/* $NetBSD: ixp12x0_intr.c,v 1.10 2003/07/21 06:17:32 igy Exp $ */ /* * Copyright (c) 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Ichiro FUKUHARA and Naoto Shimazaki. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ixp12x0_intr.c,v 1.10 2003/07/21 06:17:32 igy Exp $"); /* * Interrupt support for the Intel ixp12x0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include extern u_int32_t ixpcom_cr; /* current cr from *_com.c */ extern u_int32_t ixpcom_imask; /* tell mask to *_com.c */ /* Interrupt handler queues. */ struct intrq intrq[NIRQ]; /* Interrupts to mask at each level. */ static u_int32_t imask[NIPL]; static u_int32_t pci_imask[NIPL]; /* Current interrupt priority level. */ __volatile int current_spl_level; __volatile int hardware_spl_level; /* Software copy of the IRQs we have enabled. */ __volatile u_int32_t intr_enabled; __volatile u_int32_t pci_intr_enabled; /* Interrupts pending. */ static __volatile int ipending; /* * Map a software interrupt queue index (to the unused bits in the * ICU registers -- XXX will need to revisit this if those bits are * ever used in future steppings). */ static const u_int32_t si_to_irqbit[SI_NQUEUES] = { IXP12X0_INTR_bit30, /* SI_SOFT */ IXP12X0_INTR_bit29, /* SI_SOFTCLOCK */ IXP12X0_INTR_bit28, /* SI_SOFTNET */ IXP12X0_INTR_bit27, /* SI_SOFTSERIAL */ }; #define INT_SWMASK \ ((1U << IXP12X0_INTR_bit30) | (1U << IXP12X0_INTR_bit29) | \ (1U << IXP12X0_INTR_bit28) | (1U << IXP12X0_INTR_bit27)) #define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)]) /* * Map a software interrupt queue to an interrupt priority level. */ static const int si_to_ipl[SI_NQUEUES] = { IPL_SOFT, /* SI_SOFT */ IPL_SOFTCLOCK, /* SI_SOFTCLOCK */ IPL_SOFTNET, /* SI_SOFTNET */ IPL_SOFTSERIAL, /* SI_SOFTSERIAL */ }; void ixp12x0_intr_dispatch(struct irqframe *frame); #define IXPREG(reg) *((volatile u_int32_t*) (reg)) static __inline u_int32_t ixp12x0_irq_read(void) { return IXPREG(IXP12X0_IRQ_VBASE) & IXP12X0_INTR_MASK; } static __inline u_int32_t ixp12x0_pci_irq_read(void) { return IXPREG(IXPPCI_IRQ_STATUS); } static void ixp12x0_enable_uart_irq(void) { ixpcom_imask = 0; if (ixpcom_sc) bus_space_write_4(ixpcom_sc->sc_iot, ixpcom_sc->sc_ioh, IXPCOM_CR, ixpcom_cr & ~ixpcom_imask); } static void ixp12x0_disable_uart_irq(void) { ixpcom_imask = CR_RIE | CR_XIE; if (ixpcom_sc) bus_space_write_4(ixpcom_sc->sc_iot, ixpcom_sc->sc_ioh, IXPCOM_CR, ixpcom_cr & ~ixpcom_imask); } static void ixp12x0_set_intrmask(u_int32_t irqs, u_int32_t pci_irqs) { if (irqs & (1U << IXP12X0_INTR_UART)) { ixp12x0_disable_uart_irq(); } else { ixp12x0_enable_uart_irq(); } IXPREG(IXPPCI_IRQ_ENABLE_CLEAR) = pci_irqs; IXPREG(IXPPCI_IRQ_ENABLE_SET) = pci_intr_enabled & ~pci_irqs; } static void ixp12x0_enable_irq(int irq) { if (irq < SYS_NIRQ) { intr_enabled |= (1U << irq); switch (irq) { case IXP12X0_INTR_UART: ixp12x0_enable_uart_irq(); break; case IXP12X0_INTR_PCI: /* nothing to do */ break; default: panic("enable_irq:bad IRQ %d", irq); } } else { pci_intr_enabled |= (1U << (irq - SYS_NIRQ)); IXPREG(IXPPCI_IRQ_ENABLE_SET) = (1U << (irq - SYS_NIRQ)); } } static __inline void ixp12x0_disable_irq(int irq) { if (irq < SYS_NIRQ) { intr_enabled ^= ~(1U << irq); switch (irq) { case IXP12X0_INTR_UART: ixp12x0_disable_uart_irq(); break; case IXP12X0_INTR_PCI: /* nothing to do */ break; default: /* nothing to do */ } } else { pci_intr_enabled &= ~(1U << (irq - SYS_NIRQ)); IXPREG(IXPPCI_IRQ_ENABLE_CLEAR) = (1U << (irq - SYS_NIRQ)); } } /* * NOTE: This routine must be called with interrupts disabled in the CPSR. */ static void ixp12x0_intr_calculate_masks(void) { struct intrq *iq; struct intrhand *ih; int irq, ipl; /* First, figure out which IPLs each IRQ has. */ for (irq = 0; irq < NIRQ; irq++) { int levels = 0; iq = &intrq[irq]; ixp12x0_disable_irq(irq); for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL; ih = TAILQ_NEXT(ih, ih_list)) levels |= (1U << ih->ih_ipl); iq->iq_levels = levels; } /* Next, figure out which IRQs are used by each IPL. */ for (ipl = 0; ipl < NIPL; ipl++) { int irqs = 0; int pci_irqs = 0; for (irq = 0; irq < SYS_NIRQ; irq++) { if (intrq[irq].iq_levels & (1U << ipl)) irqs |= (1U << irq); } imask[ipl] = irqs; for (irq = 0; irq < SYS_NIRQ; irq++) { if (intrq[irq + SYS_NIRQ].iq_levels & (1U << ipl)) pci_irqs |= (1U << irq); } pci_imask[ipl] = pci_irqs; } imask[IPL_NONE] = 0; pci_imask[IPL_NONE] = 0; /* * Initialize the soft interrupt masks to block themselves. */ imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT); imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK); imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET); imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL); /* * splsoftclock() is the only interface that users of the * generic software interrupt facility have to block their * soft intrs, so splsoftclock() must also block IPL_SOFT. */ imask[IPL_SOFTCLOCK] |= imask[IPL_SOFT]; pci_imask[IPL_SOFTCLOCK] |= pci_imask[IPL_SOFT]; /* * splsoftnet() must also block splsoftclock(), since we don't * want timer-driven network events to occur while we're * processing incoming packets. */ imask[IPL_SOFTNET] |= imask[IPL_SOFTCLOCK]; pci_imask[IPL_SOFTNET] |= pci_imask[IPL_SOFTCLOCK]; /* * Enforce a heirarchy that gives "slow" device (or devices with * limited input buffer space/"real-time" requirements) a better * chance at not dropping data. */ imask[IPL_BIO] |= imask[IPL_SOFTNET]; pci_imask[IPL_BIO] |= pci_imask[IPL_SOFTNET]; imask[IPL_NET] |= imask[IPL_BIO]; pci_imask[IPL_NET] |= pci_imask[IPL_BIO]; imask[IPL_SOFTSERIAL] |= imask[IPL_NET]; pci_imask[IPL_SOFTSERIAL] |= pci_imask[IPL_NET]; imask[IPL_TTY] |= imask[IPL_SOFTSERIAL]; pci_imask[IPL_TTY] |= pci_imask[IPL_SOFTSERIAL]; /* * splvm() blocks all interrupts that use the kernel memory * allocation facilities. */ imask[IPL_VM] |= imask[IPL_TTY]; pci_imask[IPL_VM] |= pci_imask[IPL_TTY]; /* * Audio devices are not allowed to perform memory allocation * in their interrupt routines, and they have fairly "real-time" * requirements, so give them a high interrupt priority. */ imask[IPL_AUDIO] |= imask[IPL_VM]; pci_imask[IPL_AUDIO] |= pci_imask[IPL_VM]; /* * splclock() must block anything that uses the scheduler. */ imask[IPL_CLOCK] |= imask[IPL_AUDIO]; pci_imask[IPL_CLOCK] |= pci_imask[IPL_AUDIO]; /* * No separate statclock on the IXP12x0. */ imask[IPL_STATCLOCK] |= imask[IPL_CLOCK]; pci_imask[IPL_STATCLOCK] |= pci_imask[IPL_CLOCK]; /* * splhigh() must block "everything". */ imask[IPL_HIGH] |= imask[IPL_STATCLOCK]; pci_imask[IPL_HIGH] |= pci_imask[IPL_STATCLOCK]; /* * XXX We need serial drivers to run at the absolute highest priority * in order to avoid overruns, so serial > high. */ imask[IPL_SERIAL] |= imask[IPL_HIGH]; pci_imask[IPL_SERIAL] |= pci_imask[IPL_HIGH]; /* * Now compute which IRQs must be blocked when servicing any * given IRQ. */ for (irq = 0; irq < NIRQ; irq++) { int irqs; int pci_irqs; if (irq < SYS_NIRQ) { irqs = (1U << irq); pci_irqs = 0; } else { irqs = 0; pci_irqs = (1U << (irq - SYS_NIRQ)); } iq = &intrq[irq]; if (TAILQ_FIRST(&iq->iq_list) != NULL) ixp12x0_enable_irq(irq); for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL; ih = TAILQ_NEXT(ih, ih_list)) { irqs |= imask[ih->ih_ipl]; pci_irqs |= pci_imask[ih->ih_ipl]; } iq->iq_mask = irqs; iq->iq_pci_mask = pci_irqs; } } static void ixp12x0_do_pending(void) { static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED; int new; u_int oldirqstate; if (__cpu_simple_lock_try(&processing) == 0) return; new = current_spl_level; oldirqstate = disable_interrupts(I32_bit); #define DO_SOFTINT(si) \ if ((ipending & ~imask[new]) & SI_TO_IRQBIT(si)) { \ ipending &= ~SI_TO_IRQBIT(si); \ current_spl_level = si_to_ipl[(si)]; \ restore_interrupts(oldirqstate); \ softintr_dispatch(si); \ oldirqstate = disable_interrupts(I32_bit); \ current_spl_level = new; \ } DO_SOFTINT(SI_SOFTSERIAL); DO_SOFTINT(SI_SOFTNET); DO_SOFTINT(SI_SOFTCLOCK); DO_SOFTINT(SI_SOFT); __cpu_simple_unlock(&processing); restore_interrupts(oldirqstate); } __inline void splx(int new) { int old; u_int oldirqstate; oldirqstate = disable_interrupts(I32_bit); old = current_spl_level; current_spl_level = new; if (new != hardware_spl_level) { hardware_spl_level = new; ixp12x0_set_intrmask(imask[new], pci_imask[new]); } restore_interrupts(oldirqstate); /* If there are software interrupts to process, do it. */ if ((ipending & INT_SWMASK) & ~imask[new]) ixp12x0_do_pending(); } int _splraise(int ipl) { int old; u_int oldirqstate; oldirqstate = disable_interrupts(I32_bit); old = current_spl_level; current_spl_level = ipl; restore_interrupts(oldirqstate); return (old); } int _spllower(int ipl) { int old = current_spl_level; if (old <= ipl) return (old); splx(ipl); return (old); } void _setsoftintr(int si) { u_int oldirqstate; oldirqstate = disable_interrupts(I32_bit); ipending |= SI_TO_IRQBIT(si); restore_interrupts(oldirqstate); /* Process unmasked pending soft interrupts. */ if ((ipending & INT_SWMASK) & ~imask[current_spl_level]) ixp12x0_do_pending(); } /* * ixp12x0_intr_init: * * Initialize the rest of the interrupt subsystem, making it * ready to handle interrupts from devices. */ void ixp12x0_intr_init(void) { struct intrq *iq; int i; intr_enabled = 0; pci_intr_enabled = 0; for (i = 0; i < NIRQ; i++) { iq = &intrq[i]; TAILQ_INIT(&iq->iq_list); sprintf(iq->iq_name, "ipl %d", i); evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR, NULL, "ixpintr", iq->iq_name); } current_intr_depth = 0; current_spl_level = 0; hardware_spl_level = 0; ixp12x0_intr_calculate_masks(); /* Enable IRQs (don't yet use FIQs). */ enable_interrupts(I32_bit); } void * ixp12x0_intr_establish(int irq, int ipl, int (*ih_func)(void *), void *arg) { struct intrq* iq; struct intrhand* ih; u_int oldirqstate; #ifdef DEBUG printf("ixp12x0_intr_establish(irq=%d, ipl=%d, ih_func=%08x, arg=%08x)\n", irq, ipl, (u_int32_t) ih_func, (u_int32_t) arg); #endif if (irq < 0 || irq > NIRQ) panic("ixp12x0_intr_establish: IRQ %d out of range", ipl); if (ipl < 0 || ipl > NIPL) panic("ixp12x0_intr_establish: IPL %d out of range", ipl); ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT); if (ih == NULL) return (NULL); ih->ih_func = ih_func; ih->ih_arg = arg; ih->ih_irq = irq; ih->ih_ipl = ipl; iq = &intrq[irq]; iq->iq_ist = IST_LEVEL; oldirqstate = disable_interrupts(I32_bit); TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list); ixp12x0_intr_calculate_masks(); restore_interrupts(oldirqstate); return (ih); } void ixp12x0_intr_disestablish(void *cookie) { struct intrhand* ih = cookie; struct intrq* iq = &intrq[ih->ih_ipl]; u_int oldirqstate; oldirqstate = disable_interrupts(I32_bit); TAILQ_REMOVE(&iq->iq_list, ih, ih_list); ixp12x0_intr_calculate_masks(); restore_interrupts(oldirqstate); } void ixp12x0_intr_dispatch(struct clockframe *frame) { struct intrq* iq; struct intrhand* ih; u_int oldirqstate; int pcpl; u_int32_t hwpend; u_int32_t pci_hwpend; int irq; u_int32_t ibit; pcpl = current_spl_level; hwpend = ixp12x0_irq_read(); pci_hwpend = ixp12x0_pci_irq_read(); hardware_spl_level = pcpl; ixp12x0_set_intrmask(imask[pcpl] | hwpend, pci_imask[pcpl] | pci_hwpend); hwpend &= ~imask[pcpl]; pci_hwpend &= ~pci_imask[pcpl]; while (hwpend) { irq = ffs(hwpend) - 1; ibit = (1U << irq); iq = &intrq[irq]; iq->iq_ev.ev_count++; uvmexp.intrs++; for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL; ih = TAILQ_NEXT(ih, ih_list)) { int ipl; current_spl_level = ipl = ih->ih_ipl; oldirqstate = enable_interrupts(I32_bit); (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame); restore_interrupts(oldirqstate); hwpend &= ~ibit; } } while (pci_hwpend) { irq = ffs(pci_hwpend) - 1; ibit = (1U << irq); iq = &intrq[irq + SYS_NIRQ]; iq->iq_ev.ev_count++; uvmexp.intrs++; for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL; ih = TAILQ_NEXT(ih, ih_list)) { int ipl; current_spl_level = ipl = ih->ih_ipl; oldirqstate = enable_interrupts(I32_bit); (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame); restore_interrupts(oldirqstate); pci_hwpend &= ~ibit; } } current_spl_level = pcpl; hardware_spl_level = pcpl; ixp12x0_set_intrmask(imask[pcpl], pci_imask[pcpl]); /* Check for pendings soft intrs. */ if ((ipending & INT_SWMASK) & ~imask[pcpl]) { oldirqstate = enable_interrupts(I32_bit); ixp12x0_do_pending(); restore_interrupts(oldirqstate); } }