/* * aout2hux - convert a.out/ELF executable to Human68k .x format * * Read two a.out/ELF format executables with different load addresses * and generate Human68k .x format executable. * * written by Yasha (ITOH Yasufumi) * public domain * * usage: * aout2hux [ -o output.x ] a.out1 loadaddr1 a.out2 loadaddr2 * * The input files must be static OMAGIC/NMAGIC m68k a.out executables * or m68k ELF executables. * Two executables must have different loading addresses. * Each of the load address must be a hexadecimal number. * Load address shall be multiple of 4 for as / ld of NetBSD/m68k. * * example: * % cc -N -static -Wl,-Ttext,0 -o aout1 *.o * % cc -N -static -Wl,-Ttext,10203040 -o aout2 *.o * % aout2hux -o foo.x aout1 0 aout2 10203040 * * $NetBSD: aout2hux.c,v 1.5 1999/11/19 03:54:08 itohy Exp $ */ #include #ifndef NO_UNISTD # include #endif #ifndef NO_STDLIB # include #endif #include #include #include "type_local.h" #include "aout68k.h" #include "hux.h" /* fseek() offset type */ typedef long foff_t; #ifndef DEFAULT_OUTPUT_FILE # define DEFAULT_OUTPUT_FILE "out.x" #endif #ifdef DEBUG # define DPRINTF(x) printf x #else # define DPRINTF(x) #endif struct exec_info { foff_t text_off; /* file offset of text section */ foff_t data_off; /* file offset of data section */ u_int32_t text_size; /* size of text section */ u_int32_t text_pad; /* pad between text and data */ u_int32_t data_size; /* size of data section */ u_int32_t bss_size; /* size of bss */ u_int32_t entry_addr; /* entry point address */ }; unsigned get_uint16 PROTO((be_uint16_t *be)); u_int32_t get_uint32 PROTO((be_uint32_t *be)); void put_uint16 PROTO((be_uint16_t *be, unsigned v)); void put_uint32 PROTO((be_uint32_t *be, u_int32_t v)); void *do_realloc PROTO((void *p, size_t s)); static int open_aout __P((const char *fn, struct aout_m68k *hdr, struct exec_info *inf)); static int open_elf PROTO((const char *fn, FILE *fp, struct elf_m68k_hdr *hdr, struct exec_info *inf)); FILE *open_exec PROTO((const char *fn, struct exec_info *inf)); int check_2_exec_inf PROTO((struct exec_info *inf1, struct exec_info *inf2)); int aout2hux PROTO((const char *fn1, const char *fn2, u_int32_t loadadr1, u_int32_t loadadr2, const char *fnx)); int gethex PROTO((u_int32_t *pval, const char *str)); void usage PROTO((const char *name)); int main PROTO((int argc, char *argv[])); #if !defined(bzero) && defined(__SVR4) # define bzero(d, n) memset((d), 0, (n)) #endif /* * read/write big-endian integer */ unsigned get_uint16(be) be_uint16_t *be; { return be->val[0] << 8 | be->val[1]; } u_int32_t get_uint32(be) be_uint32_t *be; { return be->val[0]<<24 | be->val[1]<<16 | be->val[2]<<8 | be->val[3]; } void put_uint16(be, v) be_uint16_t *be; unsigned v; { be->val[0] = (u_int8_t) (v >> 8); be->val[1] = (u_int8_t) v; } void put_uint32(be, v) be_uint32_t *be; u_int32_t v; { be->val[0] = (u_int8_t) (v >> 24); be->val[1] = (u_int8_t) (v >> 16); be->val[2] = (u_int8_t) (v >> 8); be->val[3] = (u_int8_t) v; } void * do_realloc(p, s) void *p; size_t s; { p = p ? realloc(p, s) : malloc(s); /* for portability */ if (!p) { fprintf(stderr, "malloc failed\n"); exit(1); } return p; } /* * check a.out header */ static int open_aout(fn, hdr, inf) const char *fn; struct aout_m68k *hdr; struct exec_info *inf; { int i; DPRINTF(("%s: is an a.out\n", fn)); if ((i = AOUT_GET_MID(hdr)) != AOUT_MID_M68K && i != AOUT_MID_M68K4K) { fprintf(stderr, "%s: wrong architecture (mid %d)\n", fn, i); return 1; } /* if unsolved relocations exist, not an executable but an object */ if (hdr->a_trsize.hostval || hdr->a_drsize.hostval) { fprintf(stderr, "%s: not an executable (object file?)\n", fn); return 1; } if (AOUT_GET_FLAGS(hdr) & (AOUT_FLAG_PIC | AOUT_FLAG_DYNAMIC)) { fprintf(stderr, "%s: PIC and DYNAMIC are not supported\n", fn); return 1; } inf->text_size = get_uint32(&hdr->a_text); inf->data_size = get_uint32(&hdr->a_data); inf->bss_size = get_uint32(&hdr->a_bss); inf->entry_addr = get_uint32(&hdr->a_entry); inf->text_off = sizeof(struct aout_m68k); inf->data_off = sizeof(struct aout_m68k) + inf->text_size; inf->text_pad = -inf->text_size & (AOUT_PAGESIZE(hdr) - 1); return 0; } /* * digest ELF structure */ static int open_elf(fn, fp, hdr, inf) const char *fn; FILE *fp; struct elf_m68k_hdr *hdr; struct exec_info *inf; { int i; size_t nphdr; struct elf_m68k_phdr phdr[2]; DPRINTF(("%s: is an ELF\n", fn)); if (hdr->e_ident[EI_VERSION] != EV_CURRENT || get_uint32(&hdr->e_version) != EV_CURRENT) { fprintf(stderr, "%s: unknown ELF version\n", fn); return 1; } if (get_uint16(&hdr->e_type) != ET_EXEC) { fprintf(stderr, "%s: not an executable\n", fn); return 1; } if ((i = get_uint16(&hdr->e_machine)) != EM_68K) { fprintf(stderr, "%s: wrong architecture (%d)\n", fn, i); return 1; } if ((i = get_uint16(&hdr->e_shentsize)) != SIZE_ELF68K_SHDR) { fprintf(stderr, "%s: size shdr %d should be %d\n", fn, i, SIZE_ELF68K_SHDR); return 1; } if ((i = get_uint16(&hdr->e_phentsize)) != SIZE_ELF68K_PHDR) { fprintf(stderr, "%s: size phdr %d should be %d\n", fn, i, SIZE_ELF68K_PHDR); return 1; } if ((nphdr = get_uint16(&hdr->e_phnum)) != 1 && nphdr != 2) { fprintf(stderr, "%s: has %d loadable segments (should be 1 or 2)\n", fn, nphdr); return 1; } /* Read ELF program header table. */ if (fseek(fp, (foff_t) get_uint32(&hdr->e_phoff), SEEK_SET)) { perror(fn); return 1; } if (fread(phdr, sizeof phdr[0], nphdr, fp) != nphdr) { fprintf(stderr, "%s: can't read ELF program header\n", fn); return 1; } /* Just error checking. */ for (i = 0; i < (int) nphdr; i++) { if (get_uint32(&phdr[i].p_type) != PT_LOAD) { fprintf(stderr, "%s: program header #%d is not loadable\n", fn, i); return 1; } } if (nphdr == 1 && (get_uint32(&phdr[0].p_flags) & PF_W)) { /* * Only one writable section --- probably "ld -N" executable. * Find out the start of data segment. */ struct elf_m68k_shdr shdr; int nshdr; nshdr = get_uint16(&hdr->e_shnum); /* section #0 always exists and reserved --- skip */ if (nshdr > 1 && fseek(fp, (foff_t) (get_uint32(&hdr->e_shoff) + sizeof shdr), SEEK_SET)) { perror(fn); return 1; } for (i = 1; i < nshdr; i++) { if (fread(&shdr, sizeof shdr, 1, fp) != 1) { fprintf(stderr, "%s: can't read ELF section header\n", fn); return 1; } DPRINTF(("%s: section header #%d: flags 0x%x\n", fn, i, get_uint32(&shdr.sh_flags))); if (ELF68K_ISDATASEG(&shdr)) { /* * data section is found. */ DPRINTF(("%s: one section, data found\n", fn)); inf->text_off = get_uint32(&phdr[0].p_offset); inf->text_size = get_uint32(&shdr.sh_offset) - inf->text_off; inf->text_pad = 0; inf->data_off = inf->text_off + inf->text_size; inf->data_size = get_uint32(&phdr[0].p_filesz) - inf->text_size; inf->bss_size = get_uint32(&phdr[0].p_memsz) - get_uint32(&phdr[0].p_filesz); inf->entry_addr = get_uint32(&hdr->e_entry); goto data_found; } } /* * No data section found --- probably text + bss. */ DPRINTF(("%s: one section, no data section\n", fn)); inf->text_size = get_uint32(&phdr[0].p_filesz); inf->data_size = 0; inf->bss_size = get_uint32(&phdr[0].p_memsz) - inf->text_size; inf->entry_addr = get_uint32(&hdr->e_entry); inf->text_off = get_uint32(&phdr[0].p_offset); inf->data_off = 0; inf->text_pad = 0; data_found:; } else if (nphdr == 1) { /* * Only one non-writable section --- pure text program? */ DPRINTF(("%s: one RO section\n", fn)); inf->text_size = get_uint32(&phdr[0].p_filesz); inf->data_size = 0; inf->bss_size = 0; inf->entry_addr = get_uint32(&hdr->e_entry); inf->text_off = get_uint32(&phdr[0].p_offset); inf->data_off = 0; inf->text_pad = get_uint32(&phdr[0].p_memsz) - inf->text_size; } else { /* * two sections * text + data assumed. */ int t = 0, d = 1, tmp; /* first guess */ #define SWAP_T_D tmp = t, t = d, d = tmp DPRINTF(("%s: two sections\n", fn)); /* Find out text and data. */ if (get_uint32(&phdr[t].p_vaddr) > get_uint32(&phdr[d].p_vaddr)) SWAP_T_D; if ((get_uint32(&phdr[t].p_flags) & PF_X) == 0 && get_uint32(&phdr[d].p_flags) & PF_X) SWAP_T_D; if ((get_uint32(&phdr[d].p_flags) & PF_W) == 0 && get_uint32(&phdr[t].p_flags) & PF_W) SWAP_T_D; #undef SWAP_T_D /* Are the text/data sections correctly detected? */ if (get_uint32(&phdr[t].p_vaddr) > get_uint32(&phdr[d].p_vaddr)) { fprintf(stderr, "%s: program sections not in order\n", fn); return 1; } if ((get_uint32(&phdr[t].p_flags) & PF_X) == 0) fprintf(stderr, "%s: warning: text is not executable\n", fn); if ((get_uint32(&phdr[d].p_flags) & PF_W) == 0) fprintf(stderr, "%s: warning: data is not writable\n", fn); inf->text_size = get_uint32(&phdr[t].p_filesz); inf->data_size = get_uint32(&phdr[d].p_filesz); inf->bss_size = get_uint32(&phdr[d].p_memsz) - inf->data_size; inf->entry_addr = get_uint32(&hdr->e_entry); inf->text_off = get_uint32(&phdr[t].p_offset); inf->data_off = get_uint32(&phdr[d].p_offset); inf->text_pad = get_uint32(&phdr[d].p_vaddr) - (get_uint32(&phdr[t].p_vaddr) + inf->text_size); } return 0; } /* * open an executable */ FILE * open_exec(fn, inf) const char *fn; struct exec_info *inf; { FILE *fp; int i; union { struct aout_m68k u_aout; struct elf_m68k_hdr u_elf; } buf; #define hdra (&buf.u_aout) #define hdre (&buf.u_elf) if (!(fp = fopen(fn, "r"))) { perror(fn); return (FILE *) NULL; } /* * Check for a.out. */ if (fread(hdra, sizeof(struct aout_m68k), 1, fp) != 1) { fprintf(stderr, "%s: can't read a.out header\n", fn); goto out; } if ((i = AOUT_GET_MAGIC(hdra)) != AOUT_OMAGIC && i != AOUT_NMAGIC) goto notaout; if (open_aout(fn, hdra, inf)) goto out; /* OK! */ return fp; notaout: /* * Check for ELF. */ if (hdre->e_ident[EI_MAG0] != ELFMAG0 || hdre->e_ident[EI_MAG1] != ELFMAG1 || hdre->e_ident[EI_MAG2] != ELFMAG2 || hdre->e_ident[EI_MAG3] != ELFMAG3 || hdre->e_ident[EI_CLASS] != ELFCLASS32 || hdre->e_ident[EI_DATA] != ELFDATA2MSB) { fprintf(stderr, "%s: not an OMAGIC or NMAGIC a.out, or a 32bit BE ELF\n", fn); goto out; } /* ELF header is longer than a.out header. Read the rest. */ if (fread(hdra + 1, sizeof(struct elf_m68k_hdr) - sizeof(struct aout_m68k), 1, fp) != 1) { fprintf(stderr, "%s: can't read ELF header\n", fn); goto out; } if (open_elf(fn, fp, hdre, inf)) goto out; /* OK! */ return fp; out: fclose(fp); return (FILE *) NULL; #undef hdra #undef hdre } /* * compare two executables and check if they are compatible */ int check_2_exec_inf(inf1, inf2) struct exec_info *inf1, *inf2; { if (inf1->text_size != inf2->text_size || inf1->text_pad != inf2->text_pad || inf1->data_size != inf2->data_size || inf1->bss_size != inf2->bss_size) return -1; return 0; } /* allocation unit (in bytes) of relocation table */ #define RELTBL_CHUNK 8192 /* * add an entry to the relocation table */ #define ADD_RELTBL(adr) \ if (relsize + sizeof(struct relinf_l) > relallocsize) \ reltbl = do_realloc(reltbl, relallocsize += RELTBL_CHUNK); \ if ((adr) < reladdr + HUX_MINLREL) { \ struct relinf_s *r = (struct relinf_s *)(reltbl + relsize); \ put_uint16(&r->locoff_s, (unsigned)((adr) - reladdr)); \ relsize += sizeof(struct relinf_s); \ DPRINTF(("short")); \ } else { \ struct relinf_l *r = (struct relinf_l *)(reltbl + relsize); \ put_uint16(&r->lrelmag, HUXLRELMAGIC); \ put_uint32((be_uint32_t *)r->locoff_l, (adr) - reladdr); \ relsize += sizeof(struct relinf_l); \ DPRINTF(("long ")); \ } \ DPRINTF((" reloc 0x%06x", (adr))); \ reladdr = (adr); #define ERR1 { if (ferror(fpa1)) perror(fn1); \ else fprintf(stderr, "%s: unexpected EOF\n", fn1); \ goto out; } #define ERR2 { if (ferror(fpa2)) perror(fn2); \ else fprintf(stderr, "%s: unexpected EOF\n", fn2); \ goto out; } #define ERRC { fprintf(stderr, "files %s and %s are inconsistent\n", \ fn1, fn2); \ goto out; } /* * read input executables and output .x body * and create relocation table */ #define CREATE_RELOCATION(segsize) \ while (segsize > 0 || nbuf) { \ if (nbuf == 0) { \ if (fread(&b1.half[0], SIZE_16, 1, fpa1) != 1) \ ERR1 \ if (fread(&b2.half[0], SIZE_16, 1, fpa2) != 1) \ ERR2 \ nbuf = 1; \ segsize -= SIZE_16; \ } else if (nbuf == 1) { \ if (segsize == 0) { \ if (b1.half[0].hostval != b2.half[0].hostval) \ ERRC \ fwrite(&b1.half[0], SIZE_16, 1, fpx); \ nbuf = 0; \ addr += SIZE_16; \ } else { \ if (fread(&b1.half[1], SIZE_16, 1, fpa1) != 1)\ ERR1 \ if (fread(&b2.half[1], SIZE_16, 1, fpa2) != 1)\ ERR2 \ nbuf = 2; \ segsize -= SIZE_16; \ } \ } else /* if (nbuf == 2) */ { \ if (b1.hostval != b2.hostval && \ get_uint32(&b1) - loadadr1 \ == get_uint32(&b2) - loadadr2) {\ /* do relocation */ \ ADD_RELTBL(addr) \ \ put_uint32(&b1, get_uint32(&b1) - loadadr1); \ DPRINTF((" v 0x%08x\t", get_uint32(&b1))); \ fwrite(&b1, SIZE_32, 1, fpx); \ nbuf = 0; \ addr += SIZE_32; \ } else if (b1.half[0].hostval == b2.half[0].hostval) {\ fwrite(&b1.half[0], SIZE_16, 1, fpx); \ addr += SIZE_16; \ b1.half[0] = b1.half[1]; \ b2.half[0] = b2.half[1]; \ nbuf = 1; \ } else \ ERRC \ } \ } int aout2hux(fn1, fn2, loadadr1, loadadr2, fnx) const char *fn1, *fn2, *fnx; u_int32_t loadadr1, loadadr2; { int status = 1; /* the default is "failed" */ FILE *fpa1 = NULL, *fpa2 = NULL; struct exec_info inf1, inf2; FILE *fpx = NULL; struct huxhdr xhdr; u_int32_t textsize, datasize, paddingsize, execoff; /* for relocation */ be_uint32_t b1, b2; int nbuf; u_int32_t addr; /* for relocation table */ size_t relsize, relallocsize; u_int32_t reladdr; char *reltbl = NULL; /* * check load addresses */ if (loadadr1 == loadadr2) { fprintf(stderr, "two load addresses must be different\n"); return 1; } /* * open input executables and check them */ if (!(fpa1 = open_exec(fn1, &inf1)) || !(fpa2 = open_exec(fn2, &inf2))) goto out; /* * check for consistency */ if (check_2_exec_inf(&inf1, &inf2)) { fprintf(stderr, "files %s and %s are incompatible\n", fn1, fn2); goto out; } /* check entry address */ if (inf1.entry_addr - loadadr1 != inf2.entry_addr - loadadr2) { fprintf(stderr, "address of %s or %s may be incorrect\n", fn1, fn2); goto out; } /* * get information of the executables */ textsize = inf1.text_size; paddingsize = inf1.text_pad; datasize = inf1.data_size; execoff = inf1.entry_addr - loadadr1; DPRINTF(("text: %u, data: %u, pad: %u, bss: %u, exec: %u\n", textsize, datasize, paddingsize, inf1.bss_size, execoff)); if (textsize & 1) { fprintf(stderr, "text size is not even\n"); goto out; } if (datasize & 1) { fprintf(stderr, "data size is not even\n"); goto out; } if (execoff >= textsize && (execoff < textsize + paddingsize || execoff >= textsize + paddingsize + datasize)) { fprintf(stderr, "exec addr is not in text or data segment\n"); goto out; } /* * prepare for .x header */ bzero((void *) &xhdr, sizeof xhdr); put_uint16(&xhdr.x_magic, HUXMAGIC); put_uint32(&xhdr.x_entry, execoff); put_uint32(&xhdr.x_text, textsize + paddingsize); put_uint32(&xhdr.x_data, inf1.data_size); put_uint32(&xhdr.x_bss, inf1.bss_size); /* * create output file */ if (!(fpx = fopen(fnx, "w")) || fseek(fpx, (foff_t) sizeof xhdr, SEEK_SET)) { /* skip header */ perror(fnx); goto out; } addr = 0; nbuf = 0; relsize = relallocsize = 0; reladdr = 0; /* * text segment */ if (fseek(fpa1, inf1.text_off, SEEK_SET)) { perror(fn1); goto out; } if (fseek(fpa2, inf2.text_off, SEEK_SET)) { perror(fn2); goto out; } CREATE_RELOCATION(textsize) /* * page boundary */ addr += paddingsize; while (paddingsize--) putc('\0', fpx); /* * data segment */ if (fseek(fpa1, inf1.data_off, SEEK_SET)) { perror(fn1); goto out; } if (fseek(fpa2, inf2.data_off, SEEK_SET)) { perror(fn2); goto out; } CREATE_RELOCATION(datasize) /* * error check of the above */ if (ferror(fpx)) { fprintf(stderr, "%s: write failure\n", fnx); goto out; } /* * write relocation table */ if (relsize > 0) { DPRINTF(("\n")); if (fwrite(reltbl, 1, relsize, fpx) != relsize) { perror(fnx); goto out; } } /* * write .x header at the top of the output file */ put_uint32(&xhdr.x_rsize, relsize); if (fseek(fpx, (foff_t) 0, SEEK_SET) || fwrite(&xhdr, sizeof xhdr, 1, fpx) != 1) { perror(fnx); goto out; } status = 0; /* all OK */ out: /* * cleanup */ if (fpa1) fclose(fpa1); if (fpa2) fclose(fpa2); if (fpx) { if (fclose(fpx) && status == 0) { /* Alas, final flush failed! */ perror(fnx); status = 1; } if (status) remove(fnx); } if (reltbl) free(reltbl); return status; } #ifndef NO_BIST void bist PROTO((void)); /* * built-in self test */ void bist() { be_uint16_t be16; be_uint32_t be32; be_uint32_t be32x2[2]; be16.val[0] = 0x12; be16.val[1] = 0x34; be32.val[0] = 0xfe; be32.val[1] = 0xdc; be32.val[2] = 0xba; be32.val[3] = 0x98; put_uint16(&be32x2[0].half[1], 0x4567); put_uint32(&be32x2[1], 0xa9876543); if (sizeof(u_int8_t) != 1 || sizeof(u_int16_t) != 2 || sizeof(u_int32_t) != 4 || SIZE_16 != 2 || SIZE_32 != 4 || sizeof be32x2 != 8 || sizeof(struct relinf_s) != 2 || sizeof(struct relinf_l) != 6 || SIZE_ELF68K_HDR != 52 || SIZE_ELF68K_SHDR != 40 || SIZE_ELF68K_PHDR != 32 || get_uint16(&be16) != 0x1234 || get_uint32(&be32) != 0xfedcba98 || get_uint16(&be32x2[0].half[1]) != 0x4567 || get_uint32(&be32x2[1]) != 0xa9876543) { fprintf(stderr, "BIST failed\n"); exit(1); } } #endif int gethex(pval, str) u_int32_t *pval; const char *str; { const unsigned char *p = (const unsigned char *) str; u_int32_t val; int over; /* skip leading "0x" if exists */ if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) p += 2; if (!*p) goto bad; for (val = 0, over = 0; *p; p++) { int digit; switch (*p) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': digit = *p - '0'; break; case 'a': case 'A': digit = 10; break; case 'b': case 'B': digit = 11; break; case 'c': case 'C': digit = 12; break; case 'd': case 'D': digit = 13; break; case 'e': case 'E': digit = 14; break; case 'f': case 'F': digit = 15; break; default: goto bad; } if (val >= 0x10000000) over = 1; val = (val << 4) | digit; } if (over) fprintf(stderr, "warning: %s: constant overflow\n", str); *pval = val; DPRINTF(("gethex: %s -> 0x%x\n", str, val)); return 0; bad: fprintf(stderr, "%s: not a hexadecimal number\n", str); return 1; } void usage(name) const char *name; { fprintf(stderr, "\ usage: %s [ -o output.x ] a.out1 loadaddr1 a.out2 loadaddr2\n\n\ The input files must be static OMAGIC/NMAGIC m68k a.out executables\n\ or m68k ELF executables.\n\ Two executables must have different loading addresses.\n\ Each of the load address must be a hexadecimal number.\n\ The default output filename is \"%s\".\n" ,name, DEFAULT_OUTPUT_FILE); exit(1); } int main(argc, argv) int argc; char *argv[]; { const char *outfile = DEFAULT_OUTPUT_FILE; u_int32_t adr1, adr2; #ifndef NO_BIST bist(); #endif if (argc > 2 && argv[1][0] == '-' && argv[1][1] == 'o' && !argv[1][2]) { outfile = argv[2]; argv += 2; argc -= 2; } if (argc != 5) usage(argv[0]); if (gethex(&adr1, argv[2]) || gethex(&adr2, argv[4])) usage(argv[0]); return aout2hux(argv[1], argv[3], adr1, adr2, outfile); }