/* $NetBSD: wi.c,v 1.24 2001/08/16 13:37:32 wiz Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. * * Original FreeBSD driver written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. * * This driver supports both the PCMCIA and ISA versions of the * WaveLAN/IEEE cards. Note however that the ISA card isn't really * anything of the sort: it's actually a PCMCIA bridge adapter * that fits into an ISA slot, into which a PCMCIA WaveLAN card is * inserted. Consequently, you need to use the pccard support for * both the ISA and PCMCIA adapters. */ /* * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the * Oslo IETF plenary meeting. */ #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include /* for hz */ #include #include #include #include #include #include #if NBPFILTER > 0 #include #include #endif #include #include #include #include static void wi_reset __P((struct wi_softc *)); static int wi_ioctl __P((struct ifnet *, u_long, caddr_t)); static void wi_start __P((struct ifnet *)); static void wi_watchdog __P((struct ifnet *)); static int wi_init __P((struct ifnet *)); static void wi_stop __P((struct ifnet *, int)); static void wi_rxeof __P((struct wi_softc *)); static void wi_txeof __P((struct wi_softc *, int)); static void wi_update_stats __P((struct wi_softc *)); static void wi_setmulti __P((struct wi_softc *)); static int wi_cmd __P((struct wi_softc *, int, int)); static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_read_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_write_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_seek __P((struct wi_softc *, int, int, int)); static int wi_alloc_nicmem __P((struct wi_softc *, int, int *)); static void wi_inquire __P((void *)); static int wi_setdef __P((struct wi_softc *, struct wi_req *)); static int wi_getdef __P((struct wi_softc *, struct wi_req *)); static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int)); static int wi_media_change __P((struct ifnet *)); static void wi_media_status __P((struct ifnet *, struct ifmediareq *)); static void wi_get_id __P((struct wi_softc *)); static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int)); static void wi_request_fill_ssid __P((struct wi_req *, struct ieee80211_nwid *)); static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *, struct ieee80211_nwid *)); static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *)); static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *)); static int wi_sync_media __P((struct wi_softc *, int, int)); static int wi_set_pm(struct wi_softc *, struct ieee80211_power *); static int wi_get_pm(struct wi_softc *, struct ieee80211_power *); int wi_attach(sc) struct wi_softc *sc; { struct ifnet *ifp = sc->sc_ifp; struct wi_ltv_macaddr mac; struct wi_ltv_gen gen; static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; int s; s = splnet(); callout_init(&sc->wi_inquire_ch); /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Reset the NIC. */ wi_reset(sc); memset(&mac, 0, sizeof(mac)); /* Read the station address. */ mac.wi_type = WI_RID_MAC_NODE; mac.wi_len = 4; wi_read_record(sc, (struct wi_ltv_gen *)&mac); memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN); /* * Check if we got anything meaningful. * * Is it really enough just checking against null ethernet address? * Or, check against possible vendor? XXX. */ if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) { printf("%s: could not get mac address, attach failed\n", sc->sc_dev.dv_xname); return 1; } printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr)); /* Read NIC identification */ wi_get_id(sc); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = wi_start; ifp->if_ioctl = wi_ioctl; ifp->if_watchdog = wi_watchdog; ifp->if_init = wi_init; ifp->if_stop = wi_stop; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; #ifdef IFF_NOTRAILERS ifp->if_flags |= IFF_NOTRAILERS; #endif IFQ_SET_READY(&ifp->if_snd); (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME, sizeof(WI_DEFAULT_NODENAME) - 1); (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME, sizeof(WI_DEFAULT_NETNAME) - 1); (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS, sizeof(WI_DEFAULT_IBSS) - 1); sc->wi_portnum = WI_DEFAULT_PORT; sc->wi_ptype = WI_PORTTYPE_BSS; sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; sc->wi_tx_rate = WI_DEFAULT_TX_RATE; sc->wi_max_data_len = WI_DEFAULT_DATALEN; sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; sc->wi_roaming = WI_DEFAULT_ROAMING; sc->wi_authtype = WI_DEFAULT_AUTHTYPE; /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. */ gen.wi_type = WI_RID_OWN_CHNL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_channel = le16toh(gen.wi_val); memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats)); /* * Find out if we support WEP on this card. */ gen.wi_type = WI_RID_WEP_AVAIL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_has_wep = le16toh(gen.wi_val); ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status); #define IFM_AUTOADHOC \ IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0) #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0); ADD(IFM_AUTOADHOC, 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0); #undef ADD ifmedia_set(&sc->sc_media, IFM_AUTOADHOC); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp, mac.wi_mac_addr); ifp->if_baudrate = IF_Mbps(2); /* Attach is successful. */ sc->sc_attached = 1; splx(s); return 0; } static void wi_rxeof(sc) struct wi_softc *sc; { struct ifnet *ifp; struct ether_header *eh; struct wi_frame rx_frame; struct mbuf *m; int id; ifp = sc->sc_ifp; id = CSR_READ_2(sc, WI_RX_FID); /* First read in the frame header */ if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) { ifp->if_ierrors++; return; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } /* Align the data after the ethernet header */ m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; if (le16toh(rx_frame.wi_status) == WI_STAT_1042 || le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL || le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) { if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) { printf("%s: oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", sc->sc_dev.dv_xname, le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN; memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr, ETHER_ADDR_LEN); memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr, ETHER_ADDR_LEN); memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type, sizeof(u_int16_t)); if (wi_read_data(sc, id, WI_802_11_OFFSET, mtod(m, caddr_t) + sizeof(struct ether_header), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } else { if ((le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header)) > MCLBYTES) { printf("%s: oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", sc->sc_dev.dv_xname, le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header); if (wi_read_data(sc, id, WI_802_3_OFFSET, mtod(m, caddr_t), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } ifp->if_ipackets++; #if NBPFILTER > 0 /* Handle BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Receive packet. */ (*ifp->if_input)(ifp, m); } static void wi_txeof(sc, status) struct wi_softc *sc; int status; { struct ifnet *ifp = sc->sc_ifp; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status & WI_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; return; } void wi_inquire(xsc) void *xsc; { struct wi_softc *sc; struct ifnet *ifp; sc = xsc; ifp = &sc->sc_ethercom.ec_if; if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return; callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) return; wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS); return; } void wi_update_stats(sc) struct wi_softc *sc; { struct wi_ltv_gen gen; u_int16_t id; struct ifnet *ifp; u_int32_t *ptr; int len, i; u_int16_t t; ifp = &sc->sc_ethercom.ec_if; id = CSR_READ_2(sc, WI_INFO_FID); wi_read_data(sc, id, 0, (char *)&gen, 4); if (gen.wi_type != WI_INFO_COUNTERS) return; /* some card versions have a larger stats structure */ len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ? gen.wi_len - 1 : sizeof(sc->wi_stats) / 4; ptr = (u_int32_t *)&sc->wi_stats; for (i = 0; i < len; i++) { t = CSR_READ_2(sc, WI_DATA1); #ifdef WI_HERMES_STATS_WAR if (t > 0xF000) t = ~t & 0xFFFF; #endif ptr[i] += t; } ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + sc->wi_stats.wi_tx_multi_retries + sc->wi_stats.wi_tx_retry_limit; return; } int wi_intr(arg) void *arg; { struct wi_softc *sc = arg; struct ifnet *ifp; u_int16_t status; if (sc->sc_enabled == 0 || (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0) return (0); ifp = &sc->sc_ethercom.ec_if; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, WI_INT_EN, 0); return 1; } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); if (status & WI_EV_RX) { wi_rxeof(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); } if (status & WI_EV_TX) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); } if (status & WI_EV_ALLOC) { int id; id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (id == sc->wi_tx_data_id) wi_txeof(sc, status); } if (status & WI_EV_INFO) { wi_update_stats(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } if (status & WI_EV_TX_EXC) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } if (status & WI_EV_INFO_DROP) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) wi_start(ifp); return 1; } static int wi_cmd(sc, cmd, val) struct wi_softc *sc; int cmd; int val; { int i, s = 0; /* wait for the busy bit to clear */ for (i = 0; i < WI_TIMEOUT; i++) { if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) break; } CSR_WRITE_2(sc, WI_PARAM0, val); CSR_WRITE_2(sc, WI_PARAM1, 0); CSR_WRITE_2(sc, WI_PARAM2, 0); CSR_WRITE_2(sc, WI_COMMAND, cmd); /* wait for the cmd completed bit */ for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) break; DELAY(1); } /* Ack the command */ CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); s = CSR_READ_2(sc, WI_STATUS); if (s & WI_STAT_CMD_RESULT) return(EIO); if (i == WI_TIMEOUT) return(ETIMEDOUT); return(0); } static void wi_reset(sc) struct wi_softc *sc; { DELAY(100*1000); /* 100 m sec */ if (wi_cmd(sc, WI_CMD_INI, 0)) printf("%s: init failed\n", sc->sc_dev.dv_xname); CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Calibrate timer. */ WI_SETVAL(WI_RID_TICK_TIME, 8); return; } /* * Read an LTV record from the NIC. */ static int wi_read_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int len, code; struct wi_ltv_gen *oltv, p2ltv; if (sc->sc_prism2) { oltv = ltv; switch (ltv->wi_type) { case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; ltv = &p2ltv; break; } } /* Tell the NIC to enter record read mode. */ if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type)) return(EIO); /* Seek to the record. */ if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, WI_DATA1); if (len > ltv->wi_len) return(ENOSPC); code = CSR_READ_2(sc, WI_DATA1); if (code != ltv->wi_type) return(EIO); ltv->wi_len = len; ltv->wi_type = code; /* Now read the data. */ ptr = <v->wi_val; if (ltv->wi_len > 1) CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1); if (sc->sc_prism2) { int v; switch (oltv->wi_type) { case WI_RID_TX_RATE: case WI_RID_CUR_TX_RATE: switch (le16toh(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 6; break; case 4: v = 5; break; case 7: v = 7; break; case 8: v = 11; break; case 15: v = 3; break; default: v = 0x100 + le16toh(ltv->wi_val); break; } oltv->wi_val = htole16(v); break; case WI_RID_ENCRYPTION: oltv->wi_len = 2; if (le16toh(ltv->wi_val) & 0x01) oltv->wi_val = htole16(1); else oltv->wi_val = htole16(0); break; case WI_RID_TX_CRYPT_KEY: oltv->wi_len = 2; oltv->wi_val = ltv->wi_val; break; case WI_RID_AUTH_CNTL: oltv->wi_len = 2; if (le16toh(ltv->wi_val) & 0x01) oltv->wi_val = htole16(1); else if (le16toh(ltv->wi_val) & 0x02) oltv->wi_val = htole16(2); break; } } return(0); } /* * Same as read, except we inject data instead of reading it. */ static int wi_write_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i; struct wi_ltv_gen p2ltv; if (sc->sc_prism2) { int v; switch (ltv->wi_type) { case WI_RID_TX_RATE: p2ltv.wi_type = WI_RID_TX_RATE; p2ltv.wi_len = 2; switch (le16toh(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 15; break; case 5: v = 4; break; case 6: v = 3; break; case 7: v = 7; break; case 11: v = 8; break; default: return EINVAL; } p2ltv.wi_val = htole16(v); ltv = &p2ltv; break; case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; if (le16toh(ltv->wi_val)) p2ltv.wi_val = htole16(0x03); else p2ltv.wi_val = htole16(0x90); ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; p2ltv.wi_val = ltv->wi_val; ltv = &p2ltv; break; case WI_RID_DEFLT_CRYPT_KEYS: { int error; struct wi_ltv_str ws; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv; for (i = 0; i < 4; i++) { ws.wi_len = 4; ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i; memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5); ws.wi_str[5] = '\0'; error = wi_write_record(sc, (struct wi_ltv_gen *)&ws); if (error) return error; } return 0; } case WI_RID_AUTH_CNTL: p2ltv.wi_type = WI_RID_AUTH_CNTL; p2ltv.wi_len = 2; if (le16toh(ltv->wi_val) == 1) p2ltv.wi_val = htole16(0x01); else if (le16toh(ltv->wi_val) == 2) p2ltv.wi_val = htole16(0x02); ltv = &p2ltv; break; } } if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); /* Write data */ ptr = <v->wi_val; if (ltv->wi_len > 1) CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1); if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type)) return(EIO); return(0); } static int wi_seek(sc, id, off, chan) struct wi_softc *sc; int id, off, chan; { int i; int selreg, offreg; int status; switch (chan) { case WI_BAP0: selreg = WI_SEL0; offreg = WI_OFF0; break; case WI_BAP1: selreg = WI_SEL1; offreg = WI_OFF1; break; default: printf("%s: invalid data path: %x\n", sc->sc_dev.dv_xname, chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < WI_TIMEOUT; i++) { status = CSR_READ_2(sc, offreg); if (!(status & (WI_OFF_BUSY|WI_OFF_ERR))) break; } if (i == WI_TIMEOUT) { printf("%s: timeout in wi_seek to %x/%x; last status %x\n", sc->sc_dev.dv_xname, id, off, status); return(ETIMEDOUT); } return(0); } static int wi_read_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { u_int16_t *ptr; if (wi_seek(sc, id, off, WI_BAP1)) return(EIO); ptr = (u_int16_t *)buf; CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2); return(0); } /* * According to the comments in the HCF Light code, there is a bug in * the Hermes (or possibly in certain Hermes firmware revisions) where * the chip's internal autoincrement counter gets thrown off during * data writes: the autoincrement is missed, causing one data word to * be overwritten and subsequent words to be written to the wrong memory * locations. The end result is that we could end up transmitting bogus * frames without realizing it. The workaround for this is to write a * couple of extra guard words after the end of the transfer, then * attempt to read then back. If we fail to locate the guard words where * we expect them, we preform the transfer over again. */ static int wi_write_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { u_int16_t *ptr; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (wi_seek(sc, id, off, WI_BAP0)) return(EIO); ptr = (u_int16_t *)buf; CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2); #ifdef WI_HERMES_AUTOINC_WAR CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); if (wi_seek(sc, id, off + len, WI_BAP0)) return(EIO); if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) goto again; #endif return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ static int wi_alloc_nicmem(sc, len, id) struct wi_softc *sc; int len; int *id; { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) { printf("%s: failed to allocate %d bytes on NIC\n", sc->sc_dev.dv_xname, len); return(ENOMEM); } for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; } if (i == WI_TIMEOUT) { printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname); return(ETIMEDOUT); } CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); *id = CSR_READ_2(sc, WI_ALLOC_FID); if (wi_seek(sc, *id, 0, WI_BAP0)) { printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname); return(EIO); } for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, WI_DATA0, 0); return(0); } static void wi_setmulti(sc) struct wi_softc *sc; { struct ifnet *ifp; int i = 0; struct wi_ltv_mcast mcast; struct ether_multi *enm; struct ether_multistep estep; struct ethercom *ec = &sc->sc_ethercom; ifp = &sc->sc_ethercom.ec_if; if ((ifp->if_flags & IFF_PROMISC) != 0) { allmulti: ifp->if_flags |= IFF_ALLMULTI; memset((char *)&mcast, 0, sizeof(mcast)); mcast.wi_type = WI_RID_MCAST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } i = 0; ETHER_FIRST_MULTI(estep, ec, enm); while (enm != NULL) { /* Punt on ranges or too many multicast addresses. */ if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0 || i >= 16) goto allmulti; memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo, ETHER_ADDR_LEN); i++; ETHER_NEXT_MULTI(estep, enm); } ifp->if_flags &= ~IFF_ALLMULTI; mcast.wi_type = WI_RID_MCAST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); } static int wi_setdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifnet *ifp; int error = 0; ifp = &sc->sc_ethercom.ec_if; switch(wreq->wi_type) { case WI_RID_MAC_NODE: sdl = (struct sockaddr_dl *)ifp->if_sadl; memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val, ETHER_ADDR_LEN); memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate); break; case WI_RID_TX_RATE: error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0])); break; case WI_RID_MAX_DATALEN: sc->wi_max_data_len = le16toh(wreq->wi_val[0]); break; case WI_RID_RTS_THRESH: sc->wi_rts_thresh = le16toh(wreq->wi_val[0]); break; case WI_RID_SYSTEM_SCALE: sc->wi_ap_density = le16toh(wreq->wi_val[0]); break; case WI_RID_CREATE_IBSS: sc->wi_create_ibss = le16toh(wreq->wi_val[0]); break; case WI_RID_OWN_CHNL: sc->wi_channel = le16toh(wreq->wi_val[0]); break; case WI_RID_NODENAME: error = wi_set_ssid(&sc->wi_nodeid, (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); break; case WI_RID_DESIRED_SSID: error = wi_set_ssid(&sc->wi_netid, (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); break; case WI_RID_OWN_SSID: error = wi_set_ssid(&sc->wi_ibssid, (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); break; case WI_RID_PM_ENABLED: sc->wi_pm_enabled = le16toh(wreq->wi_val[0]); break; case WI_RID_MICROWAVE_OVEN: sc->wi_mor_enabled = le16toh(wreq->wi_val[0]); break; case WI_RID_MAX_SLEEP: sc->wi_max_sleep = le16toh(wreq->wi_val[0]); break; case WI_RID_AUTH_CNTL: sc->wi_authtype = le16toh(wreq->wi_val[0]); break; case WI_RID_ROAMING_MODE: sc->wi_roaming = le16toh(wreq->wi_val[0]); break; case WI_RID_ENCRYPTION: sc->wi_use_wep = le16toh(wreq->wi_val[0]); break; case WI_RID_TX_CRYPT_KEY: sc->wi_tx_key = le16toh(wreq->wi_val[0]); break; case WI_RID_DEFLT_CRYPT_KEYS: memcpy((char *)&sc->wi_keys, (char *)wreq, sizeof(struct wi_ltv_keys)); break; default: error = EINVAL; break; } return (error); } static int wi_getdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifnet *ifp; int error = 0; ifp = &sc->sc_ethercom.ec_if; wreq->wi_len = 2; /* XXX */ switch (wreq->wi_type) { case WI_RID_MAC_NODE: wreq->wi_len += ETHER_ADDR_LEN / 2 - 1; sdl = (struct sockaddr_dl *)ifp->if_sadl; memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN); memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: wreq->wi_val[0] = htole16(sc->wi_ptype); break; case WI_RID_TX_RATE: wreq->wi_val[0] = htole16(sc->wi_tx_rate); break; case WI_RID_MAX_DATALEN: wreq->wi_val[0] = htole16(sc->wi_max_data_len); break; case WI_RID_RTS_THRESH: wreq->wi_val[0] = htole16(sc->wi_rts_thresh); break; case WI_RID_SYSTEM_SCALE: wreq->wi_val[0] = htole16(sc->wi_ap_density); break; case WI_RID_CREATE_IBSS: wreq->wi_val[0] = htole16(sc->wi_create_ibss); break; case WI_RID_OWN_CHNL: wreq->wi_val[0] = htole16(sc->wi_channel); break; case WI_RID_NODENAME: wi_request_fill_ssid(wreq, &sc->wi_nodeid); break; case WI_RID_DESIRED_SSID: wi_request_fill_ssid(wreq, &sc->wi_netid); break; case WI_RID_OWN_SSID: wi_request_fill_ssid(wreq, &sc->wi_ibssid); break; case WI_RID_PM_ENABLED: wreq->wi_val[0] = htole16(sc->wi_pm_enabled); break; case WI_RID_MICROWAVE_OVEN: wreq->wi_val[0] = htole16(sc->wi_mor_enabled); break; case WI_RID_MAX_SLEEP: wreq->wi_val[0] = htole16(sc->wi_max_sleep); break; case WI_RID_AUTH_CNTL: wreq->wi_val[0] = htole16(sc->wi_authtype); break; case WI_RID_ROAMING_MODE: wreq->wi_val[0] = htole16(sc->wi_roaming); break; case WI_RID_WEP_AVAIL: wreq->wi_val[0] = htole16(sc->wi_has_wep); break; case WI_RID_ENCRYPTION: wreq->wi_val[0] = htole16(sc->wi_use_wep); break; case WI_RID_TX_CRYPT_KEY: wreq->wi_val[0] = htole16(sc->wi_tx_key); break; case WI_RID_DEFLT_CRYPT_KEYS: wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1; memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys)); break; default: #if 0 error = EIO; #else #ifdef WI_DEBUG printf("%s: wi_getdef: unknown request %d\n", sc->sc_dev.dv_xname, wreq->wi_type); #endif #endif break; } return (error); } static int wi_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; struct wi_softc *sc = ifp->if_softc; struct wi_req wreq; struct ifreq *ifr; struct proc *p = curproc; struct ieee80211_nwid nwid; if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (ENXIO); s = splnet(); ifr = (struct ifreq *)data; switch (command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->wi_if_flags & IFF_PROMISC)) { WI_SETVAL(WI_RID_PROMISC, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->wi_if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 0); } wi_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) { wi_stop(ifp, 0); } } sc->wi_if_flags = ifp->if_flags; if (!(ifp->if_flags & IFF_UP)) { if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; ifp->if_flags &= ~IFF_RUNNING; } } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ethercom) : ether_delmulti(ifr, &sc->sc_ethercom); if (error == ENETRESET) { if (sc->sc_enabled != 0) { /* * Multicast list has changed. Set the * hardware filter accordingly. */ wi_setmulti(sc); } error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); break; case SIOCGWAVELAN: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { /* XXX native byte order */ memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats, sizeof(sc->wi_stats)); wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1; } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) { /* For non-root user, return all-zeroes keys */ if (suser(p->p_ucred, &p->p_acflag)) memset((char *)&wreq, 0, sizeof(struct wi_ltv_keys)); else memcpy((char *)&wreq, (char *)&sc->wi_keys, sizeof(struct wi_ltv_keys)); } else { if (sc->sc_enabled == 0) error = wi_getdef(sc, &wreq); else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) error = EINVAL; } if (error == 0) error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); break; case SIOCSWAVELAN: error = suser(p->p_ucred, &p->p_acflag); if (error) break; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { error = EINVAL; break; } else if (wreq.wi_type == WI_RID_MGMT_XMIT) { error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val, wreq.wi_len); } else { if (sc->sc_enabled != 0) error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error == 0) error = wi_setdef(sc, &wreq); if (error == 0 && sc->sc_enabled != 0) /* Reinitialize WaveLAN. */ wi_init(ifp); } break; case SIOCG80211NWID: if (sc->sc_enabled == 0) { /* Return the desired ID */ error = copyout(&sc->wi_netid, ifr->ifr_data, sizeof(sc->wi_netid)); } else { wreq.wi_type = WI_RID_CURRENT_SSID; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) || le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN) error = EINVAL; else { wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1], le16toh(wreq.wi_val[0])); error = copyout(&nwid, ifr->ifr_data, sizeof(nwid)); } } break; case SIOCS80211NWID: error = copyin(ifr->ifr_data, &nwid, sizeof(nwid)); if (error != 0) break; if (nwid.i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } if (sc->wi_netid.i_len == nwid.i_len && memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0) break; wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len); if (sc->sc_enabled != 0) /* Reinitialize WaveLAN. */ wi_init(ifp); break; case SIOCS80211NWKEY: error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCG80211NWKEY: error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCS80211POWER: error = wi_set_pm(sc, (struct ieee80211_power *)data); break; case SIOCG80211POWER: error = wi_get_pm(sc, (struct ieee80211_power *)data); break; default: error = EINVAL; break; } splx(s); return (error); } static int wi_init(ifp) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; struct wi_req wreq; struct wi_ltv_macaddr mac; int error, id = 0; if (!sc->sc_enabled) { if ((error = (*sc->sc_enable)(sc)) != 0) goto out; sc->sc_enabled = 1; } wi_stop(ifp, 0); wi_reset(sc); /* Program max data length. */ WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); /* Enable/disable IBSS creation. */ WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); /* Set the port type. */ WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); /* Program the RTS/CTS threshold. */ WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); /* Program the TX rate */ WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); /* Access point density */ WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); /* Power Management Enabled */ WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); /* Power Managment Max Sleep */ WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); /* Roaming type */ WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming); /* Specify the IBSS name */ wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid); /* Specify the network name */ wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid); /* Specify the frequency to use */ WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); /* Program the nodename. */ wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid); /* Set our MAC address. */ mac.wi_len = 4; mac.wi_type = WI_RID_MAC_NODE; memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN); wi_write_record(sc, (struct wi_ltv_gen *)&mac); /* Initialize promisc mode. */ if (ifp->if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 1); } else { WI_SETVAL(WI_RID_PROMISC, 0); } /* Configure WEP. */ if (sc->wi_has_wep) { WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep); WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key); sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1; sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS; wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys); if (sc->sc_prism2 && sc->wi_use_wep) { /* * ONLY HWB3163 EVAL-CARD Firmware version * less than 0.8 variant3 * * If promiscuous mode disable, Prism2 chip * does not work with WEP . * It is under investigation for details. * (ichiro@netbsd.org) */ if (sc->sc_prism2_ver < 83 ) { /* firm ver < 0.8 variant 3 */ WI_SETVAL(WI_RID_PROMISC, 1); } WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype); } } /* Set multicast filter. */ wi_setmulti(sc); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0); if ((error = wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) { printf("%s: tx buffer allocation failed\n", sc->sc_dev.dv_xname); goto out; } sc->wi_tx_data_id = id; if ((error = wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) { printf("%s: mgmt. buffer allocation failed\n", sc->sc_dev.dv_xname); goto out; } sc->wi_tx_mgmt_id = id; /* Enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); out: if (error) { ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; printf("%s: interface not running\n", sc->sc_dev.dv_xname); } return (error); } static void wi_start(ifp) struct ifnet *ifp; { struct wi_softc *sc; struct mbuf *m0; struct wi_frame tx_frame; struct ether_header *eh; int id; sc = ifp->if_softc; if (ifp->if_flags & IFF_OACTIVE) return; IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) return; memset((char *)&tx_frame, 0, sizeof(tx_frame)); id = sc->wi_tx_data_id; eh = mtod(m0, struct ether_header *); /* * Use RFC1042 encoding for IP and ARP datagrams, * 802.3 for anything else. */ if (ntohs(eh->ether_type) == ETHERTYPE_IP || ntohs(eh->ether_type) == ETHERTYPE_ARP || ntohs(eh->ether_type) == ETHERTYPE_REVARP || ntohs(eh->ether_type) == ETHERTYPE_IPV6) { memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost, ETHER_ADDR_LEN); memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost, ETHER_ADDR_LEN); tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA); tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_type = eh->ether_type; m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); } else { tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len); m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2); } #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif m_freem(m0); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) printf("%s: xmit failed\n", sc->sc_dev.dv_xname); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static int wi_mgmt_xmit(sc, data, len) struct wi_softc *sc; caddr_t data; int len; { struct wi_frame tx_frame; int id; struct wi_80211_hdr *hdr; caddr_t dptr; hdr = (struct wi_80211_hdr *)data; dptr = data + sizeof(struct wi_80211_hdr); memset((char *)&tx_frame, 0, sizeof(tx_frame)); id = sc->wi_tx_mgmt_id; memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr, sizeof(struct wi_80211_hdr)); tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN); tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, (len - sizeof(struct wi_80211_hdr)) + 2); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) { printf("%s: xmit failed\n", sc->sc_dev.dv_xname); return(EIO); } return(0); } static void wi_stop(ifp, disable) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0); callout_stop(&sc->wi_inquire_ch); if (disable) { if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } } ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); ifp->if_timer = 0; } static void wi_watchdog(ifp) struct ifnet *ifp; { struct wi_softc *sc; sc = ifp->if_softc; printf("%s: device timeout\n", sc->sc_dev.dv_xname); wi_init(ifp); ifp->if_oerrors++; return; } void wi_shutdown(sc) struct wi_softc *sc; { int s; s = splnet(); if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } splx(s); } int wi_activate(self, act) struct device *self; enum devact act; { struct wi_softc *sc = (struct wi_softc *)self; int rv = 0, s; s = splnet(); switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ethercom.ec_if); break; } splx(s); return (rv); } static void wi_get_id(sc) struct wi_softc *sc; { struct wi_ltv_ver ver; /* getting chip identity */ memset(&ver, 0, sizeof(ver)); ver.wi_type = WI_RID_CARDID; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); printf("%s: using ", sc->sc_dev.dv_xname); switch (le16toh(ver.wi_ver[0])) { case WI_NIC_EVB2: printf("RF:PRISM2 MAC:HFA3841"); sc->sc_prism2 = 1; break; case WI_NIC_HWB3763: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B"); sc->sc_prism2 = 1; break; case WI_NIC_HWB3163: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A"); sc->sc_prism2 = 1; break; case WI_NIC_HWB3163B: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B"); sc->sc_prism2 = 1; break; case WI_NIC_EVB3: printf("RF:PRISM2 MAC:HFA3842"); sc->sc_prism2 = 1; break; case WI_NIC_HWB1153: printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153"); sc->sc_prism2 = 1; break; case WI_NIC_P2_SST: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash"); sc->sc_prism2 = 1; break; case WI_NIC_PRISM2_5: printf("RF:PRISM2.5 MAC:ISL3873"); sc->sc_prism2 = 1; break; default: printf("Lucent chip or unknown chip\n"); sc->sc_prism2 = 0; break; } if (sc->sc_prism2) { /* try to get prism2 firm version */ memset(&ver, 0, sizeof(ver)); ver.wi_type = WI_RID_IDENT; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); LE16TOH(ver.wi_ver[1]); LE16TOH(ver.wi_ver[2]); LE16TOH(ver.wi_ver[3]); printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2], ver.wi_ver[3], ver.wi_ver[1]); sc->sc_prism2_ver = ver.wi_ver[2] * 100 + ver.wi_ver[3] * 10 + ver.wi_ver[1]; } return; } int wi_detach(sc) struct wi_softc *sc; { struct ifnet *ifp = sc->sc_ifp; int s; if (!sc->sc_attached) return (0); s = splnet(); callout_stop(&sc->wi_inquire_ch); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } splx(s); return (0); } void wi_power(sc, why) struct wi_softc *sc; int why; { int s; if (!sc->sc_enabled) return; s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: wi_stop(sc->sc_ifp, 0); if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); } break; case PWR_RESUME: sc->sc_enabled = 0; wi_init(sc->sc_ifp); (void)wi_intr(sc); break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } splx(s); } static int wi_set_ssid(ws, id, len) struct ieee80211_nwid *ws; u_int8_t *id; int len; { if (len > IEEE80211_NWID_LEN) return (EINVAL); ws->i_len = len; memcpy(ws->i_nwid, id, len); return (0); } static void wi_request_fill_ssid(wreq, ws) struct wi_req *wreq; struct ieee80211_nwid *ws; { int len = ws->i_len; memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val)); wreq->wi_val[0] = htole16(len); wreq->wi_len = roundup(len, 2) / 2 + 2; memcpy(&wreq->wi_val[1], ws->i_nwid, len); } static int wi_write_ssid(sc, type, wreq, ws) struct wi_softc *sc; int type; struct wi_req *wreq; struct ieee80211_nwid *ws; { wreq->wi_type = type; wi_request_fill_ssid(wreq, ws); return (wi_write_record(sc, (struct wi_ltv_gen *)wreq)); } static int wi_sync_media(sc, ptype, txrate) struct wi_softc *sc; int ptype; int txrate; { int media = sc->sc_media.ifm_cur->ifm_media; int options = IFM_OPTIONS(media); int subtype; switch (txrate) { case 1: subtype = IFM_IEEE80211_DS1; break; case 2: subtype = IFM_IEEE80211_DS2; break; case 3: subtype = IFM_AUTO; break; case 11: subtype = IFM_IEEE80211_DS11; break; default: subtype = IFM_MANUAL; /* Unable to represent */ break; } switch (ptype) { case WI_PORTTYPE_ADHOC: options |= IFM_IEEE80211_ADHOC; break; case WI_PORTTYPE_BSS: options &= ~IFM_IEEE80211_ADHOC; break; default: subtype = IFM_MANUAL; /* Unable to represent */ break; } media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options, IFM_INST(media)); if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL) return (EINVAL); ifmedia_set(&sc->sc_media, media); sc->wi_ptype = ptype; sc->wi_tx_rate = txrate; return (0); } static int wi_media_change(ifp) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; int otype = sc->wi_ptype; int orate = sc->wi_tx_rate; if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0) sc->wi_ptype = WI_PORTTYPE_ADHOC; else sc->wi_ptype = WI_PORTTYPE_BSS; switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) { case IFM_IEEE80211_DS1: sc->wi_tx_rate = 1; break; case IFM_IEEE80211_DS2: sc->wi_tx_rate = 2; break; case IFM_AUTO: sc->wi_tx_rate = 3; break; case IFM_IEEE80211_DS11: sc->wi_tx_rate = 11; break; } if (sc->sc_enabled != 0) { if (otype != sc->wi_ptype || orate != sc->wi_tx_rate) wi_init(ifp); } ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media); return (0); } static void wi_media_status(ifp, imr) struct ifnet *ifp; struct ifmediareq *imr; { struct wi_softc *sc = ifp->if_softc; if (sc->sc_enabled == 0) { imr->ifm_active = IFM_IEEE80211|IFM_NONE; imr->ifm_status = 0; return; } imr->ifm_active = sc->sc_media.ifm_cur->ifm_media; imr->ifm_status = IFM_AVALID|IFM_ACTIVE; } static int wi_set_nwkey(sc, nwkey) struct wi_softc *sc; struct ieee80211_nwkey *nwkey; { int i, error; size_t len; struct wi_req wreq; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq; if (!sc->wi_has_wep) return ENODEV; if (nwkey->i_defkid <= 0 || nwkey->i_defkid > IEEE80211_WEP_NKID) return EINVAL; memcpy(wk, &sc->wi_keys, sizeof(*wk)); for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (nwkey->i_key[i].i_keydat == NULL) continue; len = nwkey->i_key[i].i_keylen; if (len > sizeof(wk->wi_keys[i].wi_keydat)) return EINVAL; error = copyin(nwkey->i_key[i].i_keydat, wk->wi_keys[i].wi_keydat, len); if (error) return error; wk->wi_keys[i].wi_keylen = htole16(len); } wk->wi_len = (sizeof(*wk) / 2) + 1; wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS; if (sc->sc_enabled != 0) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } error = wi_setdef(sc, &wreq); if (error) return error; wreq.wi_len = 2; wreq.wi_type = WI_RID_TX_CRYPT_KEY; wreq.wi_val[0] = htole16(nwkey->i_defkid - 1); if (sc->sc_enabled != 0) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } error = wi_setdef(sc, &wreq); if (error) return error; wreq.wi_type = WI_RID_ENCRYPTION; wreq.wi_val[0] = htole16(nwkey->i_wepon); if (sc->sc_enabled != 0) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } error = wi_setdef(sc, &wreq); if (error) return error; if (sc->sc_enabled != 0) wi_init(&sc->sc_ethercom.ec_if); return 0; } static int wi_get_nwkey(sc, nwkey) struct wi_softc *sc; struct ieee80211_nwkey *nwkey; { int i, len, error; struct wi_ltv_keys *wk = &sc->wi_keys; if (!sc->wi_has_wep) return ENODEV; nwkey->i_wepon = sc->wi_use_wep; nwkey->i_defkid = sc->wi_tx_key + 1; /* do not show any keys to non-root user */ error = suser(curproc->p_ucred, &curproc->p_acflag); for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (nwkey->i_key[i].i_keydat == NULL) continue; /* error holds results of suser() for the first time */ if (error) return error; len = le16toh(wk->wi_keys[i].wi_keylen); if (nwkey->i_key[i].i_keylen < len) return ENOSPC; nwkey->i_key[i].i_keylen = len; error = copyout(wk->wi_keys[i].wi_keydat, nwkey->i_key[i].i_keydat, len); if (error) return error; } return 0; } static int wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power) { sc->wi_pm_enabled = power->i_enabled; sc->wi_max_sleep = power->i_maxsleep; if (sc->sc_enabled) return (wi_init(&sc->sc_ethercom.ec_if)); return (0); } static int wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power) { power->i_enabled = sc->wi_pm_enabled; power->i_maxsleep = sc->wi_max_sleep; return (0); }