%{ /* ** Originally written by Steven M. Bellovin while ** at the University of North Carolina at Chapel Hill. Later tweaked by ** a couple of people on Usenet. Completely overhauled by Rich $alz ** and Jim Berets in August, 1990; ** ** This grammar has 10 shift/reduce conflicts. ** ** This code is in the public domain and has no copyright. */ /* SUPPRESS 287 on yaccpar_sccsid *//* Unused static variable */ /* SUPPRESS 288 on yyerrlab *//* Label unused */ #include #ifdef __RCSID __RCSID("$NetBSD: parsedate.y,v 1.29 2016/06/26 07:09:24 kre Exp $"); #endif #include #include #include #include #include #include #include /* NOTES on rebuilding parsedate.c (particularly for inclusion in CVS releases): We don't want to mess with all the portability hassles of alloca. In particular, most (all?) versions of bison will use alloca in their parser. If bison works on your system (e.g. it should work with gcc), then go ahead and use it, but the more general solution is to use byacc instead of bison, which should generate a portable parser. I played with adding "#define alloca dont_use_alloca", to give an error if the parser generator uses alloca (and thus detect unportable parsedate.c's), but that seems to cause as many problems as it solves. */ #define EPOCH 1970 #define HOUR(x) ((time_t)((x) * 60)) #define SECSPERDAY (24L * 60L * 60L) #define MAXREL 16 /* hours mins secs days weeks months years - maybe twice each ...*/ #define USE_LOCAL_TIME 99999 /* special case for Convert() and yyTimezone */ /* ** An entry in the lexical lookup table. */ typedef struct _TABLE { const char *name; int type; time_t value; } TABLE; /* ** Daylight-savings mode: on, off, or not yet known. */ typedef enum _DSTMODE { DSTon, DSToff, DSTmaybe } DSTMODE; /* ** Meridian: am, pm, or 24-hour style. */ typedef enum _MERIDIAN { MERam, MERpm, MER24 } MERIDIAN; struct dateinfo { DSTMODE yyDSTmode; /* DST on/off/maybe */ time_t yyDayOrdinal; time_t yyDayNumber; int yyHaveDate; int yyHaveFullYear; /* if true, year is not abbreviated. */ /* if false, need to call AdjustYear(). */ int yyHaveDay; int yyHaveRel; int yyHaveTime; int yyHaveZone; time_t yyTimezone; /* Timezone as minutes ahead/east of UTC */ time_t yyDay; /* Day of month [1-31] */ time_t yyHour; /* Hour of day [0-24] or [1-12] */ time_t yyMinutes; /* Minute of hour [0-59] */ time_t yyMonth; /* Month of year [1-12] */ time_t yySeconds; /* Second of minute [0-60] */ time_t yyYear; /* Year, see also yyHaveFullYear */ MERIDIAN yyMeridian; /* Interpret yyHour as AM/PM/24 hour clock */ struct { time_t yyRelVal; int yyRelMonth; } yyRel[MAXREL]; }; %} %union { time_t Number; enum _MERIDIAN Meridian; } %token tAGO tDAY tDAYZONE tID tMERIDIAN tMINUTE_UNIT tMONTH tMONTH_UNIT %token tSEC_UNIT tSNUMBER tUNUMBER tZONE tDST AT_SIGN tTIME %type tDAY tDAYZONE tMINUTE_UNIT tMONTH tMONTH_UNIT %type tSEC_UNIT tSNUMBER tUNUMBER tZONE tTIME %type tMERIDIAN %type at_number %type o_merid %parse-param { struct dateinfo *param } %parse-param { const char **yyInput } %lex-param { const char **yyInput } %pure-parser %% spec: /* empty */ | spec item ; item: time { param->yyHaveTime++; } | time_numericzone { param->yyHaveTime++; param->yyHaveZone++; } | zone { param->yyHaveZone++; } | date { param->yyHaveDate++; } | day { param->yyHaveDay++; } | rel { param->yyHaveRel++; } | cvsstamp { param->yyHaveTime++; param->yyHaveDate++; param->yyHaveZone++; } | epochdate { param->yyHaveTime++; param->yyHaveDate++; param->yyHaveZone++; } | number ; cvsstamp: tUNUMBER '.' tUNUMBER '.' tUNUMBER '.' tUNUMBER '.' tUNUMBER '.' tUNUMBER { param->yyYear = $1; if (param->yyYear < 100) { param->yyYear += 1900; } param->yyHaveFullYear = 1; param->yyMonth = $3; param->yyDay = $5; param->yyHour = $7; param->yyMinutes = $9; param->yySeconds = $11; param->yyDSTmode = DSToff; param->yyTimezone = 0; } ; epochdate: AT_SIGN at_number { time_t when = $2; struct tm tmbuf; if (gmtime_r(&when, &tmbuf) != NULL) { param->yyYear = tmbuf.tm_year + 1900; param->yyMonth = tmbuf.tm_mon + 1; param->yyDay = tmbuf.tm_mday; param->yyHour = tmbuf.tm_hour; param->yyMinutes = tmbuf.tm_min; param->yySeconds = tmbuf.tm_sec; } else { param->yyYear = EPOCH; param->yyMonth = 1; param->yyDay = 1; param->yyHour = 0; param->yyMinutes = 0; param->yySeconds = 0; } param->yyHaveFullYear = 1; param->yyDSTmode = DSToff; param->yyTimezone = 0; } ; at_number: tUNUMBER | tSNUMBER ; time: tUNUMBER tMERIDIAN { param->yyHour = $1; param->yyMinutes = 0; param->yySeconds = 0; param->yyMeridian = $2; } | tUNUMBER ':' tUNUMBER o_merid { param->yyHour = $1; param->yyMinutes = $3; param->yySeconds = 0; param->yyMeridian = $4; } | tUNUMBER ':' tUNUMBER ':' tUNUMBER o_merid { param->yyHour = $1; param->yyMinutes = $3; param->yySeconds = $5; param->yyMeridian = $6; } | tUNUMBER ':' tUNUMBER ':' tUNUMBER '.' tUNUMBER { param->yyHour = $1; param->yyMinutes = $3; param->yySeconds = $5; param->yyMeridian = MER24; /* XXX: Do nothing with millis */ } | tTIME { param->yyHour = $1; param->yyMinutes = 0; param->yySeconds = 0; param->yyMeridian = MER24; /* Tues midnight --> Weds 00:00, midnight Tues -> Tues 00:00 */ if ($1 == 0 && param->yyHaveDay) param->yyDayNumber++; } ; time_numericzone: tUNUMBER ':' tUNUMBER tSNUMBER { param->yyHour = $1; param->yyMinutes = $3; param->yyMeridian = MER24; param->yyDSTmode = DSToff; param->yyTimezone = - ($4 % 100 + ($4 / 100) * 60); } | tUNUMBER ':' tUNUMBER ':' tUNUMBER tSNUMBER { param->yyHour = $1; param->yyMinutes = $3; param->yySeconds = $5; param->yyMeridian = MER24; param->yyDSTmode = DSToff; param->yyTimezone = - ($6 % 100 + ($6 / 100) * 60); } ; zone: tZONE { param->yyTimezone = $1; param->yyDSTmode = DSToff; } | tDAYZONE { param->yyTimezone = $1; param->yyDSTmode = DSTon; } | tZONE tDST { param->yyTimezone = $1; param->yyDSTmode = DSTon; } ; day: tDAY { param->yyDayOrdinal = 1; param->yyDayNumber = $1; } | tDAY ',' { param->yyDayOrdinal = 1; param->yyDayNumber = $1; } | tUNUMBER tDAY { param->yyDayOrdinal = $1; param->yyDayNumber = $2; } ; date: tUNUMBER '/' tUNUMBER { param->yyMonth = $1; param->yyDay = $3; } | tUNUMBER '/' tUNUMBER '/' tUNUMBER { if ($1 >= 100) { param->yyYear = $1; param->yyMonth = $3; param->yyDay = $5; } else { param->yyMonth = $1; param->yyDay = $3; param->yyYear = $5; } } | tUNUMBER tSNUMBER tSNUMBER { /* ISO 8601 format. yyyy-mm-dd. */ param->yyYear = $1; param->yyHaveFullYear = 1; param->yyMonth = -$2; param->yyDay = -$3; } | tUNUMBER tMONTH tSNUMBER { /* e.g. 17-JUN-1992. */ param->yyDay = $1; param->yyMonth = $2; param->yyYear = -$3; } | tMONTH tUNUMBER { param->yyMonth = $1; param->yyDay = $2; } | tMONTH tUNUMBER ',' tUNUMBER { param->yyMonth = $1; param->yyDay = $2; param->yyYear = $4; } | tUNUMBER tMONTH { param->yyMonth = $2; param->yyDay = $1; } | tUNUMBER tMONTH tUNUMBER { param->yyMonth = $2; if ($1 < 35) { param->yyDay = $1; param->yyYear = $3; } else { param->yyDay = $3; param->yyYear = $1; } } ; rel: relunit | relunit tAGO { param->yyRel[param->yyHaveRel].yyRelVal = -param->yyRel[param->yyHaveRel].yyRelVal; } ; relunit: tUNUMBER tMINUTE_UNIT { RelVal(param, $1 * $2 * 60L, 0); } | tSNUMBER tMINUTE_UNIT { RelVal(param, $1 * $2 * 60L, 0); } | tMINUTE_UNIT { RelVal(param, $1 * 60L, 0); } | tSNUMBER tSEC_UNIT { RelVal(param, $1, 0); } | tUNUMBER tSEC_UNIT { RelVal(param, $1, 0); } | tSEC_UNIT { RelVal(param, 1L, 0); } | tSNUMBER tMONTH_UNIT { RelVal(param, $1 * $2, 1); } | tUNUMBER tMONTH_UNIT { RelVal(param, $1 * $2, 1); } | tMONTH_UNIT { RelVal(param, $1, 1); } ; number: tUNUMBER { if (param->yyHaveTime && param->yyHaveDate && !param->yyHaveRel) { param->yyYear = $1; } else { if ($1 > 10000) { param->yyHaveDate++; param->yyDay = ($1)%100; param->yyMonth = ($1/100)%100; param->yyYear = $1/10000; } else { param->yyHaveTime++; if ($1 < 100) { param->yyHour = $1; param->yyMinutes = 0; } else { param->yyHour = $1 / 100; param->yyMinutes = $1 % 100; } param->yySeconds = 0; param->yyMeridian = MER24; } } } ; o_merid: /* empty */ { $$ = MER24; } | tMERIDIAN { $$ = $1; } ; %% static short DaysInMonth[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; /* * works with tm.tm_year (ie: rel to 1900) */ #define isleap(yr) (((yr) & 3) == 0 && (((yr) % 100) != 0 || \ ((1900+(yr)) % 400) == 0)) /* Month and day table. */ static const TABLE MonthDayTable[] = { { "january", tMONTH, 1 }, { "february", tMONTH, 2 }, { "march", tMONTH, 3 }, { "april", tMONTH, 4 }, { "may", tMONTH, 5 }, { "june", tMONTH, 6 }, { "july", tMONTH, 7 }, { "august", tMONTH, 8 }, { "september", tMONTH, 9 }, { "sept", tMONTH, 9 }, { "october", tMONTH, 10 }, { "november", tMONTH, 11 }, { "december", tMONTH, 12 }, { "sunday", tDAY, 0 }, { "su", tDAY, 0 }, { "monday", tDAY, 1 }, { "mo", tDAY, 1 }, { "tuesday", tDAY, 2 }, { "tues", tDAY, 2 }, { "tu", tDAY, 2 }, { "wednesday", tDAY, 3 }, { "wednes", tDAY, 3 }, { "weds", tDAY, 3 }, { "we", tDAY, 3 }, { "thursday", tDAY, 4 }, { "thurs", tDAY, 4 }, { "thur", tDAY, 4 }, { "th", tDAY, 4 }, { "friday", tDAY, 5 }, { "fr", tDAY, 5 }, { "saturday", tDAY, 6 }, { "sa", tDAY, 6 }, { NULL, 0, 0 } }; /* Time units table. */ static const TABLE UnitsTable[] = { { "year", tMONTH_UNIT, 12 }, { "month", tMONTH_UNIT, 1 }, { "fortnight", tMINUTE_UNIT, 14 * 24 * 60 }, { "week", tMINUTE_UNIT, 7 * 24 * 60 }, { "day", tMINUTE_UNIT, 1 * 24 * 60 }, { "hour", tMINUTE_UNIT, 60 }, { "minute", tMINUTE_UNIT, 1 }, { "min", tMINUTE_UNIT, 1 }, { "second", tSEC_UNIT, 1 }, { "sec", tSEC_UNIT, 1 }, { NULL, 0, 0 } }; /* Assorted relative-time words. */ static const TABLE OtherTable[] = { { "tomorrow", tMINUTE_UNIT, 1 * 24 * 60 }, { "yesterday", tMINUTE_UNIT, -1 * 24 * 60 }, { "today", tMINUTE_UNIT, 0 }, { "now", tMINUTE_UNIT, 0 }, { "last", tUNUMBER, -1 }, { "this", tMINUTE_UNIT, 0 }, { "next", tUNUMBER, 2 }, { "first", tUNUMBER, 1 }, { "one", tUNUMBER, 1 }, /* { "second", tUNUMBER, 2 }, */ { "two", tUNUMBER, 2 }, { "third", tUNUMBER, 3 }, { "three", tUNUMBER, 3 }, { "fourth", tUNUMBER, 4 }, { "four", tUNUMBER, 4 }, { "fifth", tUNUMBER, 5 }, { "five", tUNUMBER, 5 }, { "sixth", tUNUMBER, 6 }, { "six", tUNUMBER, 6 }, { "seventh", tUNUMBER, 7 }, { "seven", tUNUMBER, 7 }, { "eighth", tUNUMBER, 8 }, { "eight", tUNUMBER, 8 }, { "ninth", tUNUMBER, 9 }, { "nine", tUNUMBER, 9 }, { "tenth", tUNUMBER, 10 }, { "ten", tUNUMBER, 10 }, { "eleventh", tUNUMBER, 11 }, { "eleven", tUNUMBER, 11 }, { "twelfth", tUNUMBER, 12 }, { "twelve", tUNUMBER, 12 }, { "ago", tAGO, 1 }, { NULL, 0, 0 } }; /* The timezone table. */ /* Some of these are commented out because a time_t can't store a float. */ static const TABLE TimezoneTable[] = { { "gmt", tZONE, HOUR( 0) }, /* Greenwich Mean */ { "ut", tZONE, HOUR( 0) }, /* Universal (Coordinated) */ { "utc", tZONE, HOUR( 0) }, { "wet", tZONE, HOUR( 0) }, /* Western European */ { "bst", tDAYZONE, HOUR( 0) }, /* British Summer */ { "wat", tZONE, HOUR( 1) }, /* West Africa */ { "at", tZONE, HOUR( 2) }, /* Azores */ #if 0 /* For completeness. BST is also British Summer, and GST is * also Guam Standard. */ { "bst", tZONE, HOUR( 3) }, /* Brazil Standard */ { "gst", tZONE, HOUR( 3) }, /* Greenland Standard */ #endif { "nft", tZONE, HOUR(3.5) }, /* Newfoundland */ { "nst", tZONE, HOUR(3.5) }, /* Newfoundland Standard */ { "ndt", tDAYZONE, HOUR(3.5) }, /* Newfoundland Daylight */ { "ast", tZONE, HOUR( 4) }, /* Atlantic Standard */ { "adt", tDAYZONE, HOUR( 4) }, /* Atlantic Daylight */ { "est", tZONE, HOUR( 5) }, /* Eastern Standard */ { "edt", tDAYZONE, HOUR( 5) }, /* Eastern Daylight */ { "cst", tZONE, HOUR( 6) }, /* Central Standard */ { "cdt", tDAYZONE, HOUR( 6) }, /* Central Daylight */ { "mst", tZONE, HOUR( 7) }, /* Mountain Standard */ { "mdt", tDAYZONE, HOUR( 7) }, /* Mountain Daylight */ { "pst", tZONE, HOUR( 8) }, /* Pacific Standard */ { "pdt", tDAYZONE, HOUR( 8) }, /* Pacific Daylight */ { "yst", tZONE, HOUR( 9) }, /* Yukon Standard */ { "ydt", tDAYZONE, HOUR( 9) }, /* Yukon Daylight */ { "hst", tZONE, HOUR(10) }, /* Hawaii Standard */ { "hdt", tDAYZONE, HOUR(10) }, /* Hawaii Daylight */ { "cat", tZONE, HOUR(10) }, /* Central Alaska */ { "ahst", tZONE, HOUR(10) }, /* Alaska-Hawaii Standard */ { "nt", tZONE, HOUR(11) }, /* Nome */ { "idlw", tZONE, HOUR(12) }, /* International Date Line West */ { "cet", tZONE, -HOUR(1) }, /* Central European */ { "met", tZONE, -HOUR(1) }, /* Middle European */ { "mewt", tZONE, -HOUR(1) }, /* Middle European Winter */ { "mest", tDAYZONE, -HOUR(1) }, /* Middle European Summer */ { "swt", tZONE, -HOUR(1) }, /* Swedish Winter */ { "sst", tDAYZONE, -HOUR(1) }, /* Swedish Summer */ { "fwt", tZONE, -HOUR(1) }, /* French Winter */ { "fst", tDAYZONE, -HOUR(1) }, /* French Summer */ { "eet", tZONE, -HOUR(2) }, /* Eastern Europe, USSR Zone 1 */ { "bt", tZONE, -HOUR(3) }, /* Baghdad, USSR Zone 2 */ { "it", tZONE, -HOUR(3.5) },/* Iran */ { "zp4", tZONE, -HOUR(4) }, /* USSR Zone 3 */ { "zp5", tZONE, -HOUR(5) }, /* USSR Zone 4 */ { "ist", tZONE, -HOUR(5.5) },/* Indian Standard */ { "zp6", tZONE, -HOUR(6) }, /* USSR Zone 5 */ #if 0 /* For completeness. NST is also Newfoundland Stanard, and SST is * also Swedish Summer. */ { "nst", tZONE, -HOUR(6.5) },/* North Sumatra */ { "sst", tZONE, -HOUR(7) }, /* South Sumatra, USSR Zone 6 */ #endif /* 0 */ { "ict", tZONE, -HOUR(7) }, /* Indo China Time (Thai) */ #if 0 /* this one looks to be bogus */ { "jt", tZONE, -HOUR(7.5) },/* Java (3pm in Cronusland!) */ #endif { "wast", tZONE, -HOUR(8) }, /* West Australian Standard */ { "awst", tZONE, -HOUR(8) }, /* West Australian Standard */ { "wadt", tDAYZONE, -HOUR(8) }, /* West Australian Daylight */ { "awdt", tDAYZONE, -HOUR(8) }, /* West Australian Daylight */ { "cct", tZONE, -HOUR(8) }, /* China Coast, USSR Zone 7 */ { "sgt", tZONE, -HOUR(8) }, /* Singapore */ { "hkt", tZONE, -HOUR(8) }, /* Hong Kong */ { "jst", tZONE, -HOUR(9) }, /* Japan Standard, USSR Zone 8 */ { "cast", tZONE, -HOUR(9.5) },/* Central Australian Standard */ { "acst", tZONE, -HOUR(9.5) },/* Central Australian Standard */ { "cadt", tDAYZONE, -HOUR(9.5) },/* Central Australian Daylight */ { "acdt", tDAYZONE, -HOUR(9.5) },/* Central Australian Daylight */ { "east", tZONE, -HOUR(10) }, /* Eastern Australian Standard */ { "aest", tZONE, -HOUR(10) }, /* Eastern Australian Standard */ { "eadt", tDAYZONE, -HOUR(10) }, /* Eastern Australian Daylight */ { "aedt", tDAYZONE, -HOUR(10) }, /* Eastern Australian Daylight */ { "gst", tZONE, -HOUR(10) }, /* Guam Standard, USSR Zone 9 */ { "nzt", tZONE, -HOUR(12) }, /* New Zealand */ { "nzst", tZONE, -HOUR(12) }, /* New Zealand Standard */ { "nzdt", tDAYZONE, -HOUR(12) }, /* New Zealand Daylight */ { "idle", tZONE, -HOUR(12) }, /* International Date Line East */ { NULL, 0, 0 } }; /* Military timezone table. */ static const TABLE MilitaryTable[] = { { "a", tZONE, HOUR( 1) }, { "b", tZONE, HOUR( 2) }, { "c", tZONE, HOUR( 3) }, { "d", tZONE, HOUR( 4) }, { "e", tZONE, HOUR( 5) }, { "f", tZONE, HOUR( 6) }, { "g", tZONE, HOUR( 7) }, { "h", tZONE, HOUR( 8) }, { "i", tZONE, HOUR( 9) }, { "k", tZONE, HOUR( 10) }, { "l", tZONE, HOUR( 11) }, { "m", tZONE, HOUR( 12) }, { "n", tZONE, HOUR(- 1) }, { "o", tZONE, HOUR(- 2) }, { "p", tZONE, HOUR(- 3) }, { "q", tZONE, HOUR(- 4) }, { "r", tZONE, HOUR(- 5) }, { "s", tZONE, HOUR(- 6) }, { "t", tZONE, HOUR(- 7) }, { "u", tZONE, HOUR(- 8) }, { "v", tZONE, HOUR(- 9) }, { "w", tZONE, HOUR(-10) }, { "x", tZONE, HOUR(-11) }, { "y", tZONE, HOUR(-12) }, { "z", tZONE, HOUR( 0) }, { NULL, 0, 0 } }; static const TABLE TimeNames[] = { { "midnight", tTIME, 0 }, { "mn", tTIME, 0 }, { "noon", tTIME, 12 }, { "midday", tTIME, 12 }, { NULL, 0, 0 } }; /* ARGSUSED */ static int yyerror(struct dateinfo *param, const char **inp, const char *s __unused) { return 0; } /* * Save a relative value, if it fits */ static void RelVal(struct dateinfo *param, time_t v, int type) { int i; if ((i = param->yyHaveRel) >= MAXREL) return; param->yyRel[i].yyRelMonth = type; param->yyRel[i].yyRelVal = v; } /* Adjust year from a value that might be abbreviated, to a full value. * e.g. convert 70 to 1970. * Input Year is either: * - A negative number, which means to use its absolute value (why?) * - A number from 0 to 99, which means a year from 1900 to 1999, or * - The actual year (>=100). * Returns the full year. */ static time_t AdjustYear(time_t Year) { /* XXX Y2K */ if (Year < 0) Year = -Year; if (Year < 70) Year += 2000; else if (Year < 100) Year += 1900; return Year; } static time_t Convert( time_t Month, /* month of year [1-12] */ time_t Day, /* day of month [1-31] */ time_t Year, /* year, not abbreviated in any way */ time_t Hours, /* Hour of day [0-24] */ time_t Minutes, /* Minute of hour [0-59] */ time_t Seconds, /* Second of minute [0-60] */ time_t Timezone, /* Timezone as minutes east of UTC, * or USE_LOCAL_TIME special case */ MERIDIAN Meridian, /* Hours are am/pm/24 hour clock */ DSTMODE DSTmode /* DST on/off/maybe */ ) { struct tm tm = {.tm_sec = 0}; struct tm otm; time_t result; tm.tm_sec = Seconds; tm.tm_min = Minutes; tm.tm_hour = Hours + (Meridian == MERpm ? 12 : 0); tm.tm_mday = Day; tm.tm_mon = Month - 1; tm.tm_year = Year - 1900; if (Timezone == USE_LOCAL_TIME) { switch (DSTmode) { case DSTon: tm.tm_isdst = 1; break; case DSToff: tm.tm_isdst = 0; break; default: tm.tm_isdst = -1; break; } otm = tm; result = mktime(&tm); } else { /* We rely on mktime_z(NULL, ...) working in UTC */ tm.tm_isdst = 0; /* hence cannot be summer time */ otm = tm; errno = 0; result = mktime_z(NULL, &tm); if (result != -1 || errno == 0) { result += Timezone * 60; if (DSTmode == DSTon) /* if specified sumer time */ result -= 3600; /* UTC is 1 hour earlier XXX */ } } #if PARSEDATE_DEBUG fprintf(stderr, "%s(M=%jd D=%jd Y=%jd H=%jd M=%jd S=%jd Z=%jd" " mer=%d DST=%d)", __func__, (intmax_t)Month, (intmax_t)Day, (intmax_t)Year, (intmax_t)Hours, (intmax_t)Minutes, (intmax_t)Seconds, (intmax_t)Timezone, (int)Meridian, (int)DSTmode); fprintf(stderr, " -> %jd", (intmax_t)result); fprintf(stderr, " %s", ctime(&result)); #endif #define TM_NE(fld) (otm.tm_ ## fld != tm.tm_ ## fld) if (TM_NE(year) || TM_NE(mon) || TM_NE(mday) || TM_NE(hour) || TM_NE(min) || TM_NE(sec)) { /* mktime() "corrected" our tm, so it must have been invalid */ result = -1; errno = EAGAIN; } #undef TM_NE return result; } static time_t DSTcorrect( time_t Start, time_t Future ) { time_t StartDay; time_t FutureDay; struct tm tm; if (localtime_r(&Start, &tm) == NULL) return -1; StartDay = (tm.tm_hour + 1) % 24; if (localtime_r(&Future, &tm) == NULL) return -1; FutureDay = (tm.tm_hour + 1) % 24; return (Future - Start) + (StartDay - FutureDay) * 60L * 60L; } static time_t RelativeDate( time_t Start, time_t DayOrdinal, time_t DayNumber ) { struct tm tm; time_t now; now = Start; if (localtime_r(&now, &tm) == NULL) return -1; now += SECSPERDAY * ((DayNumber - tm.tm_wday + 7) % 7); now += 7 * SECSPERDAY * (DayOrdinal <= 0 ? DayOrdinal : DayOrdinal - 1); return DSTcorrect(Start, now); } static time_t RelativeMonth( time_t Start, time_t RelMonth, time_t Timezone ) { struct tm tm; time_t Month; time_t Then; int Day; if (RelMonth == 0) return 0; /* * It doesn't matter what timezone we use to do this computation, * as long as we use the same one to reassemble the time that we * used to disassemble it. So always use localtime and mktime. In * particular, don't use Convert() to reassemble, because it will * not only reassemble with the wrong timezone but it will also * fail if we do e.g. three months from March 31 yielding July 1. */ (void)Timezone; if (localtime_r(&Start, &tm) == NULL) return -1; Month = 12 * (tm.tm_year + 1900) + tm.tm_mon + RelMonth; tm.tm_year = (Month / 12) - 1900; tm.tm_mon = Month % 12; if (tm.tm_mday > (Day = DaysInMonth[tm.tm_mon] + ((tm.tm_mon==1) ? isleap(tm.tm_year) : 0))) tm.tm_mday = Day; errno = 0; Then = mktime(&tm); if (Then == -1 && errno != 0) return -1; return DSTcorrect(Start, Then); } static int LookupWord(YYSTYPE *yylval, char *buff) { register char *p; register char *q; register const TABLE *tp; int i; int abbrev; /* Make it lowercase. */ for (p = buff; *p; p++) if (isupper((unsigned char)*p)) *p = tolower((unsigned char)*p); if (strcmp(buff, "am") == 0 || strcmp(buff, "a.m.") == 0) { yylval->Meridian = MERam; return tMERIDIAN; } if (strcmp(buff, "pm") == 0 || strcmp(buff, "p.m.") == 0) { yylval->Meridian = MERpm; return tMERIDIAN; } /* See if we have an abbreviation for a month. */ if (strlen(buff) == 3) abbrev = 1; else if (strlen(buff) == 4 && buff[3] == '.') { abbrev = 1; buff[3] = '\0'; } else abbrev = 0; for (tp = MonthDayTable; tp->name; tp++) { if (abbrev) { if (strncmp(buff, tp->name, 3) == 0) { yylval->Number = tp->value; return tp->type; } } else if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } } for (tp = TimezoneTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } if (strcmp(buff, "dst") == 0) return tDST; for (tp = TimeNames; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } for (tp = UnitsTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } /* Strip off any plural and try the units table again. */ i = strlen(buff) - 1; if (buff[i] == 's') { buff[i] = '\0'; for (tp = UnitsTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } buff[i] = 's'; /* Put back for "this" in OtherTable. */ } for (tp = OtherTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } /* Military timezones. */ if (buff[1] == '\0' && isalpha((unsigned char)*buff)) { for (tp = MilitaryTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } } /* Drop out any periods and try the timezone table again. */ for (i = 0, p = q = buff; *q; q++) if (*q != '.') *p++ = *q; else i++; *p = '\0'; if (i) for (tp = TimezoneTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval->Number = tp->value; return tp->type; } return tID; } static int yylex(YYSTYPE *yylval, const char **yyInput) { register char c; register char *p; char buff[20]; int Count; int sign; const char *inp = *yyInput; for ( ; ; ) { while (isspace((unsigned char)*inp)) inp++; if (isdigit((unsigned char)(c = *inp)) || c == '-' || c == '+') { if (c == '-' || c == '+') { sign = c == '-' ? -1 : 1; if (!isdigit((unsigned char)*++inp)) /* skip the '-' sign */ continue; } else sign = 0; for (yylval->Number = 0; isdigit((unsigned char)(c = *inp++)); ) yylval->Number = 10 * yylval->Number + c - '0'; if (sign < 0) yylval->Number = -yylval->Number; *yyInput = --inp; return sign ? tSNUMBER : tUNUMBER; } if (isalpha((unsigned char)c)) { for (p = buff; isalpha((unsigned char)(c = *inp++)) || c == '.'; ) if (p < &buff[sizeof buff - 1]) *p++ = c; *p = '\0'; *yyInput = --inp; return LookupWord(yylval, buff); } if (c == '@') { *yyInput = ++inp; return AT_SIGN; } if (c != '(') { *yyInput = ++inp; return c; } Count = 0; do { c = *inp++; if (c == '\0') return c; if (c == '(') Count++; else if (c == ')') Count--; } while (Count > 0); } } #define TM_YEAR_ORIGIN 1900 time_t parsedate(const char *p, const time_t *now, const int *zone) { struct tm local, *tm; time_t nowt; int zonet; time_t Start; time_t tod, rm; struct dateinfo param; int saved_errno; int i; saved_errno = errno; errno = 0; if (now == NULL) { now = &nowt; (void)time(&nowt); } if (zone == NULL) { zone = &zonet; zonet = USE_LOCAL_TIME; if ((tm = localtime_r(now, &local)) == NULL) return -1; } else { /* * Should use the specified zone, not localtime. * Fake it using gmtime and arithmetic. * This is good enough because we use only the year/month/day, * not other fields of struct tm. */ time_t fake = *now + (*zone * 60); if ((tm = gmtime_r(&fake, &local)) == NULL) return -1; } param.yyYear = tm->tm_year + 1900; param.yyMonth = tm->tm_mon + 1; param.yyDay = tm->tm_mday; param.yyTimezone = *zone; param.yyDSTmode = DSTmaybe; param.yyHour = 0; param.yyMinutes = 0; param.yySeconds = 0; param.yyMeridian = MER24; param.yyHaveDate = 0; param.yyHaveFullYear = 0; param.yyHaveDay = 0; param.yyHaveRel = 0; param.yyHaveTime = 0; param.yyHaveZone = 0; if (yyparse(¶m, &p) || param.yyHaveTime > 1 || param.yyHaveZone > 1 || param.yyHaveDate > 1 || param.yyHaveDay > 1) { errno = EINVAL; return -1; } if (param.yyHaveDate || param.yyHaveTime || param.yyHaveDay) { if (! param.yyHaveFullYear) { param.yyYear = AdjustYear(param.yyYear); param.yyHaveFullYear = 1; } errno = 0; Start = Convert(param.yyMonth, param.yyDay, param.yyYear, param.yyHour, param.yyMinutes, param.yySeconds, param.yyTimezone, param.yyMeridian, param.yyDSTmode); if (Start == -1 && errno != 0) return -1; } else { Start = *now; if (!param.yyHaveRel) Start -= ((tm->tm_hour * 60L + tm->tm_min) * 60L) + tm->tm_sec; } if (param.yyHaveRel > MAXREL) { errno = EINVAL; return -1; } for (i = 0; i < param.yyHaveRel; i++) { if (param.yyRel[i].yyRelMonth) { errno = 0; rm = RelativeMonth(Start, param.yyRel[i].yyRelVal, param.yyTimezone); if (rm == -1 && errno != 0) return -1; Start += rm; } else Start += param.yyRel[i].yyRelVal; } if (param.yyHaveDay && !param.yyHaveDate) { errno = 0; tod = RelativeDate(Start, param.yyDayOrdinal, param.yyDayNumber); if (tod == -1 && errno != 0) return -1; Start += tod; } errno = saved_errno; return Start; } #if defined(TEST) /* ARGSUSED */ int main(int ac, char *av[]) { char buff[128]; time_t d; (void)printf("Enter date, or blank line to exit.\n\t> "); (void)fflush(stdout); while (fgets(buff, sizeof(buff), stdin) && buff[0] != '\n') { errno = 0; d = parsedate(buff, NULL, NULL); if (d == -1 && errno != 0) (void)printf("Bad format - couldn't convert: %s\n", strerror(errno)); else (void)printf("%jd\t%s", (intmax_t)d, ctime(&d)); (void)printf("\t> "); (void)fflush(stdout); } exit(0); /* NOTREACHED */ } #endif /* defined(TEST) */