDED)) { etype = type; type = MPII_CONFIG_REQ_PAGE_TYPE_EXTENDED; } cq = ccb->ccb_cmd; cq->function = MPII_FUNCTION_CONFIG; cq->action = MPII_CONFIG_REQ_ACTION_PAGE_HEADER; cq->config_header.page_number = number; cq->config_header.page_type = type; cq->ext_page_type = etype; cq->page_address = htole32(address); cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); ccb->ccb_done = mpii_empty_done; if (ISSET(flags, MPII_PG_POLL)) { if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", DEVNAME(sc)); return (1); } } else mpii_wait(sc, ccb); if (ccb->ccb_rcb == NULL) { mpii_put_ccb(sc, ccb); return (1); } cp = ccb->ccb_rcb->rcb_reply; DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x sgl_flags: 0x%02x " "msg_length: %d function: 0x%02x\n", DEVNAME(sc), cp->action, cp->sgl_flags, cp->msg_length, cp->function); DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " "msg_flags: 0x%02x\n", DEVNAME(sc), le16toh(cp->ext_page_length), cp->ext_page_type, cp->msg_flags); DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), cp->vp_id, cp->vf_id); DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), le16toh(cp->ioc_status)); DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), le32toh(cp->ioc_loginfo)); DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), cp->config_header.page_version, cp->config_header.page_length, cp->config_header.page_number, cp->config_header.page_type); if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) rv = 1; else if (ISSET(flags, MPII_PG_EXTENDED)) { bzero(ehdr, sizeof(*ehdr)); ehdr->page_version = cp->config_header.page_version; ehdr->page_number = cp->config_header.page_number; ehdr->page_type = cp->config_header.page_type; ehdr->ext_page_length = cp->ext_page_length; ehdr->ext_page_type = cp->ext_page_type; } else *hdr = cp->config_header; mpii_push_reply(sc, ccb->ccb_rcb); mpii_put_ccb(sc, ccb); return (rv); } static int mpii_req_cfg_page(struct mpii_softc *sc, u_int32_t address, int flags, void *p, int read, void *page, size_t len) { struct mpii_msg_config_request *cq; struct mpii_msg_config_reply *cp; struct mpii_cfg_hdr *hdr = p; struct mpii_ccb *ccb; struct mpii_ecfg_hdr *ehdr = p; u_int64_t dva; char *kva; int page_length; int rv = 0; DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page address: %d read: %d " "type: %x\n", DEVNAME(sc), address, read, hdr->page_type); page_length = ISSET(flags, MPII_PG_EXTENDED) ? le16toh(ehdr->ext_page_length) : hdr->page_length; if (len > MPII_REQUEST_SIZE - sizeof(struct mpii_msg_config_request) || len < page_length * 4) return (1); ccb = mpii_get_ccb(sc, ISSET(flags, MPII_PG_POLL) ? MPII_NOSLEEP : 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page ccb_get\n", DEVNAME(sc)); return (1); } cq = ccb->ccb_cmd; cq->function = MPII_FUNCTION_CONFIG; cq->action = (read ? MPII_CONFIG_REQ_ACTION_PAGE_READ_CURRENT : MPII_CONFIG_REQ_ACTION_PAGE_WRITE_CURRENT); if (ISSET(flags, MPII_PG_EXTENDED)) { cq->config_header.page_version = ehdr->page_version; cq->config_header.page_number = ehdr->page_number; cq->config_header.page_type = ehdr->page_type; cq->ext_page_len = ehdr->ext_page_length; cq->ext_page_type = ehdr->ext_page_type; } else cq->config_header = *hdr; cq->config_header.page_type &= MPII_CONFIG_REQ_PAGE_TYPE_MASK; cq->page_address = htole32(address); cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL | MPII_SGE_FL_SIZE_64 | (page_length * 4) | (read ? MPII_SGE_FL_DIR_IN : MPII_SGE_FL_DIR_OUT)); /* bounce the page via the request space to avoid more bus_dma games */ dva = ccb->ccb_cmd_dva + sizeof(struct mpii_msg_config_request); cq->page_buffer.sg_hi_addr = htole32((u_int32_t)(dva >> 32)); cq->page_buffer.sg_lo_addr = htole32((u_int32_t)dva); kva = ccb->ccb_cmd; kva += sizeof(struct mpii_msg_config_request); if (!read) bcopy(page, kva, len); ccb->ccb_done = mpii_empty_done; if (ISSET(flags, MPII_PG_POLL)) { if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", DEVNAME(sc)); return (1); } } else mpii_wait(sc, ccb); if (ccb->ccb_rcb == NULL) { mpii_put_ccb(sc, ccb); return (1); } cp = ccb->ccb_rcb->rcb_reply; DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x " "msg_length: %d function: 0x%02x\n", DEVNAME(sc), cp->action, cp->msg_length, cp->function); DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " "msg_flags: 0x%02x\n", DEVNAME(sc), le16toh(cp->ext_page_length), cp->ext_page_type, cp->msg_flags); DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), cp->vp_id, cp->vf_id); DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), le16toh(cp->ioc_status)); DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), le32toh(cp->ioc_loginfo)); DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), cp->config_header.page_version, cp->config_header.page_length, cp->config_header.page_number, cp->config_header.page_type); if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) rv = 1; else if (read) bcopy(kva, page, len); mpii_push_reply(sc, ccb->ccb_rcb); mpii_put_ccb(sc, ccb); return (rv); } static struct mpii_rcb * mpii_reply(struct mpii_softc *sc, struct mpii_reply_descr *rdp) { struct mpii_rcb *rcb = NULL; u_int32_t rfid; DNPRINTF(MPII_D_INTR, "%s: mpii_reply\n", DEVNAME(sc)); if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == MPII_REPLY_DESCR_ADDRESS_REPLY) { rfid = (le32toh(rdp->frame_addr) - (u_int32_t)MPII_DMA_DVA(sc->sc_replies)) / MPII_REPLY_SIZE; bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), MPII_REPLY_SIZE * rfid, MPII_REPLY_SIZE, BUS_DMASYNC_POSTREAD); rcb = &sc->sc_rcbs[rfid]; } memset(rdp, 0xff, sizeof(*rdp)); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 8 * sc->sc_reply_post_host_index, 8, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); return (rcb); } static struct mpii_dmamem * mpii_dmamem_alloc(struct mpii_softc *sc, size_t size) { struct mpii_dmamem *mdm; int nsegs; mdm = malloc(sizeof(*mdm), M_DEVBUF, M_NOWAIT | M_ZERO); if (mdm == NULL) return (NULL); mdm->mdm_size = size; if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mdm->mdm_map) != 0) goto mdmfree; if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mdm->mdm_seg, 1, &nsegs, BUS_DMA_NOWAIT) != 0) goto destroy; if (bus_dmamem_map(sc->sc_dmat, &mdm->mdm_seg, nsegs, size, &mdm->mdm_kva, BUS_DMA_NOWAIT) != 0) goto free; if (bus_dmamap_load(sc->sc_dmat, mdm->mdm_map, mdm->mdm_kva, size, NULL, BUS_DMA_NOWAIT) != 0) goto unmap; DNPRINTF(MPII_D_MEM, " kva: %p dva: 0x%" PRIx64 " map: %p size: %" PRId64 "\n", mdm->mdm_kva, (uint64_t)mdm->mdm_map->dm_segs[0].ds_addr, mdm->mdm_map, (uint64_t)size); bzero(mdm->mdm_kva, size); return (mdm); unmap: bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, size); free: bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); destroy: bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); mdmfree: free(mdm, M_DEVBUF); return (NULL); } static void mpii_dmamem_free(struct mpii_softc *sc, struct mpii_dmamem *mdm) { DNPRINTF(MPII_D_MEM, "%s: mpii_dmamem_free %p\n", DEVNAME(sc), mdm); bus_dmamap_unload(sc->sc_dmat, mdm->mdm_map); bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, mdm->mdm_size); bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); free(mdm, M_DEVBUF); } static int mpii_alloc_dev(struct mpii_softc *sc) { sc->sc_devs = malloc(sc->sc_max_devices * sizeof(struct mpii_device *), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->sc_devs == NULL) return (1); return (0); } static int mpii_insert_dev(struct mpii_softc *sc, struct mpii_device *dev) { int slot = dev->slot; /* initial hint */ if (!dev || slot < 0) return (1); while (slot < sc->sc_max_devices && sc->sc_devs[slot] != NULL) slot++; if (slot >= sc->sc_max_devices) return (1); dev->slot = slot; sc->sc_devs[slot] = dev; return (0); } static int mpii_remove_dev(struct mpii_softc *sc, struct mpii_device *dev) { int i; if (!dev) return (1); for (i = 0; i < sc->sc_max_devices; i++) if (sc->sc_devs[i] && sc->sc_devs[i]->dev_handle == dev->dev_handle) { sc->sc_devs[i] = NULL; return (0); } return (1); } static struct mpii_device * mpii_find_dev(struct mpii_softc *sc, u_int16_t handle) { int i; for (i = 0; i < sc->sc_max_devices; i++) if (sc->sc_devs[i] && sc->sc_devs[i]->dev_handle == handle) return (sc->sc_devs[i]); return (NULL); } static int mpii_alloc_ccbs(struct mpii_softc *sc) { struct mpii_ccb *ccb; u_int8_t *cmd; int i; SIMPLEQ_INIT(&sc->sc_ccb_free); sc->sc_ccbs = malloc(sizeof(*ccb) * (sc->sc_request_depth-1), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->sc_ccbs == NULL) { printf("%s: unable to allocate ccbs\n", DEVNAME(sc)); return (1); } sc->sc_requests = mpii_dmamem_alloc(sc, MPII_REQUEST_SIZE * sc->sc_request_depth); if (sc->sc_requests == NULL) { printf("%s: unable to allocate ccb dmamem\n", DEVNAME(sc)); goto free_ccbs; } cmd = MPII_DMA_KVA(sc->sc_requests); bzero(cmd, MPII_REQUEST_SIZE * sc->sc_request_depth); /* * we have sc->sc_request_depth system request message * frames, but smid zero cannot be used. so we then * have (sc->sc_request_depth - 1) number of ccbs */ for (i = 1; i < sc->sc_request_depth; i++) { ccb = &sc->sc_ccbs[i - 1]; if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, sc->sc_max_sgl_len, MAXPHYS, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap) != 0) { printf("%s: unable to create dma map\n", DEVNAME(sc)); goto free_maps; } ccb->ccb_sc = sc; ccb->ccb_smid = i; ccb->ccb_offset = MPII_REQUEST_SIZE * i; ccb->ccb_cmd = &cmd[ccb->ccb_offset]; ccb->ccb_cmd_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_requests) + ccb->ccb_offset; DNPRINTF(MPII_D_CCB, "%s: mpii_alloc_ccbs(%d) ccb: %p map: %p " "sc: %p smid: %#x offs: %#" PRIx64 " cmd: %#" PRIx64 " dva: %#" PRIx64 "\n", DEVNAME(sc), i, ccb, ccb->ccb_dmamap, ccb->ccb_sc, ccb->ccb_smid, (uint64_t)ccb->ccb_offset, (uint64_t)ccb->ccb_cmd, (uint64_t)ccb->ccb_cmd_dva); mpii_put_ccb(sc, ccb); } return (0); free_maps: while ((ccb = mpii_get_ccb(sc, MPII_NOSLEEP)) != NULL) bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); mpii_dmamem_free(sc, sc->sc_requests); free_ccbs: free(sc->sc_ccbs, M_DEVBUF); return (1); } static void mpii_put_ccb(struct mpii_softc *sc, struct mpii_ccb *ccb) { KASSERT(ccb->ccb_sc == sc); DNPRINTF(MPII_D_CCB, "%s: mpii_put_ccb %p\n", DEVNAME(sc), ccb); ccb->ccb_state = MPII_CCB_FREE; ccb->ccb_cookie = NULL; ccb->ccb_done = NULL; ccb->ccb_rcb = NULL; bzero(ccb->ccb_cmd, MPII_REQUEST_SIZE); mutex_enter(&sc->sc_ccb_free_mtx); SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, u.ccb_link); cv_signal(&sc->sc_ccb_free_cv); mutex_exit(&sc->sc_ccb_free_mtx); } static struct mpii_ccb * mpii_get_ccb(struct mpii_softc *sc, int flags) { struct mpii_ccb *ccb; mutex_enter(&sc->sc_ccb_free_mtx); while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free)) == NULL) { if (flags & MPII_NOSLEEP) break; cv_wait(&sc->sc_ccb_free_cv, &sc->sc_ccb_free_mtx); } if (ccb != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, u.ccb_link); ccb->ccb_state = MPII_CCB_READY; KASSERT(ccb->ccb_sc == sc); } mutex_exit(&sc->sc_ccb_free_mtx); DNPRINTF(MPII_D_CCB, "%s: mpii_get_ccb %p\n", DEVNAME(sc), ccb); return (ccb); } static int mpii_alloc_replies(struct mpii_softc *sc) { DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_replies\n", DEVNAME(sc)); sc->sc_rcbs = malloc(sc->sc_num_reply_frames * sizeof(struct mpii_rcb), M_DEVBUF, M_NOWAIT); if (sc->sc_rcbs == NULL) return (1); sc->sc_replies = mpii_dmamem_alloc(sc, MPII_REPLY_SIZE * sc->sc_num_reply_frames); if (sc->sc_replies == NULL) { free(sc->sc_rcbs, M_DEVBUF); return (1); } return (0); } static void mpii_push_replies(struct mpii_softc *sc) { struct mpii_rcb *rcb; char *kva = MPII_DMA_KVA(sc->sc_replies); int i; bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 0, MPII_REPLY_SIZE * sc->sc_num_reply_frames, BUS_DMASYNC_PREREAD); for (i = 0; i < sc->sc_num_reply_frames; i++) { rcb = &sc->sc_rcbs[i]; rcb->rcb_reply = kva + MPII_REPLY_SIZE * i; rcb->rcb_reply_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + MPII_REPLY_SIZE * i; mpii_push_reply(sc, rcb); } } static void mpii_start(struct mpii_softc *sc, struct mpii_ccb *ccb) { struct mpii_request_header *rhp; struct mpii_request_descr descr; u_int32_t *rdp = (u_int32_t *)&descr; DNPRINTF(MPII_D_RW, "%s: mpii_start %#" PRIx64 "\n", DEVNAME(sc), (uint64_t)ccb->ccb_cmd_dva); rhp = ccb->ccb_cmd; bzero(&descr, sizeof(descr)); switch (rhp->function) { case MPII_FUNCTION_SCSI_IO_REQUEST: descr.request_flags = MPII_REQ_DESCR_SCSI_IO; descr.dev_handle = htole16(ccb->ccb_dev_handle); break; case MPII_FUNCTION_SCSI_TASK_MGMT: descr.request_flags = MPII_REQ_DESCR_HIGH_PRIORITY; break; default: descr.request_flags = MPII_REQ_DESCR_DEFAULT; } descr.vf_id = sc->sc_vf_id; descr.smid = htole16(ccb->ccb_smid); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_requests), ccb->ccb_offset, MPII_REQUEST_SIZE, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ccb->ccb_state = MPII_CCB_QUEUED; DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write " "0x%08x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp); DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_HIGH (0x%08x) write " "0x%08x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_HIGH, *(rdp+1)); mutex_enter(&sc->sc_req_mtx); mpii_write(sc, MPII_REQ_DESCR_POST_LOW, htole32(*rdp)); mpii_write(sc, MPII_REQ_DESCR_POST_HIGH, htole32(*(rdp+1))); mutex_exit(&sc->sc_req_mtx); } static int mpii_poll(struct mpii_softc *sc, struct mpii_ccb *ccb) { void (*done)(struct mpii_ccb *); void *cookie; int rv = 1; DNPRINTF(MPII_D_INTR, "%s: mpii_complete\n", DEVNAME(sc)); done = ccb->ccb_done; cookie = ccb->ccb_cookie; ccb->ccb_done = mpii_poll_done; ccb->ccb_cookie = &rv; mpii_start(sc, ccb); while (rv == 1) { /* avoid excessive polling */ if (mpii_reply_waiting(sc)) mpii_intr(sc); else delay(10); } ccb->ccb_cookie = cookie; done(ccb); return (0); } static void mpii_poll_done(struct mpii_ccb *ccb) { int *rv = ccb->ccb_cookie; *rv = 0; } static int mpii_alloc_queues(struct mpii_softc *sc) { u_int32_t *kva; u_int64_t *kva64; int i; DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_queues\n", DEVNAME(sc)); sc->sc_reply_freeq = mpii_dmamem_alloc(sc, sc->sc_reply_free_qdepth * 4); if (sc->sc_reply_freeq == NULL) return (1); kva = MPII_DMA_KVA(sc->sc_reply_freeq); for (i = 0; i < sc->sc_num_reply_frames; i++) { kva[i] = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + MPII_REPLY_SIZE * i; DNPRINTF(MPII_D_MISC, "%s: %d: %p = 0x%08x\n", DEVNAME(sc), i, &kva[i], (u_int)MPII_DMA_DVA(sc->sc_replies) + MPII_REPLY_SIZE * i); } sc->sc_reply_postq = mpii_dmamem_alloc(sc, sc->sc_reply_post_qdepth * 8); if (sc->sc_reply_postq == NULL) goto free_reply_freeq; sc->sc_reply_postq_kva = MPII_DMA_KVA(sc->sc_reply_postq); DNPRINTF(MPII_D_MISC, "%s: populating reply post descriptor queue\n", DEVNAME(sc)); kva64 = (u_int64_t *)MPII_DMA_KVA(sc->sc_reply_postq); for (i = 0; i < sc->sc_reply_post_qdepth; i++) { kva64[i] = 0xffffffffffffffffllu; DNPRINTF(MPII_D_MISC, "%s: %d: %p = 0x%" PRIx64 "\n", DEVNAME(sc), i, &kva64[i], kva64[i]); } return (0); free_reply_freeq: mpii_dmamem_free(sc, sc->sc_reply_freeq); return (1); } static void mpii_init_queues(struct mpii_softc *sc) { DNPRINTF(MPII_D_MISC, "%s: mpii_init_queues\n", DEVNAME(sc)); sc->sc_reply_free_host_index = sc->sc_reply_free_qdepth - 1; sc->sc_reply_post_host_index = 0; mpii_write_reply_free(sc, sc->sc_reply_free_host_index); mpii_write_reply_post(sc, sc->sc_reply_post_host_index); } static void mpii_wait(struct mpii_softc *sc, struct mpii_ccb *ccb) { struct mpii_ccb_wait mpii_ccb_wait; void (*done)(struct mpii_ccb *); void *cookie; done = ccb->ccb_done; cookie = ccb->ccb_cookie; ccb->ccb_done = mpii_wait_done; ccb->ccb_cookie = &mpii_ccb_wait; mutex_init(&mpii_ccb_wait.mpii_ccbw_mtx, MUTEX_DEFAULT, IPL_BIO); cv_init(&mpii_ccb_wait.mpii_ccbw_cv, "mpii_wait"); /* XXX this will wait forever for the ccb to complete */ mpii_start(sc, ccb); mutex_enter(&mpii_ccb_wait.mpii_ccbw_mtx); while (ccb->ccb_cookie != NULL) { cv_wait(&mpii_ccb_wait.mpii_ccbw_cv, &mpii_ccb_wait.mpii_ccbw_mtx); } mutex_exit(&mpii_ccb_wait.mpii_ccbw_mtx); mutex_destroy(&mpii_ccb_wait.mpii_ccbw_mtx); cv_destroy(&mpii_ccb_wait.mpii_ccbw_cv); ccb->ccb_cookie = cookie; done(ccb); } static void mpii_wait_done(struct mpii_ccb *ccb) { struct mpii_ccb_wait *mpii_ccb_waitp = ccb->ccb_cookie; mutex_enter(&mpii_ccb_waitp->mpii_ccbw_mtx); ccb->ccb_cookie = NULL; cv_signal(&mpii_ccb_waitp->mpii_ccbw_cv); mutex_exit(&mpii_ccb_waitp->mpii_ccbw_mtx); } static void mpii_minphys(struct buf *bp) { DNPRINTF(MPII_D_MISC, "mpii_minphys: %d\n", bp->b_bcount); /* XXX currently using MPII_MAXFER = MAXPHYS */ if (bp->b_bcount > MPII_MAXFER) { bp->b_bcount = MPII_MAXFER; minphys(bp); } } static void mpii_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg) { struct scsipi_periph *periph; struct scsipi_xfer *xs; struct scsipi_adapter *adapt = chan->chan_adapter; struct mpii_softc *sc = device_private(adapt->adapt_dev); struct mpii_ccb *ccb; struct mpii_ccb_bundle *mcb; struct mpii_msg_scsi_io *io; struct mpii_device *dev; int target; int timeout; DNPRINTF(MPII_D_CMD, "%s: mpii_scsipi_request\n", DEVNAME(sc)); switch (req) { case ADAPTER_REQ_GROW_RESOURCES: /* Not supported. */ return; case ADAPTER_REQ_SET_XFER_MODE: { struct scsipi_xfer_mode *xm = arg; xm->xm_mode = PERIPH_CAP_TQING; xm->xm_period = 0; xm->xm_offset = 0; scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm); return; } case ADAPTER_REQ_RUN_XFER: break; } xs = arg; periph = xs->xs_periph; target = periph->periph_target; if (xs->cmdlen > MPII_CDB_LEN) { DNPRINTF(MPII_D_CMD, "%s: CBD too big %d\n", DEVNAME(sc), xs->cmdlen); bzero(&xs->sense, sizeof(xs->sense)); xs->sense.scsi_sense.response_code = SSD_RCODE_VALID | SSD_RCODE_CURRENT; xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST; xs->sense.scsi_sense.asc = 0x20; xs->error = XS_SENSE; scsipi_done(xs); return; } if ((dev = sc->sc_devs[target]) == NULL) { /* device no longer exists */ xs->error = XS_SELTIMEOUT; scsipi_done(xs); return; } ccb = mpii_get_ccb(sc, MPII_NOSLEEP); if (ccb == NULL) { xs->error = XS_RESOURCE_SHORTAGE; scsipi_done(xs); return; } DNPRINTF(MPII_D_CMD, "%s: ccb_smid: %d xs->xs_control: 0x%x\n", DEVNAME(sc), ccb->ccb_smid, xs->xs_control); ccb->ccb_cookie = xs; ccb->ccb_done = mpii_scsi_cmd_done; ccb->ccb_dev_handle = dev->dev_handle; mcb = ccb->ccb_cmd; io = &mcb->mcb_io; io->function = MPII_FUNCTION_SCSI_IO_REQUEST; io->sense_buffer_length = sizeof(xs->sense); io->sgl_offset0 = 24; /* XXX fix this */ io->io_flags = htole16(xs->cmdlen); io->dev_handle = htole16(ccb->ccb_dev_handle); io->lun[0] = htobe16(periph->periph_lun); switch (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT)) { case XS_CTL_DATA_IN: io->direction = MPII_SCSIIO_DIR_READ; break; case XS_CTL_DATA_OUT: io->direction = MPII_SCSIIO_DIR_WRITE; break; default: io->direction = MPII_SCSIIO_DIR_NONE; } io->tagging = MPII_SCSIIO_ATTR_SIMPLE_Q; memcpy(io->cdb, xs->cmd, xs->cmdlen); io->data_length = htole32(xs->datalen); io->sense_buffer_low_address = htole32(ccb->ccb_cmd_dva + ((u_int8_t *)&mcb->mcb_sense - (u_int8_t *)mcb)); if (mpii_load_xs(ccb) != 0) { xs->error = XS_DRIVER_STUFFUP; mpii_put_ccb(sc, ccb); scsipi_done(xs); return; } DNPRINTF(MPII_D_CMD, "%s: sizeof(mpii_msg_scsi_io): %ld " "sizeof(mpii_ccb_bundle): %ld sge offset: 0x%02lx\n", DEVNAME(sc), sizeof(struct mpii_msg_scsi_io), sizeof(struct mpii_ccb_bundle), (u_int8_t *)&mcb->mcb_sgl[0] - (u_int8_t *)mcb); DNPRINTF(MPII_D_CMD, "%s sgl[0]: 0x%04x 0%04x 0x%04x\n", DEVNAME(sc), mcb->mcb_sgl[0].sg_hdr, mcb->mcb_sgl[0].sg_lo_addr, mcb->mcb_sgl[0].sg_hi_addr); DNPRINTF(MPII_D_CMD, "%s: Offset0: 0x%02x\n", DEVNAME(sc), io->sgl_offset0); if (xs->xs_control & XS_CTL_POLL) { if (mpii_poll(sc, ccb) != 0) { xs->error = XS_DRIVER_STUFFUP; mpii_put_ccb(sc, ccb); scsipi_done(xs); } return; } timeout = mstohz(xs->timeout); if (timeout == 0) timeout = 1; callout_reset(&xs->xs_callout, timeout, mpii_scsi_cmd_tmo, ccb); DNPRINTF(MPII_D_CMD, "%s: mpii_scsipi_request(): opcode: %02x " "datalen: %d\n", DEVNAME(sc), xs->cmd->opcode, xs->datalen); mpii_start(sc, ccb); } static void mpii_scsi_cmd_tmo(void *xccb) { struct mpii_ccb *ccb = xccb; struct mpii_softc *sc = ccb->ccb_sc; printf("%s: mpii_scsi_cmd_tmo\n", DEVNAME(sc)); mutex_enter(&sc->sc_ccb_mtx); if (ccb->ccb_state == MPII_CCB_QUEUED) { ccb->ccb_state = MPII_CCB_TIMEOUT; workqueue_enqueue(sc->sc_ssb_tmowk, &ccb->u.ccb_wk, NULL); } mutex_exit(&sc->sc_ccb_mtx); } static void mpii_scsi_cmd_tmo_handler(struct work *wk, void *cookie) { struct mpii_softc *sc = cookie; struct mpii_ccb *tccb; struct mpii_ccb *ccb; struct mpii_msg_scsi_task_request *stq; ccb = (void *)wk; tccb = mpii_get_ccb(sc, 0); mutex_enter(&sc->sc_ccb_mtx); if (ccb->ccb_state != MPII_CCB_TIMEOUT) { mpii_put_ccb(sc, tccb); } /* should remove any other ccbs for the same dev handle */ mutex_exit(&sc->sc_ccb_mtx); stq = tccb->ccb_cmd; stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; stq->task_type = MPII_SCSI_TASK_TARGET_RESET; stq->dev_handle = htole16(ccb->ccb_dev_handle); tccb->ccb_done = mpii_scsi_cmd_tmo_done; mpii_start(sc, tccb); } static void mpii_scsi_cmd_tmo_done(struct mpii_ccb *tccb) { mpii_put_ccb(tccb->ccb_sc, tccb); } static u_int8_t map_scsi_status(u_int8_t mpii_scsi_status) { u_int8_t scsi_status; switch (mpii_scsi_status) { case MPII_SCSIIO_ERR_STATUS_SUCCESS: scsi_status = SCSI_OK; break; case MPII_SCSIIO_ERR_STATUS_CHECK_COND: scsi_status = SCSI_CHECK; break; case MPII_SCSIIO_ERR_STATUS_BUSY: scsi_status = SCSI_BUSY; break; case MPII_SCSIIO_ERR_STATUS_INTERMEDIATE: scsi_status = SCSI_INTERM; break; case MPII_SCSIIO_ERR_STATUS_INTERMEDIATE_CONDMET: scsi_status = SCSI_INTERM; break; case MPII_SCSIIO_ERR_STATUS_RESERVATION_CONFLICT: scsi_status = SCSI_RESV_CONFLICT; break; case MPII_SCSIIO_ERR_STATUS_CMD_TERM: case MPII_SCSIIO_ERR_STATUS_TASK_ABORTED: scsi_status = SCSI_TERMINATED; break; case MPII_SCSIIO_ERR_STATUS_TASK_SET_FULL: scsi_status = SCSI_QUEUE_FULL; break; case MPII_SCSIIO_ERR_STATUS_ACA_ACTIVE: scsi_status = SCSI_ACA_ACTIVE; break; default: /* XXX: for the lack of anything better and other than OK */ scsi_status = 0xFF; break; } return scsi_status; } static void mpii_scsi_cmd_done(struct mpii_ccb *ccb) { struct mpii_msg_scsi_io_error *sie; struct mpii_softc *sc = ccb->ccb_sc; struct scsipi_xfer *xs = ccb->ccb_cookie; struct mpii_ccb_bundle *mcb = ccb->ccb_cmd; bus_dmamap_t dmap = ccb->ccb_dmamap; bool timeout = 0; callout_stop(&xs->xs_callout); mutex_enter(&sc->sc_ccb_mtx); if (ccb->ccb_state == MPII_CCB_TIMEOUT) timeout = 1; ccb->ccb_state = MPII_CCB_READY; mutex_exit(&sc->sc_ccb_mtx); if (xs->datalen != 0) { bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, dmap); } xs->error = XS_NOERROR; xs->resid = 0; if (ccb->ccb_rcb == NULL) { /* no scsi error, we're ok so drop out early */ xs->status = SCSI_OK; mpii_put_ccb(sc, ccb); scsipi_done(xs); return; } sie = ccb->ccb_rcb->rcb_reply; DNPRINTF(MPII_D_CMD, "%s: mpii_scsi_cmd_done xs cmd: 0x%02x len: %d " "xs_control 0x%x\n", DEVNAME(sc), xs->cmd->opcode, xs->datalen, xs->xs_control); DNPRINTF(MPII_D_CMD, "%s: dev_handle: %d msg_length: %d " "function: 0x%02x\n", DEVNAME(sc), le16toh(sie->dev_handle), sie->msg_length, sie->function); DNPRINTF(MPII_D_CMD, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), sie->vp_id, sie->vf_id); DNPRINTF(MPII_D_CMD, "%s: scsi_status: 0x%02x scsi_state: 0x%02x " "ioc_status: 0x%04x\n", DEVNAME(sc), sie->scsi_status, sie->scsi_state, le16toh(sie->ioc_status)); DNPRINTF(MPII_D_CMD, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), le32toh(sie->ioc_loginfo)); DNPRINTF(MPII_D_CMD, "%s: transfer_count: %d\n", DEVNAME(sc), le32toh(sie->transfer_count)); DNPRINTF(MPII_D_CMD, "%s: sense_count: %d\n", DEVNAME(sc), le32toh(sie->sense_count)); DNPRINTF(MPII_D_CMD, "%s: response_info: 0x%08x\n", DEVNAME(sc), le32toh(sie->response_info)); DNPRINTF(MPII_D_CMD, "%s: task_tag: 0x%04x\n", DEVNAME(sc), le16toh(sie->task_tag)); DNPRINTF(MPII_D_CMD, "%s: bidirectional_transfer_count: 0x%08x\n", DEVNAME(sc), le32toh(sie->bidirectional_transfer_count)); xs->status = map_scsi_status(sie->scsi_status); switch (le16toh(sie->ioc_status) & MPII_IOCSTATUS_MASK) { case MPII_IOCSTATUS_SCSI_DATA_UNDERRUN: switch (sie->scsi_status) { case MPII_SCSIIO_ERR_STATUS_CHECK_COND: xs->error = XS_SENSE; /*FALLTHROUGH*/ case MPII_SCSIIO_ERR_STATUS_SUCCESS: xs->resid = xs->datalen - le32toh(sie->transfer_count); break; default: xs->error = XS_DRIVER_STUFFUP; break; } break; case MPII_IOCSTATUS_SUCCESS: case MPII_IOCSTATUS_SCSI_RECOVERED_ERROR: switch (sie->scsi_status) { case MPII_SCSIIO_ERR_STATUS_SUCCESS: /* * xs->resid = 0; - already set above * * XXX: check whether UNDERUN strategy * would be appropriate here too. * that would allow joining these cases. */ break; case MPII_SCSIIO_ERR_STATUS_CHECK_COND: xs->error = XS_SENSE; break; case MPII_SCSIIO_ERR_STATUS_BUSY: case MPII_SCSIIO_ERR_STATUS_TASK_SET_FULL: xs->error = XS_BUSY; break; default: xs->error = XS_DRIVER_STUFFUP; } break; case MPII_IOCSTATUS_BUSY: case MPII_IOCSTATUS_INSUFFICIENT_RESOURCES: xs->error = XS_BUSY; break; case MPII_IOCSTATUS_SCSI_IOC_TERMINATED: case MPII_IOCSTATUS_SCSI_TASK_TERMINATED: xs->error = timeout ? XS_TIMEOUT : XS_RESET; break; case MPII_IOCSTATUS_SCSI_INVALID_DEVHANDLE: case MPII_IOCSTATUS_SCSI_DEVICE_NOT_THERE: xs->error = XS_SELTIMEOUT; break; default: xs->error = XS_DRIVER_STUFFUP; break; } if (sie->scsi_state & MPII_SCSIIO_ERR_STATE_AUTOSENSE_VALID) memcpy(&xs->sense, &mcb->mcb_sense, sizeof(xs->sense)); DNPRINTF(MPII_D_CMD, "%s: xs err: %d status: %#x\n", DEVNAME(sc), xs->error, xs->status); mpii_push_reply(sc, ccb->ccb_rcb); mpii_put_ccb(sc, ccb); scsipi_done(xs); } #if 0 static int mpii_ioctl_cache(struct scsi_link *link, u_long cmd, struct dk_cache *dc) { struct mpii_softc *sc = (struct mpii_softc *)link->adapter_softc; struct mpii_device *dev = sc->sc_devs[link->target]; struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_msg_raid_action_request *req; struct mpii_msg_raid_action_reply *rep; struct mpii_cfg_hdr hdr; struct mpii_ccb *ccb; u_int32_t addr = MPII_CFG_RAID_VOL_ADDR_HANDLE | dev->dev_handle; size_t pagelen; int rv = 0; int enabled; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, addr, MPII_PG_POLL, &hdr) != 0) return (EINVAL); pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (vpg == NULL) return (ENOMEM); if (mpii_req_cfg_page(sc, addr, MPII_PG_POLL, &hdr, 1, vpg, pagelen) != 0) { rv = EINVAL; goto done; } enabled = ((le16toh(vpg->volume_settings) & MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_MASK) == MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_ENABLED) ? 1 : 0; if (cmd == DIOCGCACHE) { dc->wrcache = enabled; dc->rdcache = 0; goto done; } /* else DIOCSCACHE */ if (dc->rdcache) { rv = EOPNOTSUPP; goto done; } if (((dc->wrcache) ? 1 : 0) == enabled) goto done; ccb = mpii_get_ccb(sc, MPII_NOSLEEP); if (ccb == NULL) { rv = ENOMEM; goto done; } ccb->ccb_done = mpii_empty_done; req = ccb->ccb_cmd; bzero(req, sizeof(*req)); req->function = MPII_FUNCTION_RAID_ACTION; req->action = MPII_RAID_ACTION_CHANGE_VOL_WRITE_CACHE; req->vol_dev_handle = htole16(dev->dev_handle); req->action_data = htole32(dc->wrcache ? MPII_RAID_VOL_WRITE_CACHE_ENABLE : MPII_RAID_VOL_WRITE_CACHE_DISABLE); if (mpii_poll(sc, ccb) != 0) { rv = EIO; goto done; } if (ccb->ccb_rcb != NULL) { rep = ccb->ccb_rcb->rcb_reply; if ((rep->ioc_status != MPII_IOCSTATUS_SUCCESS) || ((rep->action_data[0] & MPII_RAID_VOL_WRITE_CACHE_MASK) != (dc->wrcache ? MPII_RAID_VOL_WRITE_CACHE_ENABLE : MPII_RAID_VOL_WRITE_CACHE_DISABLE))) rv = EINVAL; mpii_push_reply(sc, ccb->ccb_rcb); } mpii_put_ccb(sc, ccb); done: free(vpg, M_TEMP); return (rv); } #endif static int mpii_cache_enable(struct mpii_softc *sc, struct mpii_device *dev) { struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_msg_raid_action_request *req; struct mpii_msg_raid_action_reply *rep; struct mpii_cfg_hdr hdr; struct mpii_ccb *ccb; u_int32_t addr = MPII_CFG_RAID_VOL_ADDR_HANDLE | dev->dev_handle; size_t pagelen; int rv = 0; int enabled; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, addr, MPII_PG_POLL, &hdr) != 0) return (EINVAL); pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (vpg == NULL) return (ENOMEM); if (mpii_req_cfg_page(sc, addr, MPII_PG_POLL, &hdr, 1, vpg, pagelen) != 0) { rv = EINVAL; goto done; free(vpg, M_TEMP); return (EINVAL); } enabled = ((le16toh(vpg->volume_settings) & MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_MASK) == MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_ENABLED) ? 1 : 0; aprint_normal_dev(sc->sc_dev, "target %d cache %s", dev->slot, enabled ? "enabled" : "disabled, enabling"); aprint_normal("\n"); if (enabled == 0) goto done; ccb = mpii_get_ccb(sc, MPII_NOSLEEP); if (ccb == NULL) { rv = ENOMEM; goto done; } ccb->ccb_done = mpii_empty_done; req = ccb->ccb_cmd; bzero(req, sizeof(*req)); req->function = MPII_FUNCTION_RAID_ACTION; req->action = MPII_RAID_ACTION_CHANGE_VOL_WRITE_CACHE; req->vol_dev_handle = htole16(dev->dev_handle); req->action_data = htole32( MPII_RAID_VOL_WRITE_CACHE_ENABLE); if (mpii_poll(sc, ccb) != 0) { rv = EIO; goto done; } if (ccb->ccb_rcb != NULL) { rep = ccb->ccb_rcb->rcb_reply; if ((rep->ioc_status != MPII_IOCSTATUS_SUCCESS) || ((rep->action_data[0] & MPII_RAID_VOL_WRITE_CACHE_MASK) != MPII_RAID_VOL_WRITE_CACHE_ENABLE)) rv = EINVAL; mpii_push_reply(sc, ccb->ccb_rcb); } mpii_put_ccb(sc, ccb); done: free(vpg, M_TEMP); if (rv) { aprint_error_dev(sc->sc_dev, "enabling cache on target %d failed (%d)\n", dev->slot, rv); } return (rv); } #if NBIO > 0 static int mpii_ioctl(device_t dev, u_long cmd, void *addr) { struct mpii_softc *sc = device_private(dev); int s, error = 0; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl ", DEVNAME(sc)); KERNEL_LOCK(1, curlwp); s = splbio(); switch (cmd) { case BIOCINQ: DNPRINTF(MPII_D_IOCTL, "inq\n"); error = mpii_ioctl_inq(sc, (struct bioc_inq *)addr); break; case BIOCVOL: DNPRINTF(MPII_D_IOCTL, "vol\n"); error = mpii_ioctl_vol(sc, (struct bioc_vol *)addr); break; case BIOCDISK: DNPRINTF(MPII_D_IOCTL, "disk\n"); error = mpii_ioctl_disk(sc, (struct bioc_disk *)addr); break; default: DNPRINTF(MPII_D_IOCTL, " invalid ioctl\n"); error = EINVAL; } splx(s); KERNEL_UNLOCK_ONE(curlwp); return (error); } static int mpii_ioctl_inq(struct mpii_softc *sc, struct bioc_inq *bi) { int i; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_inq\n", DEVNAME(sc)); strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev)); for (i = 0; i < sc->sc_max_devices; i++) if (sc->sc_devs[i] && ISSET(sc->sc_devs[i]->flags, MPII_DF_VOLUME)) bi->bi_novol++; return (0); } static int mpii_ioctl_vol(struct mpii_softc *sc, struct bioc_vol *bv) { struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_cfg_hdr hdr; struct mpii_device *dev; struct scsipi_periph *periph; size_t pagelen; u_int16_t volh; int rv, hcnt = 0; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_vol %d\n", DEVNAME(sc), bv->bv_volid); if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) return (ENODEV); volh = dev->dev_handle; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { printf("%s: unable to fetch header for raid volume page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (vpg == NULL) { printf("%s: unable to allocate space for raid " "volume page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr, 1, vpg, pagelen) != 0) { printf("%s: unable to fetch raid volume page 0\n", DEVNAME(sc)); free(vpg, M_TEMP); return (EINVAL); } switch (vpg->volume_state) { case MPII_CFG_RAID_VOL_0_STATE_ONLINE: case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: bv->bv_status = BIOC_SVONLINE; break; case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: if (ISSET(le32toh(vpg->volume_status), MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) { bv->bv_status = BIOC_SVREBUILD; bv->bv_percent = dev->percent; } else bv->bv_status = BIOC_SVDEGRADED; break; case MPII_CFG_RAID_VOL_0_STATE_FAILED: bv->bv_status = BIOC_SVOFFLINE; break; case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: bv->bv_status = BIOC_SVBUILDING; break; case MPII_CFG_RAID_VOL_0_STATE_MISSING: default: bv->bv_status = BIOC_SVINVALID; break; } switch (vpg->volume_type) { case MPII_CFG_RAID_VOL_0_TYPE_RAID0: bv->bv_level = 0; break; case MPII_CFG_RAID_VOL_0_TYPE_RAID1: bv->bv_level = 1; break; case MPII_CFG_RAID_VOL_0_TYPE_RAID1E: case MPII_CFG_RAID_VOL_0_TYPE_RAID10: bv->bv_level = 10; break; default: bv->bv_level = -1; } if ((rv = mpii_bio_hs(sc, NULL, 0, vpg->hot_spare_pool, &hcnt)) != 0) { free(vpg, M_TEMP); return (rv); } bv->bv_nodisk = vpg->num_phys_disks + hcnt; bv->bv_size = le64toh(vpg->max_lba) * le16toh(vpg->block_size); periph = scsipi_lookup_periph(&sc->sc_chan, dev->slot, 0); if (periph != NULL) { if (periph->periph_dev == NULL) { snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s:%d", DEVNAME(sc), dev->slot); } else { strlcpy(bv->bv_dev, device_xname(periph->periph_dev), sizeof(bv->bv_dev)); } } free(vpg, M_TEMP); return (0); } static int mpii_ioctl_disk(struct mpii_softc *sc, struct bioc_disk *bd) { struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_cfg_raid_vol_pg0_physdisk *pd; struct mpii_cfg_hdr hdr; struct mpii_device *dev; size_t pagelen; u_int16_t volh; u_int8_t dn; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_disk %d/%d\n", DEVNAME(sc), bd->bd_volid, bd->bd_diskid); if ((dev = mpii_find_vol(sc, bd->bd_volid)) == NULL) return (ENODEV); volh = dev->dev_handle; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { printf("%s: unable to fetch header for raid volume page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (vpg == NULL) { printf("%s: unable to allocate space for raid " "volume page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr, 1, vpg, pagelen) != 0) { printf("%s: unable to fetch raid volume page 0\n", DEVNAME(sc)); free(vpg, M_TEMP); return (EINVAL); } if (bd->bd_diskid >= vpg->num_phys_disks) { int nvdsk = vpg->num_phys_disks; int hsmap = vpg->hot_spare_pool; free(vpg, M_TEMP); return (mpii_bio_hs(sc, bd, nvdsk, hsmap, NULL)); } pd = (struct mpii_cfg_raid_vol_pg0_physdisk *)(vpg + 1) + bd->bd_diskid; dn = pd->phys_disk_num; free(vpg, M_TEMP); return (mpii_bio_disk(sc, bd, dn)); } static int mpii_bio_hs(struct mpii_softc *sc, struct bioc_disk *bd, int nvdsk, int hsmap, int *hscnt) { struct mpii_cfg_raid_config_pg0 *cpg; struct mpii_raid_config_element *el; struct mpii_ecfg_hdr ehdr; size_t pagelen; int i, nhs = 0; if (bd) { DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs %d\n", DEVNAME(sc), bd->bd_diskid - nvdsk); } else { DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs\n", DEVNAME(sc)); } if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_CONFIG, 0, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, MPII_PG_EXTENDED, &ehdr) != 0) { printf("%s: unable to fetch header for raid config page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = le16toh(ehdr.ext_page_length) * 4; cpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (cpg == NULL) { printf("%s: unable to allocate space for raid config page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_req_cfg_page(sc, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, MPII_PG_EXTENDED, &ehdr, 1, cpg, pagelen) != 0) { printf("%s: unable to fetch raid config page 0\n", DEVNAME(sc)); free(cpg, M_TEMP); return (EINVAL); } el = (struct mpii_raid_config_element *)(cpg + 1); for (i = 0; i < cpg->num_elements; i++, el++) { if (ISSET(le16toh(el->element_flags), MPII_RAID_CONFIG_ELEMENT_FLAG_HSP_PHYS_DISK) && el->hot_spare_pool == hsmap) { /* * diskid comparison is based on the idea that all * disks are counted by the bio(4) in sequence, thus * substracting the number of disks in the volume * from the diskid yields us a "relative" hotspare * number, which is good enough for us. */ if (bd != NULL && bd->bd_diskid == nhs + nvdsk) { u_int8_t dn = el->phys_disk_num; free(cpg, M_TEMP); return (mpii_bio_disk(sc, bd, dn)); } nhs++; } } if (hscnt) *hscnt = nhs; free(cpg, M_TEMP); return (0); } static int mpii_bio_disk(struct mpii_softc *sc, struct bioc_disk *bd, u_int8_t dn) { struct mpii_cfg_raid_physdisk_pg0 *ppg; struct mpii_cfg_hdr hdr; struct mpii_device *dev; int len; DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_disk %d\n", DEVNAME(sc), bd->bd_diskid); ppg = malloc(sizeof(*ppg), M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (ppg == NULL) { printf("%s: unable to allocate space for raid physical disk " "page 0\n", DEVNAME(sc)); return (ENOMEM); } hdr.page_version = 0; hdr.page_length = sizeof(*ppg) / 4; hdr.page_number = 0; hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_RAID_PD; if (mpii_req_cfg_page(sc, MPII_CFG_RAID_PHYS_DISK_ADDR_NUMBER | dn, 0, &hdr, 1, ppg, sizeof(*ppg)) != 0) { printf("%s: unable to fetch raid drive page 0\n", DEVNAME(sc)); free(ppg, M_TEMP); return (EINVAL); } bd->bd_target = ppg->phys_disk_num; if ((dev = mpii_find_dev(sc, le16toh(ppg->dev_handle))) == NULL) { bd->bd_status = BIOC_SDINVALID; free(ppg, M_TEMP); return (0); } switch (ppg->phys_disk_state) { case MPII_CFG_RAID_PHYDISK_0_STATE_ONLINE: case MPII_CFG_RAID_PHYDISK_0_STATE_OPTIMAL: bd->bd_status = BIOC_SDONLINE; break; case MPII_CFG_RAID_PHYDISK_0_STATE_OFFLINE: if (ppg->offline_reason == MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILED || ppg->offline_reason == MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILEDREQ) bd->bd_status = BIOC_SDFAILED; else bd->bd_status = BIOC_SDOFFLINE; break; case MPII_CFG_RAID_PHYDISK_0_STATE_DEGRADED: bd->bd_status = BIOC_SDFAILED; break; case MPII_CFG_RAID_PHYDISK_0_STATE_REBUILDING: bd->bd_status = BIOC_SDREBUILD; break; case MPII_CFG_RAID_PHYDISK_0_STATE_HOTSPARE: bd->bd_status = BIOC_SDHOTSPARE; break; case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCONFIGURED: bd->bd_status = BIOC_SDUNUSED; break; case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCOMPATIBLE: default: bd->bd_status = BIOC_SDINVALID; break; } bd->bd_size = le64toh(ppg->dev_max_lba) * le16toh(ppg->block_size); strnvisx(bd->bd_vendor, sizeof(bd->bd_vendor), ppg->vendor_id, sizeof(ppg->vendor_id), VIS_TRIM|VIS_SAFE|VIS_OCTAL); len = strlen(bd->bd_vendor); bd->bd_vendor[len] = ' '; strnvisx(&bd->bd_vendor[len + 1], sizeof(ppg->vendor_id) - len - 1, ppg->product_id, sizeof(ppg->product_id), VIS_TRIM|VIS_SAFE|VIS_OCTAL); strnvisx(bd->bd_serial, sizeof(bd->bd_serial), ppg->serial, sizeof(ppg->serial), VIS_TRIM|VIS_SAFE|VIS_OCTAL); free(ppg, M_TEMP); return (0); } static struct mpii_device * mpii_find_vol(struct mpii_softc *sc, int volid) { struct mpii_device *dev = NULL; if (sc->sc_vd_id_low + volid >= sc->sc_max_devices) return (NULL); dev = sc->sc_devs[sc->sc_vd_id_low + volid]; if (dev && ISSET(dev->flags, MPII_DF_VOLUME)) return (dev); return (NULL); } /* * Non-sleeping lightweight version of the mpii_ioctl_vol */ static int mpii_bio_volstate(struct mpii_softc *sc, struct bioc_vol *bv) { struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_cfg_hdr hdr; struct mpii_device *dev = NULL; size_t pagelen; u_int16_t volh; if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) return (ENODEV); volh = dev->dev_handle; if (mpii_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, &hdr) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to fetch header for raid " "volume page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_NOWAIT | M_ZERO); if (vpg == NULL) { DNPRINTF(MPII_D_MISC, "%s: unable to allocate space for raid " "volume page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, &hdr, 1, vpg, pagelen) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to fetch raid volume " "page 0\n", DEVNAME(sc)); free(vpg, M_TEMP); return (EINVAL); } switch (vpg->volume_state) { case MPII_CFG_RAID_VOL_0_STATE_ONLINE: case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: bv->bv_status = BIOC_SVONLINE; break; case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: if (ISSET(le32toh(vpg->volume_status), MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) bv->bv_status = BIOC_SVREBUILD; else bv->bv_status = BIOC_SVDEGRADED; break; case MPII_CFG_RAID_VOL_0_STATE_FAILED: bv->bv_status = BIOC_SVOFFLINE; break; case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: bv->bv_status = BIOC_SVBUILDING; break; case MPII_CFG_RAID_VOL_0_STATE_MISSING: default: bv->bv_status = BIOC_SVINVALID; break; } free(vpg, M_TEMP); return (0); } static int mpii_create_sensors(struct mpii_softc *sc) { int i, rv; sc->sc_sme = sysmon_envsys_create(); sc->sc_sensors = malloc(sizeof(envsys_data_t) * sc->sc_vd_count, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->sc_sensors == NULL) { aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n"); return (1); } for (i = 0; i < sc->sc_vd_count; i++) { sc->sc_sensors[i].units = ENVSYS_DRIVE; sc->sc_sensors[i].state = ENVSYS_SINVALID; sc->sc_sensors[i].value_cur = ENVSYS_DRIVE_EMPTY; /* Enable monitoring for drive state changes */ sc->sc_sensors[i].flags |= ENVSYS_FMONSTCHANGED; /* logical drives */ snprintf(sc->sc_sensors[i].desc, sizeof(sc->sc_sensors[i].desc), "%s:%d", DEVNAME(sc), i); if ((rv = sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensors[i])) != 0) { aprint_error_dev(sc->sc_dev, "unable to attach sensor (rv = %d)\n", rv); goto out; } } sc->sc_sme->sme_name = DEVNAME(sc); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = mpii_refresh_sensors; rv = sysmon_envsys_register(sc->sc_sme); if (rv != 0) { aprint_error_dev(sc->sc_dev, "unable to register with sysmon (rv = %d)\n", rv); goto out; } return 0; out: free(sc->sc_sensors, M_DEVBUF); sysmon_envsys_destroy(sc->sc_sme); sc->sc_sme = NULL; return EINVAL; } static int mpii_destroy_sensors(struct mpii_softc *sc) { if (sc->sc_sme == NULL) return 0; sysmon_envsys_unregister(sc->sc_sme); sc->sc_sme = NULL; free(sc->sc_sensors, M_DEVBUF); return 0; } static void mpii_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata) { struct mpii_softc *sc = sc = sme->sme_cookie; struct bioc_vol bv; int s, error; bzero(&bv, sizeof(bv)); bv.bv_volid = edata->sensor; KERNEL_LOCK(1, curlwp); s = splbio(); error = mpii_bio_volstate(sc, &bv); splx(s); KERNEL_UNLOCK_ONE(curlwp); if (error) bv.bv_status = BIOC_SVINVALID; bio_vol_to_envsys(edata, &bv); } #endif /* NBIO > 0 */