/* $NetBSD: if_ae.c,v 1.47 1996/10/11 00:24:49 christos Exp $ */ /* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. * * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided that * the above copyright and these terms are retained. Under no circumstances is * the author responsible for the proper functioning of this software, nor does * the author assume any responsibility for damages incurred with its use. * * Adapted for MacBSD by Brad Parker . * * Currently supports: * Apples NB Ethernet card * Interlan A310 Nubus Ethernet card * Cayman Systems GatorCard * Asante MacCon II/E */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include "nubus.h" #include #include "if_aereg.h" #define INTERFACE_NAME_LEN 32 /* * ae_softc: per line info and status */ struct ae_softc { struct device sc_dev; nubus_slot sc_slot; /* struct intrhand sc_ih; */ struct arpcom sc_arpcom;/* ethernet common */ char type_str[INTERFACE_NAME_LEN]; /* type string */ u_short type; /* interface type code */ u_char vendor; /* interface vendor */ u_char regs_rev; /* registers are reversed */ #define REG_MAP(sc, reg) ((sc)->regs_rev ? (0x0f-(reg))<<2 : (reg)<<2) #define NIC_GET(sc, reg) ((sc)->nic_addr[REG_MAP(sc, reg)]) #define NIC_PUT(sc, reg, val) ((sc)->nic_addr[REG_MAP(sc, reg)] = (val)) volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */ caddr_t rom_addr; /* on board prom address */ u_char cr_proto; /* values always set in CR */ caddr_t mem_start; /* shared memory start address */ caddr_t mem_end; /* shared memory end address */ u_long mem_size; /* total shared memory size */ caddr_t mem_ring; /* start of RX ring-buffer (in smem) */ u_char txb_cnt; /* Number of transmit buffers */ u_char txb_inuse; /* number of transmit buffers active */ u_char txb_new; /* pointer to where new buffer will be added */ u_char txb_next_tx; /* pointer to next buffer ready to xmit */ u_short txb_len[8]; /* buffered xmit buffer lengths */ u_char tx_page_start; /* first page of TX buffer area */ u_char rec_page_start; /* first page of RX ring-buffer */ u_char rec_page_stop; /* last page of RX ring-buffer */ u_char next_packet; /* pointer to next unread RX packet */ }; static int ae_id_card __P((nubus_slot *slot, struct ae_softc *sc)); static int ae_size_card_memory __P((struct ae_softc *sc)); int aeprobe __P((struct device *, void *, void *)); void aeattach __P((struct device *, struct device *, void *)); void aeintr __P((void *, int)); int aeioctl __P((struct ifnet *, u_long, caddr_t)); void aestart __P((struct ifnet *)); void aewatchdog __P((struct ifnet *)); void aereset __P((struct ae_softc *)); void aeinit __P((struct ae_softc *)); void aestop __P((struct ae_softc *)); void aeread __P((struct ae_softc *, caddr_t, int)); struct mbuf *aeget __P((struct ae_softc *, caddr_t, int)); #define inline /* XXX for debugging porpoises */ u_short ae_put __P((struct ae_softc *, struct mbuf *, caddr_t)); void ae_getmcaf __P((struct arpcom *, u_char *)); static inline void ae_rint __P((struct ae_softc *)); static inline void ae_xmit __P((struct ae_softc *)); static inline caddr_t ae_ring_copy __P(( struct ae_softc *, caddr_t, caddr_t, int)); struct cfattach ae_ca = { sizeof(struct ae_softc), aeprobe, aeattach }; struct cfdriver ae_cd = { NULL, "ae", DV_IFNET }; #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 static char zero = 0; /* * XXX These two should be moved to locore, and maybe changed to use shorts * instead of bytes. The reason for these is that bcopy and bzero use longs, * which the ethernet cards can't handle. */ void bszero __P((u_short *addr, int len)); static inline void word_copy __P((caddr_t a, caddr_t b, int len)); static inline void byte_copy __P((caddr_t a, caddr_t b, int len)); void bszero(u_short * addr, int len) { while (len--) *addr++ = 0; } /* * Memory copy, copies word at time. */ static inline void word_copy(a, b, len) caddr_t a, b; int len; { u_short *x = (u_short *) a, *y = (u_short *) b; len >>= 1; while (len--) *y++ = *x++; } /* * Memory copy, copies bytes at time. */ static inline void byte_copy(a, b, len) caddr_t a, b; int len; { while (len--) *b++ = *a++; } static int ae_id_card(slot, sc) nubus_slot *slot; struct ae_softc *sc; { nubus_dir dir; nubus_dirent dirent; nubus_type slottype; nubus_get_main_dir(slot, &dir); if (nubus_find_rsrc(slot, &dir, 0x80, &dirent) <= 0) return 0; nubus_get_dir_from_rsrc(slot, &dirent, &dir); if (nubus_find_rsrc(slot, &dir, NUBUS_RSRC_TYPE, &dirent) <= 0) return 0; if (nubus_get_ind_data(slot, &dirent, (caddr_t) &slottype, sizeof(nubus_type)) <= 0) return 0; if (slottype.category != NUBUS_CATEGORY_NETWORK) return 0; if (slottype.type != NUBUS_TYPE_ETHERNET) return 0; switch (slottype.drsw) { case NUBUS_DRSW_3COM: case NUBUS_DRSW_APPLE: case NUBUS_DRSW_TECHWORKS: sc->vendor = AE_VENDOR_APPLE; break; case NUBUS_DRSW_ASANTE: sc->vendor = AE_VENDOR_ASANTE; break; case NUBUS_DRSW_FARALLON: sc->vendor = AE_VENDOR_FARALLON; break; case NUBUS_DRSW_FOCUS: sc->vendor = AE_VENDOR_FOCUS; break; case NUBUS_DRSW_GATOR: switch (slottype.drhw) { default: case NUBUS_DRHW_INTERLAN: sc->vendor = AE_VENDOR_INTERLAN; break; case NUBUS_DRHW_KINETICS: sc->vendor = AE_VENDOR_DAYNA; break; } break; default: kprintf("Unknown ethernet drsw: %x\n", slottype.drsw); sc->vendor = AE_VENDOR_UNKNOWN; return 0; } strncpy(sc->type_str, nubus_get_card_name(slot), INTERFACE_NAME_LEN); sc->type_str[INTERFACE_NAME_LEN-1] = '\0'; return 1; } static int ae_size_card_memory(sc) struct ae_softc *sc; { u_short *p; u_short i1, i2, i3, i4; p = (u_short *) sc->mem_start; /* * very simple size memory, assuming it's installed in 8k * banks; also assume it will generally mirror in upper banks * if not installed. */ i1 = (8192 * 0) / 2; i2 = (8192 * 1) / 2; i3 = (8192 * 2) / 2; i4 = (8192 * 3) / 2; p[i1] = 0x1111; p[i2] = 0x2222; p[i3] = 0x3333; p[i4] = 0x4444; if (p[i1] == 0x1111 && p[i2] == 0x2222 && p[i3] == 0x3333 && p[i4] == 0x4444) return 8192 * 4; if ((p[i1] == 0x1111 && p[i2] == 0x2222) || (p[i1] == 0x3333 && p[i2] == 0x4444)) return 8192 * 2; if (p[i1] == 0x1111 || p[i1] == 0x4444) return 8192; return 0; } int aeprobe(parent, match, aux) struct device *parent; void *match, *aux; { struct ae_softc *sc = match; nubus_slot *nu = (nubus_slot *) aux; caddr_t addr; int i, memsize; int flags = 0; if (ae_id_card(nu, sc) <= 0) return 0; sc->regs_rev = 0; addr = (caddr_t) nu->virtual_base; switch (sc->vendor) { case AE_VENDOR_INTERLAN: sc->nic_addr = addr + GC_NIC_OFFSET; sc->rom_addr = addr + GC_ROM_OFFSET; sc->mem_start = addr + GC_DATA_OFFSET; if ((memsize = ae_size_card_memory(sc)) == 0) { kprintf("Failed to determine size of RAM.\n"); return 0; } /* reset the NIC chip */ *((caddr_t) addr + GC_RESET_OFFSET) = (char) zero; /* Get station address from on-board ROM */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 4); break; /* apple-compatible cards */ case AE_VENDOR_ASANTE: case AE_VENDOR_APPLE: sc->regs_rev = 1; sc->nic_addr = addr + AE_NIC_OFFSET; sc->rom_addr = addr + AE_ROM_OFFSET; sc->mem_start = addr + AE_DATA_OFFSET; if ((memsize = ae_size_card_memory(sc)) == 0) { kprintf("Failed to determine size of RAM.\n"); return (0); } /* Get station address from on-board ROM */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2); break; case AE_VENDOR_DAYNA: kprintf("We think we are a Dayna card, but "); sc->nic_addr = addr + DP_NIC_OFFSET; sc->rom_addr = addr + DP_ROM_OFFSET; sc->mem_start = addr + DP_DATA_OFFSET; memsize = 8192; /* Get station address from on-board ROM */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2); kprintf("it is dangerous to continue.\n"); return (0); /* Since we don't work yet... */ break; case AE_VENDOR_FARALLON: sc->regs_rev = 1; sc->rom_addr = addr + FE_ROM_OFFSET; sc->nic_addr = addr + AE_NIC_OFFSET; sc->mem_start = addr + AE_DATA_OFFSET; if ((memsize = ae_size_card_memory(sc)) == 0) { kprintf("Failed to determine size of RAM.\n"); return (0); } /* Get station address from on-board ROM */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i); break; case AE_VENDOR_FOCUS: kprintf("Focus EtherLAN card detected, but not supported.\n"); default: return (0); break; } sc->cr_proto = ED_CR_RD2; /* Allocate one xmit buffer if < 16k, two buffers otherwise. */ if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->tx_page_start = 0; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT); sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT); sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* Now zero memory and verify that it is clear. */ bszero((u_short *) sc->mem_start, memsize / 2); for (i = 0; i < memsize; ++i) if (sc->mem_start[i]) { kprintf("%s: failed to clear shared memory at %p - check configuration\n", sc->sc_dev.dv_xname, sc->mem_start + i); return (0); } bcopy(nu, &sc->sc_slot, sizeof(nubus_slot)); return (1); } /* * Install interface into kernel networking data structures */ void aeattach(parent, self, aux) struct device *parent, *self; void *aux; { struct ae_softc *sc = (void *) self; struct ifnet *ifp = &sc->sc_arpcom.ac_if; /* Set interface to stopped condition (reset). */ aestop(sc); /* Initialize ifnet structure. */ bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = aestart; ifp->if_ioctl = aeioctl; ifp->if_watchdog = aewatchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); /* Print additional info when attached. */ kprintf(": address %s, ", ether_sprintf(sc->sc_arpcom.ac_enaddr)); kprintf("type %s, %ldk mem.\n", sc->type_str, sc->mem_size / 1024); #if NBPFILTER > 0 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif /* make sure interrupts are vectored to us */ add_nubus_intr(sc->sc_slot.slot, aeintr, sc); /* * XXX -- enable nubus interrupts here. Should be done elsewhere, * but that currently breaks with some nubus video cards' * interrupts. So we only enable nubus interrupts if we * have an ethernet card... i.e., we do it here. */ enable_nubus_intr(); } /* * Reset interface. */ void aereset(sc) struct ae_softc *sc; { int s; s = splnet(); aestop(sc); aeinit(sc); splx(s); } /* * Take interface offline. */ void aestop(sc) struct ae_softc *sc; { int n = 5000; /* Stop everything on the interface, and select page 0 registers. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. */ while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n); } /* * Device timeout/watchdog routine. Entered if the device neglects to generate * an interrupt after a transmit has been started on it. */ static int aeintr_ctr = 0; void aewatchdog(ifp) struct ifnet *ifp; { struct ae_softc *sc = ifp->if_softc; #if 1 /* * This is a kludge! The via code seems to miss slot interrupts * sometimes. This kludges around that by calling the handler * by hand if the watchdog is activated. -- XXX (akb) */ int i; i = aeintr_ctr; (*via2itab[1]) ((void *) 1); if (i != aeintr_ctr) { log(LOG_ERR, "%s: device timeout, recovered\n", sc->sc_dev.dv_xname); return; } #endif log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++sc->sc_arpcom.ac_if.if_oerrors; aereset(sc); } /* * Initialize device. */ void aeinit(sc) struct ae_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int i; u_char mcaf[8]; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ /* Reset transmitter flags. */ ifp->if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* Set interface for page 0, remote DMA complete, stopped. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, word-wide DMA xfers, */ NIC_PUT(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS); /* Clear remote byte count registers. */ NIC_PUT(sc, ED_P0_RBCR0, 0); NIC_PUT(sc, ED_P0_RBCR1, 0); /* Tell RCR to do nothing for now. */ NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON); /* Place NIC in internal loopback mode. */ NIC_PUT(sc, ED_P0_TCR, ED_TCR_LB0); /* Initialize receive buffer ring. */ NIC_PUT(sc, ED_P0_TPSR, sc->rec_page_start); NIC_PUT(sc, ED_P0_PSTART, sc->rec_page_start); NIC_PUT(sc, ED_P0_PSTOP, sc->rec_page_stop); NIC_PUT(sc, ED_P0_BNRY, sc->rec_page_start); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ NIC_PUT(sc, ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ NIC_PUT(sc, ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* Program command register for page 1. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* Copy out our station address. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) NIC_PUT(sc, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]); /* Set multicast filter on chip. */ ae_getmcaf(&sc->sc_arpcom, mcaf); for (i = 0; i < 8; i++) NIC_PUT(sc, ED_P1_MAR0 + i, mcaf[i]); /* * Set current page pointer to one page after the boundary pointer, as * recommended in the National manual. */ sc->next_packet = sc->rec_page_start + 1; NIC_PUT(sc, ED_P1_CURR, sc->next_packet); /* Program command register for page 0. */ NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); i = ED_RCR_AB | ED_RCR_AM; if (ifp->if_flags & IFF_PROMISC) { /* * Set promiscuous mode. Multicast filter was set earlier so * that we should receive all multicast packets. */ i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP; } NIC_PUT(sc, ED_P0_RCR, i); /* Take interface out of loopback. */ NIC_PUT(sc, ED_P0_TCR, 0); /* Fire up the interface. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* ...and attempt to start output. */ aestart(ifp); } /* * This routine actually starts the transmission on the interface. */ static inline void ae_xmit(sc) struct ae_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_short len; len = sc->txb_len[sc->txb_next_tx]; /* Set NIC for page 0 register access. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set TX buffer start page. */ NIC_PUT(sc, ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* Set TX length. */ NIC_PUT(sc, ED_P0_TBCR0, len); NIC_PUT(sc, ED_P0_TBCR1, len >> 8); /* Set page 0, remote DMA complete, transmit packet, and *start*. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA); /* Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* Set a timer just in case we never hear from the board again. */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splnet _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ void aestart(ifp) struct ifnet *ifp; { struct ae_softc *sc = ifp->if_softc; struct mbuf *m0; caddr_t buffer; int len; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; outloop: /* See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == 0) return; /* We need to use m->m_pkthdr.len, so require the header */ if ((m0->m_flags & M_PKTHDR) == 0) panic("aestart: no header mbuf"); #if NBPFILTER > 0 /* Tap off here if there is a BPF listener. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif /* txb_new points to next open buffer slot. */ buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); len = ae_put(sc, m0, buffer); #if DIAGNOSTIC if (len != m0->m_pkthdr.len) kprintf("aestart: len %d != m0->m_pkthdr.len %d.\n", len, m0->m_pkthdr.len); #endif len = m0->m_pkthdr.len; m_freem(m0); sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN); /* Start the first packet transmitting. */ if (sc->txb_inuse == 0) ae_xmit(sc); /* Point to next buffer slot and wrap if necessary. */ if (++sc->txb_new == sc->txb_cnt) sc->txb_new = 0; sc->txb_inuse++; /* Loop back to the top to possibly buffer more packets. */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static inline void ae_rint(sc) struct ae_softc *sc; { u_char boundary, current; u_short len; u_char nlen, *lenp; struct ae_ring packet_hdr; caddr_t packet_ptr; loop: /* Set NIC to page 1 registers to get 'current' pointer. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e. * it points to where new data has been buffered. The 'CURR' (current) * register points to the logical end of the ring-buffer - i.e. it * points to where additional new data will be added. We loop here * until the logical beginning equals the logical end (or in other * words, until the ring-buffer is empty). */ current = NIC_GET(sc, ED_P1_CURR); if (sc->next_packet == current) return; /* Set NIC to page 0 registers to update boundary register. */ NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); do { /* Get pointer to this buffer's header structure. */ packet_ptr = sc->mem_ring + ((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT); /* * The byte count includes a 4 byte header that was added by * the NIC. */ packet_hdr = *(struct ae_ring *) packet_ptr; lenp = (u_char *) &((struct ae_ring *) packet_ptr)->count; len = lenp[0] | (lenp[1] << 8); packet_hdr.count = len; /* * Try do deal with old, buggy chips that sometimes duplicate * the low byte of the length into the high byte. We do this * by simply ignoring the high byte of the length and always * recalculating it. * * NOTE: sc->next_packet is pointing at the current packet. */ if (packet_hdr.next_packet >= sc->next_packet) nlen = (packet_hdr.next_packet - sc->next_packet); else nlen = ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)); --nlen; if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE) --nlen; len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT); #ifdef DIAGNOSTIC if (len != packet_hdr.count) { kprintf("%s: length does not match next packet pointer\n", sc->sc_dev.dv_xname); kprintf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n", sc->sc_dev.dv_xname, packet_hdr.count, len, sc->rec_page_start, sc->next_packet, current, packet_hdr.next_packet, sc->rec_page_stop); } #endif /* * Be fairly liberal about what we allow as a "reasonable" * length so that a [crufty] packet will make it to BPF (and * can thus be analyzed). Note that all that is really * important is that we have a length that will fit into one * mbuf cluster or less; the upper layer protocols can then * figure out the length from their own length field(s). */ if (len <= MCLBYTES && packet_hdr.next_packet >= sc->rec_page_start && packet_hdr.next_packet < sc->rec_page_stop) { /* Go get packet. */ aeread(sc, packet_ptr + sizeof(struct ae_ring), len - sizeof(struct ae_ring)); ++sc->sc_arpcom.ac_if.if_ipackets; } else { /* Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "%s: NIC memory corrupt - invalid packet length %d\n", sc->sc_dev.dv_xname, len); ++sc->sc_arpcom.ac_if.if_ierrors; aereset(sc); return; } /* Update next packet pointer. */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundary pointer - being careful to keep it one * buffer behind (as recommended by NS databook). */ boundary = sc->next_packet - 1; if (boundary < sc->rec_page_start) boundary = sc->rec_page_stop - 1; NIC_PUT(sc, ED_P0_BNRY, boundary); } while (sc->next_packet != current); goto loop; } /* Ethernet interface interrupt processor. */ void aeintr(arg, slot) void *arg; int slot; { struct ae_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_char isr; aeintr_ctr++; /* Set NIC to page 0 registers. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); isr = NIC_GET(sc, ED_P0_ISR); if (!isr) return; /* Loop until there are no more new interrupts. */ for (;;) { /* * Reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set. * (Writing a '1' *clears* the bit.) */ NIC_PUT(sc, ED_P0_ISR, isr); /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = NIC_GET(sc, ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow the * automatic mechanisms of TCP to backoff the flow. Of * course, with UDP we're screwed, but this is expected * when a network is heavily loaded. */ (void) NIC_GET(sc, ED_P0_TSR); if (isr & ED_ISR_TXE) { /* * Excessive collisions (16). */ if ((NIC_GET(sc, ED_P0_TSR) & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the P0_NCR * will indicate 0, and the TSR_ABT is * set. */ collisions = 16; } /* Update output errors counter. */ ++ifp->if_oerrors; } else { /* * Update total number of successfully * transmitted packets. */ ++ifp->if_opackets; } /* Done with the buffer. */ sc->txb_inuse--; /* Clear watchdog timer. */ ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; /* * Add in total number of collisions on last * transmission. */ ifp->if_collisions += collisions; /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while not * actually transmitting). * If data is ready to transmit, start it transmitting, * otherwise defer until after handling receiver. */ if (sc->txb_inuse > 0) ae_xmit(sc); } /* Handle receiver interrupts. */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++ifp->if_ierrors; #ifdef DIAGNOSTIC log(LOG_WARNING, "%s: warning - receiver ring buffer overrun\n", sc->sc_dev.dv_xname); #endif /* Stop/reset/re-init NIC. */ aereset(sc); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { ++ifp->if_ierrors; #ifdef AE_DEBUG kprintf("%s: receive error %x\n", sc->sc_dev.dv_xname, NIC_GET(sc, ED_P0_RSR)); #endif } /* * Go get the packet(s) * XXX - Doing this on an error is dubious * because there shouldn't be any data to get * (we've configured the interface to not * accept packets with errors). */ ae_rint(sc); } } /* * If it looks like the transmitter can take more data, attempt * to start output on the interface. This is done after * handling the receiver to give the receiver priority. */ aestart(ifp); /* * Return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high). */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { static u_char dummy; dummy = NIC_GET(sc, ED_P0_CNTR0); dummy = NIC_GET(sc, ED_P0_CNTR1); dummy = NIC_GET(sc, ED_P0_CNTR2); } isr = NIC_GET(sc, ED_P0_ISR); if (!isr) return; } } /* * Process an ioctl request. This code needs some work - it looks pretty ugly. */ int aeioctl(ifp, cmd, data) register struct ifnet *ifp; u_long cmd; caddr_t data; { struct ae_softc *sc = ifp->if_softc; register struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: aeinit(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif #ifdef NS /* XXX - This code is probably wrong. */ case AF_NS: { register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *) (sc->sc_arpcom.ac_enaddr); else bcopy(ina->x_host.c_host, sc->sc_arpcom.ac_enaddr, sizeof(sc->sc_arpcom.ac_enaddr)); /* Set new address. */ aeinit(sc); break; } #endif default: aeinit(sc); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ aestop(sc); ifp->if_flags &= ~IFF_RUNNING; } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ aeinit(sc); } else { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ aestop(sc); aeinit(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list. */ error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ aestop(sc); /* XXX for ds_setmcaf? */ aeinit(sc); error = 0; } break; default: error = EINVAL; break; } splx(s); return (error); } /* * Retreive packet from shared memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ void aeread(sc, buf, len) struct ae_softc *sc; caddr_t buf; int len; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *m; struct ether_header *eh; /* Pull packet off interface. */ m = aeget(sc, buf, len); if (m == 0) { ifp->if_ierrors++; return; } ifp->if_ipackets++; /* We assume that the header fits entirely in one mbuf. */ eh = mtod(m, struct ether_header *); #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to bpf. */ if (ifp->if_bpf) { bpf_mtap(ifp->if_bpf, m); /* * Note that the interface cannot be in promiscuous mode if * there are no BPF listeners. And if we are in promiscuous * mode, we have to check if this packet is really ours. */ if ((ifp->if_flags & IFF_PROMISC) && (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr, sizeof(eh->ether_dhost)) != 0) { m_freem(m); return; } } #endif /* Fix up data start offset in mbuf to point past ether header. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); } /* * Supporting routines. */ /* * Given a source and destination address, copy 'amount' of a packet from the * ring buffer into a linear destination buffer. Takes into account ring-wrap. */ static inline caddr_t ae_ring_copy(sc, src, dst, amount) struct ae_softc *sc; caddr_t src, dst; int amount; { u_short tmp_amount; /* Does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* Copy amount up to end of NIC memory. */ byte_copy(src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } byte_copy(src, dst, amount); return (src + amount); } /* * Copy data from receive buffer to end of mbuf chain allocate additional mbufs * as needed. Return pointer to last mbuf in chain. * sc = ae info (softc) * src = pointer in ae ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * aeget(sc, src, total_len) struct ae_softc *sc; caddr_t src; u_short total_len; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *top, **mp, *m; int len; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return 0; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = total_len; len = MHLEN; top = 0; mp = ⊤ while (total_len > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) { m_freem(top); return 0; } len = MLEN; } if (total_len >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) len = MCLBYTES; } m->m_len = len = min(total_len, len); src = ae_ring_copy(sc, src, mtod(m, caddr_t), (int) len); total_len -= len; *mp = m; mp = &m->m_next; } return top; } /* * Compute the multicast address filter from the list of multicast addresses we * need to listen to. */ void ae_getmcaf(ac, af) struct arpcom *ac; u_char *af; { struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; register u_char *cp, c; register u_long crc; register int i, len; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; for (i = 0; i < 8; i++) af[i] = 0xff; return; } for (i = 0; i < 8; i++) af[i] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; for (i = 0; i < 8; i++) af[i] = 0xff; return; } cp = enm->enm_addrlo; crc = 0xffffffff; for (len = sizeof(enm->enm_addrlo); --len >= 0;) { c = *cp++; for (i = 8; --i >= 0;) { if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) { crc <<= 1; crc ^= 0x04c11db6 | 1; } else crc <<= 1; c >>= 1; } } /* Just want the 6 most significant bits. */ crc >>= 26; /* Turn on the corresponding bit in the filter. */ af[crc >> 3] |= 1 << (crc & 0x7); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; } /* * Copy packet from mbuf to the board memory * * Currently uses an extra buffer/extra memory copy, * unless the whole packet fits in one mbuf. * */ u_short ae_put(sc, m, buf) struct ae_softc *sc; struct mbuf *m; caddr_t buf; { u_char *data, savebyte[2]; int len, wantbyte; u_short totlen = 0; wantbyte = 0; for (; m ; m = m->m_next) { data = mtod(m, u_char *); len = m->m_len; totlen += len; if (len > 0) { /* Finish the last word. */ if (wantbyte) { savebyte[1] = *data; word_copy(savebyte, buf, 2); buf += 2; data++; len--; wantbyte = 0; } /* Output contiguous words. */ if (len > 1) { word_copy(data, buf, len); buf += len & ~1; data += len & ~1; len &= 1; } /* Save last byte, if necessary. */ if (len == 1) { savebyte[0] = *data; wantbyte = 1; } } } if (wantbyte) { savebyte[1] = 0; word_copy(savebyte, buf, 2); } return (totlen); }