/* $NetBSD: if.c,v 1.117 2003/02/01 06:23:46 thorpej Exp $ */ /*- * Copyright (c) 1999, 2000, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by William Studnemund and Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 */ #include __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.117 2003/02/01 06:23:46 thorpej Exp $"); #include "opt_inet.h" #include "opt_compat_linux.h" #include "opt_compat_svr4.h" #include "opt_compat_43.h" #include "opt_atalk.h" #include "opt_pfil_hooks.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef NETATALK #include #include #endif #ifdef INET6 #include #include #include #endif MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); int ifqmaxlen = IFQ_MAXLEN; struct callout if_slowtimo_ch; int netisr; /* scheduling bits for network */ int if_rt_walktree __P((struct radix_node *, void *)); struct if_clone *if_clone_lookup __P((const char *, int *)); int if_clone_list __P((struct if_clonereq *)); LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); int if_cloners_count; #if defined(INET) || defined(INET6) || defined(NETATALK) || defined(NS) || \ defined(ISO) || defined(CCITT) || defined(NATM) static void if_detach_queues __P((struct ifnet *, struct ifqueue *)); #endif /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ void ifinit() { callout_init(&if_slowtimo_ch); if_slowtimo(NULL); } /* * Null routines used while an interface is going away. These routines * just return an error. */ int if_nulloutput(ifp, m, so, rt) struct ifnet *ifp; struct mbuf *m; struct sockaddr *so; struct rtentry *rt; { return (ENXIO); } void if_nullinput(ifp, m) struct ifnet *ifp; struct mbuf *m; { /* Nothing. */ } void if_nullstart(ifp) struct ifnet *ifp; { /* Nothing. */ } int if_nullioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { return (ENXIO); } int if_nullinit(ifp) struct ifnet *ifp; { return (ENXIO); } void if_nullstop(ifp, disable) struct ifnet *ifp; int disable; { /* Nothing. */ } void if_nullwatchdog(ifp) struct ifnet *ifp; { /* Nothing. */ } void if_nulldrain(ifp) struct ifnet *ifp; { /* Nothing. */ } u_int if_index = 1; struct ifnet_head ifnet; struct ifaddr **ifnet_addrs = NULL; struct ifnet **ifindex2ifnet = NULL; /* * Allocate the link level name for the specified interface. This * is an attachment helper. It must be called after ifp->if_addrlen * is initialized, which may not be the case when if_attach() is * called. */ void if_alloc_sadl(struct ifnet *ifp) { unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; /* * If the interface already has a link name, release it * now. This is useful for interfaces that can change * link types, and thus switch link names often. */ if (ifp->if_sadl != NULL) if_free_sadl(ifp); namelen = strlen(ifp->if_xname); masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; socksize = masklen + ifp->if_addrlen; #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = ROUNDUP(socksize); ifasize = sizeof(*ifa) + 2 * socksize; ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK); memset((caddr_t)ifa, 0, ifasize); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_alen = ifp->if_addrlen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifnet_addrs[ifp->if_index] = ifa; IFAREF(ifa); ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; TAILQ_INSERT_HEAD(&ifp->if_addrlist, ifa, ifa_list); IFAREF(ifa); ifa->ifa_addr = (struct sockaddr *)sdl; ifp->if_sadl = sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; } /* * Free the link level name for the specified interface. This is * a detach helper. This is called from if_detach() or from * link layer type specific detach functions. */ void if_free_sadl(struct ifnet *ifp) { struct ifaddr *ifa; int s; ifa = ifnet_addrs[ifp->if_index]; if (ifa == NULL) { KASSERT(ifp->if_sadl == NULL); return; } KASSERT(ifp->if_sadl != NULL); s = splnet(); rtinit(ifa, RTM_DELETE, 0); TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); IFAFREE(ifa); ifp->if_sadl = NULL; ifnet_addrs[ifp->if_index] = NULL; IFAFREE(ifa); splx(s); } /* * Attach an interface to the * list of "active" interfaces. */ void if_attach(ifp) struct ifnet *ifp; { static size_t if_indexlim = 0; int indexlim = 0; if (if_indexlim == 0) { TAILQ_INIT(&ifnet); if_indexlim = 8; } TAILQ_INIT(&ifp->if_addrlist); TAILQ_INSERT_TAIL(&ifnet, ifp, if_list); ifp->if_index = if_index; if (ifindex2ifnet == 0) if_index++; else while (ifindex2ifnet[ifp->if_index] != NULL) { ++if_index; if (if_index == 0) if_index = 1; /* * If we hit USHRT_MAX, we skip back to 0 since * there are a number of places where the value * of if_index or if_index itself is compared * to or stored in an unsigned short. By * jumping back, we won't botch those assignments * or comparisons. */ else if (if_index == USHRT_MAX) { /* * However, if we have to jump back to * zero *twice* without finding an empty * slot in ifindex2ifnet[], then there * there are too many (>65535) interfaces. */ if (indexlim++) panic("too many interfaces"); else if_index = 1; } ifp->if_index = if_index; } /* * We have some arrays that should be indexed by if_index. * since if_index will grow dynamically, they should grow too. * struct ifadd **ifnet_addrs * struct ifnet **ifindex2ifnet */ if (ifnet_addrs == 0 || ifindex2ifnet == 0 || ifp->if_index >= if_indexlim) { size_t n; caddr_t q; while (ifp->if_index >= if_indexlim) if_indexlim <<= 1; /* grow ifnet_addrs */ n = if_indexlim * sizeof(struct ifaddr *); q = (caddr_t)malloc(n, M_IFADDR, M_WAITOK); memset(q, 0, n); if (ifnet_addrs) { bcopy((caddr_t)ifnet_addrs, q, n/2); free((caddr_t)ifnet_addrs, M_IFADDR); } ifnet_addrs = (struct ifaddr **)q; /* grow ifindex2ifnet */ n = if_indexlim * sizeof(struct ifnet *); q = (caddr_t)malloc(n, M_IFADDR, M_WAITOK); memset(q, 0, n); if (ifindex2ifnet) { bcopy((caddr_t)ifindex2ifnet, q, n/2); free((caddr_t)ifindex2ifnet, M_IFADDR); } ifindex2ifnet = (struct ifnet **)q; } ifindex2ifnet[ifp->if_index] = ifp; /* * Link level name is allocated later by a separate call to * if_alloc_sadl(). */ if (ifp->if_snd.ifq_maxlen == 0) ifp->if_snd.ifq_maxlen = ifqmaxlen; ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ ifp->if_link_state = LINK_STATE_UNKNOWN; ifp->if_capenable = 0; ifp->if_csum_flags_tx = 0; ifp->if_csum_flags_rx = 0; #ifdef ALTQ ifp->if_snd.altq_type = 0; ifp->if_snd.altq_disc = NULL; ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; ifp->if_snd.altq_tbr = NULL; ifp->if_snd.altq_ifp = ifp; #endif #ifdef PFIL_HOOKS ifp->if_pfil.ph_type = PFIL_TYPE_IFNET; ifp->if_pfil.ph_ifnet = ifp; if (pfil_head_register(&ifp->if_pfil) != 0) printf("%s: WARNING: unable to register pfil hook\n", ifp->if_xname); #endif if (domains) if_attachdomain1(ifp); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } void if_attachdomain() { struct ifnet *ifp; int s; s = splnet(); for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) if_attachdomain1(ifp); splx(s); } void if_attachdomain1(ifp) struct ifnet *ifp; { struct domain *dp; int s; s = splnet(); /* address family dependent data region */ memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } splx(s); } /* * Deactivate an interface. This points all of the procedure * handles at error stubs. May be called from interrupt context. */ void if_deactivate(ifp) struct ifnet *ifp; { int s; s = splnet(); ifp->if_output = if_nulloutput; ifp->if_input = if_nullinput; ifp->if_start = if_nullstart; ifp->if_ioctl = if_nullioctl; ifp->if_init = if_nullinit; ifp->if_stop = if_nullstop; ifp->if_watchdog = if_nullwatchdog; ifp->if_drain = if_nulldrain; /* No more packets may be enqueued. */ ifp->if_snd.ifq_maxlen = 0; splx(s); } /* * Detach an interface from the list of "active" interfaces, * freeing any resources as we go along. * * NOTE: This routine must be called with a valid thread context, * as it may block. */ void if_detach(ifp) struct ifnet *ifp; { struct socket so; struct ifaddr *ifa; #ifdef IFAREF_DEBUG struct ifaddr *last_ifa = NULL; #endif struct domain *dp; struct protosw *pr; struct radix_node_head *rnh; int s, i, family, purged; /* * XXX It's kind of lame that we have to have the * XXX socket structure... */ memset(&so, 0, sizeof(so)); s = splnet(); /* * Do an if_down() to give protocols a chance to do something. */ if_down(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif #ifdef PFIL_HOOKS (void) pfil_head_unregister(&ifp->if_pfil); #endif if_free_sadl(ifp); /* * Rip all the addresses off the interface. This should make * all of the routes go away. */ while ((ifa = TAILQ_FIRST(&ifp->if_addrlist)) != NULL) { family = ifa->ifa_addr->sa_family; #ifdef IFAREF_DEBUG printf("if_detach: ifaddr %p, family %d, refcnt %d\n", ifa, family, ifa->ifa_refcnt); if (last_ifa != NULL && ifa == last_ifa) panic("if_detach: loop detected"); last_ifa = ifa; #endif if (family == AF_LINK) { /* * XXX This case may now be obsolete by * XXX the call to if_free_sadl(). */ rtinit(ifa, RTM_DELETE, 0); TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); IFAFREE(ifa); } else { dp = pffinddomain(family); #ifdef DIAGNOSTIC if (dp == NULL) panic("if_detach: no domain for AF %d", family); #endif purged = 0; for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { so.so_proto = pr; if (pr->pr_usrreq != NULL) { (void) (*pr->pr_usrreq)(&so, PRU_PURGEIF, NULL, NULL, (struct mbuf *) ifp, curproc); purged = 1; } } if (purged == 0) { /* * XXX What's really the best thing to do * XXX here? --thorpej@netbsd.org */ printf("if_detach: WARNING: AF %d not purged\n", family); } } } /* Walk the routing table looking for straglers. */ for (i = 0; i <= AF_MAX; i++) { if ((rnh = rt_tables[i]) != NULL) (void) (*rnh->rnh_walktree)(rnh, if_rt_walktree, ifp); } for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); ifindex2ifnet[ifp->if_index] = NULL; TAILQ_REMOVE(&ifnet, ifp, if_list); /* * remove packets came from ifp, from software interrupt queues. * net/netisr_dispatch.h is not usable, as some of them use * strange queue names. */ #define IF_DETACH_QUEUES(x) \ do { \ extern struct ifqueue x; \ if_detach_queues(ifp, & x); \ } while (/*CONSTCOND*/ 0) #ifdef INET #if NARP > 0 IF_DETACH_QUEUES(arpintrq); #endif IF_DETACH_QUEUES(ipintrq); #endif #ifdef INET6 IF_DETACH_QUEUES(ip6intrq); #endif #ifdef NETATALK IF_DETACH_QUEUES(atintrq1); IF_DETACH_QUEUES(atintrq2); #endif #ifdef NS IF_DETACH_QUEUES(nsintrq); #endif #ifdef ISO IF_DETACH_QUEUES(clnlintrq); #endif #ifdef CCITT IF_DETACH_QUEUES(llcintrq); IF_DETACH_QUEUES(hdintrq); #endif #ifdef NATM IF_DETACH_QUEUES(natmintrq); #endif #undef IF_DETACH_QUEUES splx(s); } #if defined(INET) || defined(INET6) || defined(NETATALK) || defined(NS) || \ defined(ISO) || defined(CCITT) || defined(NATM) static void if_detach_queues(ifp, q) struct ifnet *ifp; struct ifqueue *q; { struct mbuf *m, *prev, *next; prev = NULL; for (m = q->ifq_head; m; m = next) { next = m->m_nextpkt; #ifdef DIAGNOSTIC if ((m->m_flags & M_PKTHDR) == 0) { prev = m; continue; } #endif if (m->m_pkthdr.rcvif != ifp) { prev = m; continue; } if (prev) prev->m_nextpkt = m->m_nextpkt; else q->ifq_head = m->m_nextpkt; if (q->ifq_tail == m) q->ifq_tail = prev; q->ifq_len--; m->m_nextpkt = NULL; m_freem(m); IF_DROP(q); } } #endif /* defined(INET) || ... */ /* * Callback for a radix tree walk to delete all references to an * ifnet. */ int if_rt_walktree(rn, v) struct radix_node *rn; void *v; { struct ifnet *ifp = (struct ifnet *)v; struct rtentry *rt = (struct rtentry *)rn; int error; if (rt->rt_ifp == ifp) { /* Delete the entry. */ error = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); if (error) printf("%s: warning: unable to delete rtentry @ %p, " "error = %d\n", ifp->if_xname, rt, error); } return (0); } /* * Create a clone network interface. */ int if_clone_create(name) const char *name; { struct if_clone *ifc; int unit; ifc = if_clone_lookup(name, &unit); if (ifc == NULL) return (EINVAL); if (ifunit(name) != NULL) return (EEXIST); return ((*ifc->ifc_create)(ifc, unit)); } /* * Destroy a clone network interface. */ int if_clone_destroy(name) const char *name; { struct if_clone *ifc; struct ifnet *ifp; ifc = if_clone_lookup(name, NULL); if (ifc == NULL) return (EINVAL); ifp = ifunit(name); if (ifp == NULL) return (ENXIO); if (ifc->ifc_destroy == NULL) return (EOPNOTSUPP); (*ifc->ifc_destroy)(ifp); return (0); } /* * Look up a network interface cloner. */ struct if_clone * if_clone_lookup(name, unitp) const char *name; int *unitp; { struct if_clone *ifc; const char *cp; size_t i; for (ifc = LIST_FIRST(&if_cloners); ifc != NULL;) { for (cp = name, i = 0; i < ifc->ifc_namelen; i++, cp++) { if (ifc->ifc_name[i] != *cp) goto next_ifc; } goto found_name; next_ifc: ifc = LIST_NEXT(ifc, ifc_list); } /* No match. */ return (NULL); found_name: for (i = 0; *cp != '\0'; cp++) { if (*cp < '0' || *cp > '9') { /* Bogus unit number. */ return (NULL); } i = (i * 10) + (*cp - '0'); } if (unitp != NULL) *unitp = i; return (ifc); } /* * Register a network interface cloner. */ void if_clone_attach(ifc) struct if_clone *ifc; { LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); if_cloners_count++; } /* * Unregister a network interface cloner. */ void if_clone_detach(ifc) struct if_clone *ifc; { LIST_REMOVE(ifc, ifc_list); if_cloners_count--; } /* * Provide list of interface cloners to userspace. */ int if_clone_list(ifcr) struct if_clonereq *ifcr; { char outbuf[IFNAMSIZ], *dst; struct if_clone *ifc; int count, error = 0; ifcr->ifcr_total = if_cloners_count; if ((dst = ifcr->ifcr_buffer) == NULL) { /* Just asking how many there are. */ return (0); } if (ifcr->ifcr_count < 0) return (EINVAL); count = (if_cloners_count < ifcr->ifcr_count) ? if_cloners_count : ifcr->ifcr_count; for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { strncpy(outbuf, ifc->ifc_name, IFNAMSIZ); outbuf[IFNAMSIZ - 1] = '\0'; /* sanity */ error = copyout(outbuf, dst, IFNAMSIZ); if (error) break; } return (error); } /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(addr) struct sockaddr *addr; { struct ifnet *ifp; struct ifaddr *ifa; #define equal(a1, a2) \ (bcmp((caddr_t)(a1), (caddr_t)(a2), ((struct sockaddr *)(a1))->sa_len) == 0) for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL; ifp = TAILQ_NEXT(ifp, if_list)) { if (ifp->if_output == if_nulloutput) continue; for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (equal(addr, ifa->ifa_addr)) return (ifa); if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && /* IP6 doesn't have broadcast */ ifa->ifa_broadaddr->sa_len != 0 && equal(ifa->ifa_broadaddr, addr)) return (ifa); } } return (NULL); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(addr) struct sockaddr *addr; { struct ifnet *ifp; struct ifaddr *ifa; for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL; ifp = TAILQ_NEXT(ifp, if_list)) { if (ifp->if_output == if_nulloutput) continue; if (ifp->if_flags & IFF_POINTOPOINT) { for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { if (ifa->ifa_addr->sa_family != addr->sa_family || ifa->ifa_dstaddr == NULL) continue; if (equal(addr, ifa->ifa_dstaddr)) return (ifa); } } } return (NULL); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(addr) struct sockaddr *addr; { struct ifnet *ifp; struct ifaddr *ifa; struct sockaddr_dl *sdl; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; if (af == AF_LINK) { sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= if_index && ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) return (ifnet_addrs[sdl->sdl_index]); } #ifdef NETATALK if (af == AF_APPLETALK) { struct sockaddr_at *sat, *sat2; sat = (struct sockaddr_at *)addr; for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL; ifp = TAILQ_NEXT(ifp, if_list)) { if (ifp->if_output == if_nulloutput) continue; ifa = at_ifawithnet((struct sockaddr_at *)addr, ifp); if (ifa == NULL) continue; sat2 = (struct sockaddr_at *)ifa->ifa_addr; if (sat2->sat_addr.s_net == sat->sat_addr.s_net) return (ifa); /* exact match */ if (ifa_maybe == NULL) { /* else keep the if with the right range */ ifa_maybe = ifa; } } return (ifa_maybe); } #endif for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL; ifp = TAILQ_NEXT(ifp, if_list)) { if (ifp->if_output == if_nulloutput) continue; for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af || ifa->ifa_netmask == 0) next: continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = (char *)ifa->ifa_netmask + ifa->ifa_netmask->sa_len; while (cp3 < cplim) { if ((*cp++ ^ *cp2++) & *cp3++) { /* want to continue for() loop */ goto next; } } if (ifa_maybe == 0 || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) ifa_maybe = ifa; } } return (ifa_maybe); } /* * Find the interface of the addresss. */ struct ifaddr * ifa_ifwithladdr(addr) struct sockaddr *addr; { struct ifaddr *ia; if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || (ia = ifa_ifwithnet(addr))) return (ia); return (NULL); } /* * Find an interface using a specific address family */ struct ifaddr * ifa_ifwithaf(af) int af; { struct ifnet *ifp; struct ifaddr *ifa; for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL; ifp = TAILQ_NEXT(ifp, if_list)) { if (ifp->if_output == if_nulloutput) continue; for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { if (ifa->ifa_addr->sa_family == af) return (ifa); } } return (NULL); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(addr, ifp) struct sockaddr *addr; struct ifnet *ifp; { struct ifaddr *ifa; char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; if (ifp->if_output == if_nulloutput) return (NULL); if (af >= AF_MAX) return (NULL); for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { if (ifa->ifa_addr->sa_family != af) continue; ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))) return (ifa); continue; } cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) { if ((*cp++ ^ *cp2++) & *cp3) break; } if (cp3 == cplim) return (ifa); } return (ifa_maybe); } /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ void link_rtrequest(cmd, rt, info) int cmd; struct rtentry *rt; struct rt_addrinfo *info; { struct ifaddr *ifa; struct sockaddr *dst; struct ifnet *ifp; if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) { IFAFREE(rt->rt_ifa); rt->rt_ifa = ifa; IFAREF(ifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); } } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splsoftnet or equivalent. */ void if_down(ifp) struct ifnet *ifp; { struct ifaddr *ifa; ifp->if_flags &= ~IFF_UP; microtime(&ifp->if_lastchange); for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); IFQ_PURGE(&ifp->if_snd); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splsoftnet or equivalent. */ void if_up(ifp) struct ifnet *ifp; { #ifdef notyet struct ifaddr *ifa; #endif ifp->if_flags |= IFF_UP; microtime(&ifp->if_lastchange); #ifdef notyet /* this has no effect on IP, and will kill all ISO connections XXX */ for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) pfctlinput(PRC_IFUP, ifa->ifa_addr); #endif rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } /* * Handle interface watchdog timer routines. Called * from softclock, we decrement timers (if set) and * call the appropriate interface routine on expiration. */ void if_slowtimo(arg) void *arg; { struct ifnet *ifp; int s = splnet(); for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL; ifp = TAILQ_NEXT(ifp, if_list)) { if (ifp->if_timer == 0 || --ifp->if_timer) continue; if (ifp->if_watchdog) (*ifp->if_watchdog)(ifp); } splx(s); callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(ifp, pswitch) struct ifnet *ifp; int pswitch; { int pcount, ret; short flags; struct ifreq ifr; pcount = ifp->if_pcount; flags = ifp->if_flags; if (pswitch) { /* * Allow the device to be "placed" into promiscuous * mode even if it is not configured up. It will * consult IFF_PROMISC when it is is brought up. */ if (ifp->if_pcount++ != 0) return (0); ifp->if_flags |= IFF_PROMISC; if ((ifp->if_flags & IFF_UP) == 0) return (0); } else { if (--ifp->if_pcount > 0) return (0); ifp->if_flags &= ~IFF_PROMISC; /* * If the device is not configured up, we should not need to * turn off promiscuous mode (device should have turned it * off when interface went down; and will look at IFF_PROMISC * again next time interface comes up). */ if ((ifp->if_flags & IFF_UP) == 0) return (0); } memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = ifp->if_flags; ret = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t) &ifr); /* Restore interface state if not successful. */ if (ret != 0) { ifp->if_pcount = pcount; ifp->if_flags = flags; } return (ret); } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(name) const char *name; { struct ifnet *ifp; const char *cp = name; u_int unit = 0; u_int i; /* * If the entire name is a number, treat it as an ifindex. */ for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { unit = unit * 10 + (*cp - '0'); } /* * If the number took all of the name, then it's a valid ifindex. */ if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { if (unit >= if_index) return (NULL); ifp = ifindex2ifnet[unit]; if (ifp == NULL || ifp->if_output == if_nulloutput) return (NULL); return (ifp); } for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL; ifp = TAILQ_NEXT(ifp, if_list)) { if (ifp->if_output == if_nulloutput) continue; if (strcmp(ifp->if_xname, name) == 0) return (ifp); } return (NULL); } /* * Interface ioctls. */ int ifioctl(so, cmd, data, p) struct socket *so; u_long cmd; caddr_t data; struct proc *p; { struct ifnet *ifp; struct ifreq *ifr; struct ifcapreq *ifcr; struct ifdatareq *ifdr; int s, error = 0; short oif_flags; switch (cmd) { case SIOCGIFCONF: case OSIOCGIFCONF: return (ifconf(cmd, data)); } ifr = (struct ifreq *)data; ifcr = (struct ifcapreq *)data; ifdr = (struct ifdatareq *)data; switch (cmd) { case SIOCIFCREATE: case SIOCIFDESTROY: if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); return ((cmd == SIOCIFCREATE) ? if_clone_create(ifr->ifr_name) : if_clone_destroy(ifr->ifr_name)); case SIOCIFGCLONERS: return (if_clone_list((struct if_clonereq *)data)); } ifp = ifunit(ifr->ifr_name); if (ifp == 0) return (ENXIO); oif_flags = ifp->if_flags; switch (cmd) { case SIOCGIFFLAGS: ifr->ifr_flags = ifp->if_flags; break; case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFDLT: ifr->ifr_dlt = ifp->if_dlt; break; case SIOCSIFFLAGS: if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { s = splnet(); if_down(ifp); splx(s); } if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { s = splnet(); if_up(ifp); splx(s); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (ifr->ifr_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) (void) (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCGIFCAP: ifcr->ifcr_capabilities = ifp->if_capabilities; ifcr->ifcr_capenable = ifp->if_capenable; break; case SIOCSIFCAP: if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); /* Must prevent race with packet reception here. */ s = splnet(); if (ifcr->ifcr_capenable != ifp->if_capenable) { struct ifreq ifrq; ifrq.ifr_flags = ifp->if_flags; ifp->if_capenable = ifcr->ifcr_capenable; /* Pre-compute the checksum flags mask. */ ifp->if_csum_flags_tx = 0; ifp->if_csum_flags_rx = 0; if (ifp->if_capenable & IFCAP_CSUM_IPv4) { ifp->if_csum_flags_tx |= M_CSUM_IPv4; ifp->if_csum_flags_rx |= M_CSUM_IPv4; } if (ifp->if_capenable & IFCAP_CSUM_TCPv4) { ifp->if_csum_flags_tx |= M_CSUM_TCPv4; ifp->if_csum_flags_rx |= M_CSUM_TCPv4; } else if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) ifp->if_csum_flags_rx |= M_CSUM_TCPv4; if (ifp->if_capenable & IFCAP_CSUM_UDPv4) { ifp->if_csum_flags_tx |= M_CSUM_UDPv4; ifp->if_csum_flags_rx |= M_CSUM_UDPv4; } else if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) ifp->if_csum_flags_rx |= M_CSUM_UDPv4; if (ifp->if_capenable & IFCAP_CSUM_TCPv6) { ifp->if_csum_flags_tx |= M_CSUM_TCPv6; ifp->if_csum_flags_rx |= M_CSUM_TCPv6; } if (ifp->if_capenable & IFCAP_CSUM_UDPv6) { ifp->if_csum_flags_tx |= M_CSUM_UDPv6; ifp->if_csum_flags_rx |= M_CSUM_UDPv6; } /* * Only kick the interface if it's up. If it's * not up now, it will notice the cap enables * when it is brought up later. */ if (ifp->if_flags & IFF_UP) (void) (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t) &ifrq); } splx(s); break; case SIOCSIFMETRIC: if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); ifp->if_metric = ifr->ifr_metric; break; case SIOCGIFDATA: ifdr->ifdr_data = ifp->if_data; break; case SIOCZIFDATA: if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); ifdr->ifdr_data = ifp->if_data; /* * Assumes that the volatile counters that can be * zero'ed are at the end of if_data. */ memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - offsetof(struct if_data, ifi_ipackets)); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif } break; } case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSLIFPHYADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCSIFMEDIA: if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); /* FALLTHROUGH */ case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGLIFPHYADDR: case SIOCGIFMEDIA: if (ifp->if_ioctl == 0) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCSDRVSPEC: case SIOCS80211NWID: case SIOCS80211NWKEY: case SIOCS80211POWER: case SIOCS80211BSSID: case SIOCS80211CHANNEL: /* XXX: need to pass proc pointer through to driver... */ if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); /* FALLTHROUGH */ default: if (so->so_proto == 0) return (EOPNOTSUPP); #if !defined(COMPAT_43) && !defined(COMPAT_LINUX) && !defined(COMPAT_SVR4) && !defined(LKM) error = ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL, (struct mbuf *)cmd, (struct mbuf *)data, (struct mbuf *)ifp, p)); #else { int ocmd = cmd; switch (cmd) { case SIOCSIFADDR: case SIOCSIFDSTADDR: case SIOCSIFBRDADDR: case SIOCSIFNETMASK: #if BYTE_ORDER != BIG_ENDIAN if (ifr->ifr_addr.sa_family == 0 && ifr->ifr_addr.sa_len < 16) { ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; ifr->ifr_addr.sa_len = 16; } #else if (ifr->ifr_addr.sa_len == 0) ifr->ifr_addr.sa_len = 16; #endif break; case OSIOCGIFADDR: cmd = SIOCGIFADDR; break; case OSIOCGIFDSTADDR: cmd = SIOCGIFDSTADDR; break; case OSIOCGIFBRDADDR: cmd = SIOCGIFBRDADDR; break; case OSIOCGIFNETMASK: cmd = SIOCGIFNETMASK; } error = ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL, (struct mbuf *)cmd, (struct mbuf *)data, (struct mbuf *)ifp, p)); switch (ocmd) { case OSIOCGIFADDR: case OSIOCGIFDSTADDR: case OSIOCGIFBRDADDR: case OSIOCGIFNETMASK: *(u_int16_t *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; } } #endif /* COMPAT_43 */ break; } if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { #ifdef INET6 if ((ifp->if_flags & IFF_UP) != 0) { s = splnet(); in6_if_up(ifp); splx(s); } #endif } return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ int ifconf(cmd, data) u_long cmd; caddr_t data; { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr, *ifrp; int space = ifc->ifc_len, error = 0; ifrp = ifc->ifc_req; TAILQ_FOREACH(ifp, &ifnet, if_list) { bcopy(ifp->if_xname, ifr.ifr_name, IFNAMSIZ); if ((ifa = TAILQ_FIRST(&ifp->if_addrlist)) == 0) { memset((caddr_t)&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); if (space >= (int)sizeof (ifr)) { error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof(ifr)); if (error) break; } space -= sizeof (ifr), ifrp++; } else for (; ifa != 0; ifa = TAILQ_NEXT(ifa, ifa_list)) { struct sockaddr *sa = ifa->ifa_addr; #if defined(COMPAT_43) || defined(COMPAT_LINUX) || defined(COMPAT_SVR4) if (cmd == OSIOCGIFCONF) { struct osockaddr *osa = (struct osockaddr *)&ifr.ifr_addr; ifr.ifr_addr = *sa; osa->sa_family = sa->sa_family; if (space >= (int)sizeof (ifr)) { error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); ifrp++; } } else #endif if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; if (space >= (int)sizeof (ifr)) { error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); ifrp++; } } else { space -= sa->sa_len - sizeof(*sa); if (space >= (int)sizeof (ifr)) { error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr.ifr_name)); if (error == 0) { error = copyout((caddr_t)sa, (caddr_t)&ifrp->ifr_addr, sa->sa_len); } ifrp = (struct ifreq *) (sa->sa_len + (caddr_t)&ifrp->ifr_addr); } } if (error) break; space -= sizeof (ifr); } } ifc->ifc_len -= space; return (error); }